1
|
Ferrari L, Buoli M, Borroni E, Nosari G, Ceresa A, Antonangeli LM, Monti P, Matsagani R, Bollati V, Pesatori AC, Carugno M. DNA methylation of core clock genes in patients with major depressive disorder: Association with air pollution exposure and disease severity. Psychiatry Res 2025; 348:116466. [PMID: 40184933 DOI: 10.1016/j.psychres.2025.116466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Major Depressive Disorder (MDD) is a multifactorial disease which could be influenced by exposure to air pollution through disruption of sleep-wake cycles and other circadian-related behaviors. Our study aimed to investigate the interplay between air pollution exposure, DNA methylation of core clock genes involved in circadian rhythms, and MDD severity. METHODS Four hundred sixteen MDD patients (64 % females) agreed to participate and donated a blood sample to measure DNA methylation of the core clock genes CRY1, PER1, PER2, CLOCK, BMAL1. MDD severity and functioning was assessed using five rating scales. Daily mean estimates of particulate matter with diameter ≤ 2.5 μm (PM2.5) and nitrogen dioxide (NO2) were assigned to study participants based on their residential address, and averaged to estimate different cumulative exposure windows. Multivariate regression models were applied to assess associations between air pollutants and core clock genes methylation and between DNA methylation of those same genes and MDD severity. RESULTS PM2.5 exposure in the six months preceding recruitment was associated with CLOCK hypomethylation (β=-0.11, 95 % confidence interval [CI]:0.20; -0.02) and CRY1 hypermethylation (β=0.32, 95 %CI: 0.06; 0.58). All NO2 exposure windows were associated with CRY1 hypermethylation. Increasing methylation of CLOCK was associated with lower MDD severity considering several scales (e.g., Hamilton Depression Rating Scale: β=-7.21, 95 %CI:3.97; -0.44). CONCLUSIONS Taken together our findings shed some light on the complex mechanism underlying the pathogenesis of MDD, with a potentially relevant role of the environment and of its impact on epigenetic mechanisms altering the expression of core clock genes.
Collapse
Affiliation(s)
- Luca Ferrari
- EPIGET Lab, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
| | - Massimiliano Buoli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Borroni
- EPIGET Lab, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
| | - Guido Nosari
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandro Ceresa
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Laura Maria Antonangeli
- EPIGET Lab, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
| | - Paola Monti
- EPIGET Lab, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
| | - Rachele Matsagani
- EPIGET Lab, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy; Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela Cecilia Pesatori
- EPIGET Lab, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy; Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Michele Carugno
- EPIGET Lab, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy; Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
2
|
Xin M, Bi F, Wang C, Huang Y, Xu Y, Liang S, Cai T, Xu X, Dong L, Li T, Wang X, Fang Y, Xu Z, Wang M, Song X, Zheng Y, Sun W, Li L. The circadian rhythm: A new target of natural products that can protect against diseases of the metabolic system, cardiovascular system, and nervous system. J Adv Res 2025; 69:495-514. [PMID: 38631431 PMCID: PMC11954810 DOI: 10.1016/j.jare.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/17/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The treatment of metabolic system, cardiovascular system, and nervous system diseases remains to be explored. In the internal environment of organisms, the metabolism of substances such as carbohydrates, lipids and proteins (including biohormones and enzymes) exhibit a certain circadian rhythm to maintain the energy supply and material cycle needed for the normal activities of organisms. As a key factor for the health of organisms, the circadian rhythm can be disrupted by pathological conditions, and this disruption accelerates the progression of diseases and results in a vicious cycle. The current treatments targeting the circadian rhythm for the treatment of metabolic system, cardiovascular system, and nervous system diseases have certain limitations, and the identification of safer and more effective circadian rhythm regulators is needed. AIM OF THE REVIEW To systematically assess the possibility of using the biological clock as a natural product target for disease intervention, this work reviews a range of evidence on the potential effectiveness of natural products targeting the circadian rhythm to protect against diseases of the metabolic system, cardiovascular system, and nervous system. This manuscript focuses on how natural products restore normal function by affecting the amplitude of the expression of circadian factors, sleep/wake cycles and the structure of the gut microbiota. KEY SCIENTIFIC CONCEPTS OF THE REVIEW This work proposes that the circadian rhythm, which is regulated by the amplitude of the expression of circadian rhythm-related factors and the sleep/wake cycle, is crucial for diseases of the metabolic system, cardiovascular system and nervous system and is a new target for slowing the progression of diseases through the use of natural products. This manuscript provides a reference for the molecular modeling of natural products that target the circadian rhythm and provides a new perspective for the time-targeted action of drugs.
Collapse
Affiliation(s)
- Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China
| | - Fangjie Bi
- Heart Center, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yuhong Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yujia Xu
- Department of Echocardiography, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianxing Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xueke Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yini Fang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Basic Medical College, Zhejiang Chinese Medical University, Hangzhou 310053 China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| |
Collapse
|
3
|
Yu W, Li X, Zhang C, Niu P, Wu J, He W, Gao K, Xu Y, Li Y. KDM6B knockdown alleviates sleep deprivation-induced cerebrovascular lesions in APP/PS1 mice by inhibiting PARP16 expression. Biochem Pharmacol 2025; 231:116650. [PMID: 39603516 DOI: 10.1016/j.bcp.2024.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/22/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is a neurological disorder in the elderly, involving the deposition of vascular amyloid-β (Aβ). Sleep deprivation (SD) causes memory deficits during CAA. Lysine specific demethylase 6B (KDM6B) is a histone H3 lysine 27-specific demethylase associated with neuronal injury and inflammation. However, the role of KDM6B in CAA has yet to be studied. In the current study, the multi-platform over-water method was used to induce chronic SD in APP/PS1 mice. Pathological analysis revealed that SD exacerbated vascular lesions in this model, as manifested by extensive formation of Aβ-positive deposits. In addition, SD led to a significant increase in the expression of KDM6B in the cerebral cortex of APP/PS1 mice. Next, the effect of KDM6B on CAA progression was explored through loss of function. Further experiments illustrated that KDM6B knockdown diminished SD-induced memory impairment, neuronal injury and vascular lesions in vivo. Additionally, isolated primary cortical neurons were treated with 10 µM Aβ1-42 for 48 h to induce the cell model. As expected, knockdown of KDM6B inhibited the Aβ1-42-induced cytotoxicity in primary neurons. Mechanistically, our results demonstrated that KDM6B knockdown downregulated poly (ADP-ribose) polymerase16 (PARP16) expression by increasing trimethylated lysine 27 on histone 3 (H3K27me3) levels, indicating that KDM6B epigenetically regulated PARP16 expression. Function recovery experiment results further proved that PARP16 overexpression negated the effect of KDM6B knockdown on Aβ1-42-induced cytotoxicity. Overall, our findings uncover an unanticipated role of KDM6B in CAA, and KDM6B may serve as a potential therapeutic target for CAA. Abbreviations: CAA, cerebral amyloid angiopathy; Aβ, amyloid-β; SD, sleep deprivation; KDM6B, lysine specific demethylase 6B; AD, Alzheimer's disease; H3K27me3, trimethylated lysine 27 on histone 3; PARP16, poly (ADP-ribose) polymerase16; AAV2, adeno-associated virus 2; CHIP, chromatin immunoprecipitation; ANOVA, one-way analysis of variance.
Collapse
Affiliation(s)
- Wenkai Yu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China; National Health Commission Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
| | - Xinyu Li
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China; National Health Commission Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
| | - Chan Zhang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
| | - Pengpeng Niu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
| | - Jinghao Wu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
| | - Wenjun He
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
| | - Kai Gao
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
| | - Yuming Xu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China; National Health Commission Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China; Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou, Henan, China.
| | - Yusheng Li
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China; National Health Commission Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China; Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Motiei M, Abu-Dawud R, Relógio A, Assaf C. Circadian rhythms in haematological malignancies: therapeutic potential and personalised interventions. EBioMedicine 2024; 110:105451. [PMID: 39566400 PMCID: PMC11617894 DOI: 10.1016/j.ebiom.2024.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/13/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
The circadian clock, a fundamental cellular mechanism, regulates the rhythmic expression of numerous genes and biological processes across various organs. Disruptions in this system, driven by genetic or environmental factors, have been reported to be involved in cancer progression. This review explores the role of the circadian clock in cancer hallmarks and its impact on cellular homeostasis within haematological malignancies. Drawing on findings from in vitro, in vivo, and clinical trials, this review highlights the potential of clock genes as diagnostic and prognostic biomarkers, and as therapeutic targets for optimising treatment timing. It discusses how circadian rhythms can enhance treatment efficacy through both pharmacological and non-pharmacological interventions, outlining strategies for optimising dosing schedules and implementing personalised chronobiological interventions, with a particular focus on haematological malignancies, including cutaneous lymphoma. Ongoing research holds promise for advancing personalised therapeutic approaches and ultimately improving cancer care standards.
Collapse
Affiliation(s)
- Marjan Motiei
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg 20457, Germany
| | - Raed Abu-Dawud
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg 20457, Germany
| | - Angela Relógio
- Institute for Systems Medicine, and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg 20457, Germany
| | - Chalid Assaf
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg 20457, Germany; Department of Dermatology, HELIOS Klinikum Krefeld, Krefeld 47805, Germany.
| |
Collapse
|
5
|
Kiss MG, Cohen O, McAlpine CS, Swirski FK. Influence of sleep on physiological systems in atherosclerosis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1284-1300. [PMID: 39528718 PMCID: PMC11567060 DOI: 10.1038/s44161-024-00560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Sleep is a fundamental requirement of life and is integral to health. Deviation from optimal sleep associates with numerous diseases including those of the cardiovascular system. Studies, spanning animal models to humans, show that insufficient, disrupted or inconsistent sleep contribute to poor cardiovascular health by disrupting body systems. Fundamental experiments have begun to uncover the molecular and cellular links between sleep and heart health while large-scale human studies have associated sleep with cardiovascular outcomes in diverse populations. Here, we review preclinical and clinical findings that demonstrate how sleep influences the autonomic nervous, metabolic and immune systems to affect atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Máté G Kiss
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Oren Cohen
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cameron S McAlpine
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Filip K Swirski
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Lin Z, Jiang T, Chen M, Ji X, Wang Y. Gut microbiota and sleep: Interaction mechanisms and therapeutic prospects. Open Life Sci 2024; 19:20220910. [PMID: 39035457 PMCID: PMC11260001 DOI: 10.1515/biol-2022-0910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/23/2024] Open
Abstract
Sleep is crucial for wellness, and emerging research reveals a profound connection to gut microbiota. This review explores the bidirectional relationship between gut microbiota and sleep, exploring the mechanisms involved and the therapeutic opportunities it presents. The gut-brain axis serves as a conduit for the crosstalk between gut microbiota and the central nervous system, with dysbiosis in the microbiota impairing sleep quality and vice versa. Diet, circadian rhythms, and immune modulation all play a part. Specific gut bacteria, like Lactobacillus and Bifidobacterium, enhance sleep through serotonin and gamma-aminobutyric acid production, exemplifying direct microbiome influence. Conversely, sleep deprivation reduces beneficial bacteria, exacerbating dysbiosis. Probiotics, prebiotics, postbiotics, and fecal transplants show therapeutic potential, backed by animal and human research, yet require further study on safety and long-term effects. Unraveling this intricate link paves the way for tailored sleep therapies, utilizing microbiome manipulation to improve sleep and health. Accelerated research is essential to fully tap into this promising field for sleep disorder management.
Collapse
Affiliation(s)
- Zhonghui Lin
- Department of Neurology Medical, Xiamen Hospital of Traditional Chinese Medicine, Fujian, Xiamen, China
- Jimsar County of Xinjiang Chinese Medicine Hospital, Xinjiang, Changji, China
| | - Tao Jiang
- Department of Neurology Medical, Xiamen Hospital of Traditional Chinese Medicine, Fujian, Xiamen, China
| | - Miaoling Chen
- Department of Neurology Medical, Xiamen Hospital of Traditional Chinese Medicine, Fujian, Xiamen, China
| | - Xudong Ji
- Jimsar County of Xinjiang Chinese Medicine Hospital, Xinjiang, Changji, China
| | - Yunsu Wang
- Department of Cardiology Medical, Xiamen Hospital of Traditional Chinese Medicine, Fujian, Xiamen, China
| |
Collapse
|
7
|
Zeng Y, Guo Z, Wu M, Chen F, Chen L. Circadian rhythm regulates the function of immune cells and participates in the development of tumors. Cell Death Discov 2024; 10:199. [PMID: 38678017 PMCID: PMC11055927 DOI: 10.1038/s41420-024-01960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Circadian rhythms are present in almost all cells and play a crucial role in regulating various biological processes. Maintaining a stable circadian rhythm is essential for overall health. Disruption of this rhythm can alter the expression of clock genes and cancer-related genes, and affect many metabolic pathways and factors, thereby affecting the function of the immune system and contributing to the occurrence and progression of tumors. This paper aims to elucidate the regulatory effects of BMAL1, clock and other clock genes on immune cells, and reveal the molecular mechanism of circadian rhythm's involvement in tumor and its microenvironment regulation. A deeper understanding of circadian rhythms has the potential to provide new strategies for the treatment of cancer and other immune-related diseases.
Collapse
Affiliation(s)
- Yuen Zeng
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China
| | - Zichan Guo
- Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Mengqi Wu
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China
| | - Fulin Chen
- Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Lihua Chen
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China.
| |
Collapse
|
8
|
Lin Y, He L, Cai Y, Wang X, Wang S, Li F. The role of circadian clock in regulating cell functions: implications for diseases. MedComm (Beijing) 2024; 5:e504. [PMID: 38469551 PMCID: PMC10925886 DOI: 10.1002/mco2.504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
The circadian clock system orchestrates daily behavioral and physiological rhythms, facilitating adaptation to environmental and internal oscillations. Disruptions in circadian rhythms have been linked to increased susceptibility to various diseases and can exacerbate existing conditions. This review delves into the intricate regulation of diurnal gene expression and cell function by circadian clocks across diverse tissues. . Specifically, we explore the rhythmicity of gene expressions, behaviors, and functions in both immune and non-immune cells, elucidating the regulatory effects and mechanisms imposed by circadian clocks. A detailed discussion is centered on elucidating the complex functions of circadian clocks in regulating key cellular signaling pathways. We further review the circadian regulation in diverse diseases, with a focus on inflammatory diseases, cancers, and systemic diseases. By highlighting the intimate interplay between circadian clocks and diseases, especially through clock-controlled cell function, this review contributes to the development of novel disease intervention strategies. This enhanced understanding holds significant promise for the design of targeted therapies that can exploit the circadian regulation mechanisms for improved treatment efficacy.
Collapse
Affiliation(s)
- Yanke Lin
- Infectious Diseases InstituteGuangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
- Guangdong TCRCure Biopharma Technology Co., Ltd.GuangzhouChina
| | | | - Yuting Cai
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Xiaokang Wang
- Department of PharmacyShenzhen Longhua District Central HospitalShenzhenChina
| | - Shuai Wang
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Feng Li
- Infectious Diseases InstituteGuangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
9
|
Li T, Jiang YT, Qi XZ, Chen P, Zhang JH, Luo F, Qiao J, Gu J, Du GS, Wang Q. Circadian disturbance induces erectile dysfunction by impairing endothelial function. Asian J Androl 2024; 26:205-211. [PMID: 38048170 PMCID: PMC10919418 DOI: 10.4103/aja202345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/27/2023] [Indexed: 12/06/2023] Open
Abstract
In order to explore the impact of circadian disturbance on erectile function, we randomly divided 24 adult male rats into groups of control (light on at 8:00 a.m. and off at 8:00 p.m.), dark/dark (DD; constant dark), light/light (LL; constant light), and shift dark/light (DL; light off at 8:00 a.m. and on at 8:00 p.m.). Four weeks later, erectile function was measured and corpora cavernosa were harvested for analysis. The maximum intracavernous pressure (mICP) and mICP/mean arterial pressure (MAP) ratio in the DD, LL, and DL groups were significantly lower than that in the control group. The LL and DL groups showed significantly attenuated endothelial nitric oxide synthase (eNOS), while DD, LL, and DL showed reduced neuronal nitric oxide synthase (nNOS) at both mRNA and protein levels. The production of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) was inhibited by altered light/dark cycles to varying degrees. Circadian disturbance impaired endothelial function and contributed to erectile dysfunction. For the core circadian elements, mRNA expression of circadian locomotor output cycles kaput ( Clock ) and brain/muscle aryl-hydrocarbon receptor nuclear translocator-like protein 1 ( Bmal1 ) was elevated in the DL group, but their protein expression was not significantly changed. DD, LL, and DL increased period 1 ( Per1 ) and Per3 levels, while LL and DL increased PER1 levels. No significant difference was found for Per2 levels, and PER2 and PER3 concentrations were not significantly changed. Moreover, LL and DL significantly increased cryptochrome-1 (CRY1) and CRY2 at both mRNA and protein levels. The altered light/dark rat model showed that circadian disturbance contributed to erectile dysfunction probably by impairing endothelial function. Meanwhile, the core circadian elements were detected in the corpora cavernosa, but these were disrupted. However, which circadian element regulates erectile function and how it works need further analysis.
Collapse
Affiliation(s)
- Tao Li
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang 550002, China
| | - Yi-Ting Jiang
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Xin-Zhu Qi
- Guizhou Institute for Food and Drug Control, Guiyang 550004, China
| | - Peng Chen
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Jun-Hao Zhang
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Fu Luo
- Department of Reproductive Center, Guizhou Provincial People’s Hospital, Guiyang 550002, China
| | - Jun Qiao
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Jiang Gu
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Guang-Shi Du
- Translational Medicine Research Center of Guizhou Medical University, Guiyang 550025, China
| | - Qiang Wang
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
10
|
Srinivasan A, Giri A, Duraisamy SK, Alsup A, Castro M, Sundar IK. Chronic HDM exposure shows time-of-day and sex-based differences in inflammatory response associated with lung circadian clock disruption. iScience 2023; 26:107580. [PMID: 37664635 PMCID: PMC10470299 DOI: 10.1016/j.isci.2023.107580] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Circadian rhythms and sex differences are involved in the pathophysiology of asthma. Yet, there are no reports that simultaneously address the role of the circadian clock and sex-based differences in chronic house dust mite (HDM)-induced asthma. Here, we sought to determine if chronic HDM exposure during the resting phase (zeitgeber time: ZT0/6:00 a.m.) versus the active phase (ZT12/6:00 p.m.) differentially affects the circadian clock and alters asthma pathobiology in female and male mice. HDM exposure at ZT12 exaggerated infiltration of eosinophil subtypes and associated chemokines in females compared to males. Furthermore, HDM exposure augmented eosinophil chemokines, Th2 gene expression and cytokine release, and humoral immune response in females compared to males at ZT12. Concurrently, histopathological evaluation confirmed increased airway inflammation at ZT12 in both females and males. Overall, we showed a time-of-day response and sex-based differences in HDM-induced exaggerated asthmatic phenotypes (inflammation/remodeling) and circadian clock disruption in females compared to males.
Collapse
Affiliation(s)
- Ashokkumar Srinivasan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Allan Giri
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Santhosh Kumar Duraisamy
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Alexander Alsup
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mario Castro
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Isaac Kirubakaran Sundar
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
11
|
Yang DF, Huang WC, Wu CW, Huang CY, Yang YCSH, Tung YT. Acute sleep deprivation exacerbates systemic inflammation and psychiatry disorders through gut microbiota dysbiosis and disruption of circadian rhythms. Microbiol Res 2023; 268:127292. [PMID: 36608535 DOI: 10.1016/j.micres.2022.127292] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/23/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Acute sleep deprivation (ASD) is often observed in shift workers and characterized by drowsiness and unrelenting exhaustion. The physiological and psychological effects of ASD include anxiety, depression, cognitive impairment, systemic inflammation, stress responses, and disruptions of gut microbiota. However, the mechanisms involved in the ASD-associated circadian dysregulations with regard to gut dysbiosis, systemic inflammation, physiological modulation, and psychiatry disorders remain unclear. The aim of this study was to investigate whether central nervous system disorders induced by ASD are related to inflammation, barrier dysfunction, and circadian dysregulation. We also assessed impacts on microbiota succession. Male C57BL/6 mice were randomly allocated to the control and sleep deprivation (SD) groups. Mice in the SD group were subjected to 72 h of paradoxical SD using the modified multiple-platform method for ASD induction (72 h rapid eye movement-SD). The effects of ASD on dietary consumption, behaviors, cytokines, microbiota, and functional genes were determined. The appetite of the SD group was significantly higher than that of the control group, but the body weight was significantly lower than that of the control group. The anxiety-like behaviors were found in the SD group. Alpha and beta diversity of microbiota showed significant decrease after ASD induction; the relative abundance of Candidatus_Arthromitus and Enterobacter was increased, whereas that abundance of Lactobacillus, Muribaculum, Monoglobus, Parasutterella, and others was decreased in the SD group. These effects were accompanied by reduction in fecal propionic acid. In the proximal colon, the SD group exhibited significantly higher inflammation (tumor necrosis factor-α [TNF-α]) and dysregulation of the circadian rhythms (brain and muscle ARNT-like 1 [BMAL1] and cryptochrome circadian regulator 1 [CRY1]) and tight junction genes (occludin [OCLN]) than the control group. Gut barrier dysfunction slightly increased the plasma concentration of lipopolysaccharide and significantly elevated TNF-α. Inflammatory signals might be transduced through the brain via TNF receptor superfamily member 1 A (TNFRSF1A), which significantly increased the levels of microglia activation marker (ionized calcium-binding adapter molecule 1 [IBA1]) and chemokine (intercellular adhesion molecule 1 [ICAM1]) in the cerebral cortex. The serotonin receptor (5-hydroxytryptamine 1A receptor [5-HT1AR]) was significantly downregulated in the hippocampus. In summary, 72 h of rapid eye movement-SD induced physiological and psychological stress, which led to disruption of the circadian rhythms and gut microbiota dysbiosis; these effects were related to decrement of short chain fatty acids, gut inflammation, and hyperpermeability. The microbiota may be utilized as preventive and therapeutic strategies for ASD from the perspectives of medicine and nutrition.
Collapse
Affiliation(s)
- Deng-Fa Yang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan.
| | - Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan.
| | - Changwei W Wu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei 110, Taiwan; Brain and Consciousness Research Center, Shuang Ho Hospital-Taipei Medical University, New Taipei 235, Taiwan.
| | - Ching-Ying Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan.
| | - Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 110, Taiwan.
| | - Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.
| |
Collapse
|
12
|
Stenger S, Grasshoff H, Hundt JE, Lange T. Potential effects of shift work on skin autoimmune diseases. Front Immunol 2023; 13:1000951. [PMID: 36865523 PMCID: PMC9972893 DOI: 10.3389/fimmu.2022.1000951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/29/2022] [Indexed: 02/16/2023] Open
Abstract
Shift work is associated with systemic chronic inflammation, impaired host and tumor defense and dysregulated immune responses to harmless antigens such as allergens or auto-antigens. Thus, shift workers are at higher risk to develop a systemic autoimmune disease and circadian disruption with sleep impairment seem to be the key underlying mechanisms. Presumably, disturbances of the sleep-wake cycle also drive skin-specific autoimmune diseases, but epidemiological and experimental evidence so far is scarce. This review summarizes the effects of shift work, circadian misalignment, poor sleep, and the effect of potential hormonal mediators such as stress mediators or melatonin on skin barrier functions and on innate and adaptive skin immunity. Human studies as well as animal models were considered. We will also address advantages and potential pitfalls in animal models of shift work, and possible confounders that could drive skin autoimmune diseases in shift workers such as adverse lifestyle habits and psychosocial influences. Finally, we will outline feasible countermeasures that may reduce the risk of systemic and skin autoimmunity in shift workers, as well as treatment options and highlight outstanding questions that should be addressed in future studies.
Collapse
Affiliation(s)
- Sarah Stenger
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Hanna Grasshoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Jennifer Elisabeth Hundt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
13
|
Gao R, Zhang X, Zou K, Meng D, Lv J. Cryptochrome 1 activation inhibits melanogenesis and melanosome transport through negative regulation of cAMP/PKA/CREB signaling pathway. Front Pharmacol 2023; 14:1081030. [PMID: 36814484 PMCID: PMC9939694 DOI: 10.3389/fphar.2023.1081030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
Cutaneous pigmentation was recently shown to be an event regulated by clock proteins. Cryptochrome (CRY) is a key protein composing the feedback loop of circadian clock, however, the function of CRY in melanocytes remains unclear. Here, we found that KL001, a synthetic small molecule modulator of CRY1, inhibited melanin synthesis, as well as reduced melanocyte dendrite elongation and melanosome transport. In addition, the dominant role of CRY1 in KL001-induced anti-melanogenesis was revealed by small interfering RNA transfection. Cellular tyrosinase activity and expression level of melanogenic proteins, including tyrosinase, TRP-1, TRP-2, and transport proteins like Rab27a, Cdc42 and Myosin Va induced by α-MSH were remarkably reversed after KL001 treatment. Mechanistically, CRY1 activation inhibited melanogenesis through CREB-dependent downregulation of MITF and CREB phosphorylation was mediated by classical cAMP/PKA pathway. In addition, the other CRY1 activator, KL044 also suppressed cAMP/PKA/CREB pathway and inhibited melanogenesis. Finally, anti-melanogenic efficacy of KL001 was confirmed by determination of melanin contents in UVB-tanning model of brown guinea pigs, which indicated that targeting CRY1 activity, via topical application of small molecule activator, can be utilized therapeutically to manage human pigmentary disorders.
Collapse
Affiliation(s)
- Rongyin Gao
- Department of Pharmacy, Department of Dermatology, The first people’s Hospital of Changzhou, The third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ximei Zhang
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Kun Zou
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Duo Meng
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Jinpeng Lv
- Department of Pharmacy, Department of Dermatology, The first people’s Hospital of Changzhou, The third Affiliated Hospital of Soochow University, Changzhou, China,School of Pharmacy, Changzhou University, Changzhou, China,*Correspondence: Jinpeng Lv,
| |
Collapse
|
14
|
Asgari E, Shiraseb F, Mirzababaei A, Tangestani H, Mirzaei K. Positive Interaction Between CG, CC Genotypes of Cryptochrome Circadian Clocks 1, and Energy-Adjusted Dietary Inflammatory Index on High Sensitivity C-Reactive Protein Level in Women With Central Obesity. Clin Nutr Res 2023; 12:7-20. [PMID: 36793781 PMCID: PMC9900074 DOI: 10.7762/cnr.2023.12.1.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 02/04/2023] Open
Abstract
Creating a complex balance between dietary composition, circadian rhythm, and the hemostasis control of energy is important for managing diseases. Therefore, we aimed to determine the interaction between cryptochrome circadian clocks 1 polymorphism and energy-adjusted dietary inflammatory index (E-DII) on high-sensitivity C-reactive protein in women with central obesity. This cross-sectional study recruited 220 Iranian women aged 18-45 with central obesity. The 147-item semi-quantitative food frequency questionnaire was used to assess the dietary intakes, and the E-DII score was calculated. Anthropometric and biochemical measurements were determined. By polymerase chain response-restricted length polymorphism method, cryptochrome circadian clocks 1 polymorphism was assigned. Participants were categorized into three groups based on the E-DII score, then categorized according to cryptochrome circadian clocks 1 genotypes. The mean and standard deviation of age, BMI, and high-sensitivity C-reactive protein (hs-CRP) were 35.61 ± 9.57 years, 30.97 ± 4.16 kg/m2, and 4.82 ± 5.16 mg/dL, respectively. The interaction of the CG genotype and E-DII score had a significant association with higher hs-CRP level compared to GG genotype as the reference group (β, 1.19; 95% CI, 0.11-2.27; p value, 0.03). There was a marginally significant association between the interaction of the CC genotype and the E-DII score with higher hs-CRP level compared to the GG genotype as the reference group (β, 0.85; 95% CI, -0.15 to 1.86; p value, 0.05). There is probably positive interaction between CG, CC genotypes of cryptochrome circadian clocks 1, and E-DII score on the high-sensitivity C-reactive protein level in women with central obesity.
Collapse
Affiliation(s)
- Elaheh Asgari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran 14155-6117, Iran
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran 14155-6117, Iran
| | - Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran 14155-6117, Iran
| | - Hadith Tangestani
- Department of Nutrition, Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr 7518759577, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran 14155-6117, Iran
| |
Collapse
|
15
|
Zhu Y, Chen X, Guo L, Wang L, Chen N, Xiao Y, Wang E. Acute sleep deprivation increases inflammation and aggravates heart failure after myocardial infarction. J Sleep Res 2022; 31:e13679. [PMID: 35785454 PMCID: PMC9786274 DOI: 10.1111/jsr.13679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/30/2022]
Abstract
Sleep disorders have been observed among patients with heart failure. The aim of this study was to investigate whether acute sleep deprivation (SD) aggravates left heart function. Male C57B/L6 mice were assigned to four experimental groups. Ligation of the left anterior descending branch (LAD) caused myocardial infarction (MI) in mice in the LAD group and the LAD+SD group, while mice in the sham and sham+SD groups underwent the same surgery without ligation. Echocardiography was performed before and 8 weeks after ligation of the LAD to evaluate the left ventricular internal diameter at diastole (LVIDd), left ventricular internal diameter at systole (LVIDs), ejection fraction (EF), and fractional shortening (FS). Seven days of sleep deprivation induced using the modified single platform method resulted in a lower EF and FS and a higher LVIDd and LVIDs, as well as increased expression of the IL-1β, IL-18, and IL-10 mRNAs in the left ventricular tissue of MI mice. ELISA also indicated higher levels of IL-1β and IL-10 in the LAD+SD group. It was concluded that acute sleep deprivation induced cardiovascular alterations in cardiac structure and function in HF mice, accompanied by increased levels of inflammatory cytokines.
Collapse
Affiliation(s)
- Yumin Zhu
- Department of Anesthesiologythe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhouChina
| | - Xian Chen
- The First Affiliated Hospital of Suzhou UniversitySuzhouChina
| | - Lizhe Guo
- Department of AnesthesiologyXiangya Hospital Central South UniversityChangshaChina
| | - Lu Wang
- Department of AnesthesiologyXiangya Hospital Central South UniversityChangshaChina
| | - Na Chen
- Department of AnesthesiologyXiangya Hospital Central South UniversityChangshaChina
| | - Yujie Xiao
- Department of AnesthesiologyXiangya Hospital Central South UniversityChangshaChina
| | - E. Wang
- Department of AnesthesiologyXiangya Hospital Central South UniversityChangshaChina,National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| |
Collapse
|
16
|
Wei R, Duan X, Guo L. Effects of sleep deprivation on coronary heart disease. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:297-305. [PMID: 36039730 PMCID: PMC9437362 DOI: 10.4196/kjpp.2022.26.5.297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/06/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
The presence of artificial light enables humans to be active 24 h a day. Many people across the globe live in a social culture that encourages staying up late to meet the demands of various activities, such as work and school. Sleep deprivation (SD) is a severe health problem in modern society. Meanwhile, as with cardiometabolic disease, there was an obvious tendency that coronary heart disease (CHD) to become a global epidemic chronic disease. Specifically, SD can significantly increase the morbidity and mortality of CHD. However, the underlying mechanisms responsible for the effects of SD on CHD are multilayered and complex. Inflammatory response, lipid metabolism, oxidative stress, and endothelial function all contribute to cardiovascular lesions. In this review, the effects of SD on CHD development are summarized, and SD-related pathogenesis of coronary artery lesions is discussed. In general, early assessment of SD played a vital role in preventing the harmful consequences of CHD.
Collapse
Affiliation(s)
- Ran Wei
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking University Fifth School of Clinical Medicine, Beijing, China
| | - Xiaoye Duan
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lixin Guo
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking University Fifth School of Clinical Medicine, Beijing, China
| |
Collapse
|
17
|
Bryant AJ, Ebrahimi E, Nguyen A, Wolff CA, Gumz ML, Liu AC, Esser KA. A wrinkle in time: circadian biology in pulmonary vascular health and disease. Am J Physiol Lung Cell Mol Physiol 2022; 322:L84-L101. [PMID: 34850650 PMCID: PMC8759967 DOI: 10.1152/ajplung.00037.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
An often overlooked element of pulmonary vascular disease is time. Cellular responses to time, which are regulated directly by the core circadian clock, have only recently been elucidated. Despite an extensive collection of data regarding the role of rhythmic contribution to disease pathogenesis (such as systemic hypertension, coronary artery, and renal disease), the roles of key circadian transcription factors in pulmonary hypertension remain understudied. This is despite a large degree of overlap in the pulmonary hypertension and circadian rhythm fields, not only including shared signaling pathways, but also cell-specific effects of the core clock that are known to result in both protective and adverse lung vessel changes. Therefore, the goal of this review is to summarize the current dialogue regarding common pathways in circadian biology, with a specific emphasis on its implications in the progression of pulmonary hypertension. In this work, we emphasize specific proteins involved in the regulation of the core molecular clock while noting the circadian cell-specific changes relevant to vascular remodeling. Finally, we apply this knowledge to the optimization of medical therapy, with a focus on sleep hygiene and the role of chronopharmacology in patients with this disease. In dissecting the unique relationship between time and cellular biology, we aim to provide valuable insight into the practical implications of considering time as a therapeutic variable. Armed with this information, physicians will be positioned to more efficiently use the full four dimensions of patient care, resulting in improved morbidity and mortality of pulmonary hypertension patients.
Collapse
Affiliation(s)
- Andrew J. Bryant
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Elnaz Ebrahimi
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Amy Nguyen
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Christopher A. Wolff
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Michelle L. Gumz
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Andrew C. Liu
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Karyn A. Esser
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
18
|
Li T, Bai Y, Jiang Y, Jiang K, Tian Y, Wang Z, Ban Y, Liang X, Luo G, Sun F. Potential Effect of the Circadian Clock on Erectile Dysfunction. Aging Dis 2022; 13:8-23. [PMID: 35111358 PMCID: PMC8782551 DOI: 10.14336/ad.2021.0728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/28/2021] [Indexed: 12/03/2022] Open
Abstract
The circadian rhythm is an internal timing system, which is generated by circadian clock genes. Because the circadian rhythm regulates numerous cellular, behavioral, and physiological processes, organisms have evolved with intrinsic biological rhythms to adapt the daily environmental changes. A variety of pathological events occur at specific times, while disturbed rhythms can lead to metabolic syndrome, vascular dysfunction, inflammatory disorders, and cancer. Therefore, the circadian clock is considered closely related to various diseases. Recently, accumulated data have shown that the penis is regulated by the circadian clock, while erectile function is impaired by an altered sleep-wake cycle. The circadian rhythm appears to be a novel therapeutic target for preventing and managing erectile dysfunction (ED), although research is still progressing. In this review, we briefly summarize the superficial interactions between the circadian clock and erectile function, while focusing on how disturbed rhythms contribute to risk factors of ED. These risk factors include NO/cGMP pathway, atherosclerosis, diabetes mellitus, lipid abnormalities, testosterone deficiency, as well as dysfunction of endothelial and smooth muscle cells. On the basis of recent findings, we discuss the potential role of the circadian clock for future therapeutic strategies on ED, although further relevant research needs to be performed.
Collapse
Affiliation(s)
- Tao Li
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Yunjin Bai
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yiting Jiang
- Department of Otorhinolaryngology, The Ninth People’s Hospital of Chongqing, Chongqing, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Ye Tian
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Zhen Wang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Yong Ban
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Xiangyi Liang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Guangheng Luo
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
- Correspondence should be addressed to: Dr. Fa Sun, Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China. .
| | - Fa Sun
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
- Correspondence should be addressed to: Dr. Fa Sun, Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China. .
| |
Collapse
|
19
|
Xuan W, Khan F, James CD, Heimberger AB, Lesniak MS, Chen P. Circadian regulation of cancer cell and tumor microenvironment crosstalk. Trends Cell Biol 2021; 31:940-950. [PMID: 34272133 PMCID: PMC8526375 DOI: 10.1016/j.tcb.2021.06.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022]
Abstract
Circadian rhythms regulate a remarkable variety of physiologic functions in living organisms. Circadian disruption is associated with tumorigenesis and tumor progression through effects on cancer cell biological properties, including proliferation, DNA repair, apoptosis, metabolism, and stemness. Emerging evidence indicates that circadian clocks also play an influential role in the tumor microenvironment (TME). This review outlines recent discoveries on how cancer cell clock components (including circadian clock and clock genes/proteins) regulate TME biology and, reciprocally, how TME clock components affect tumor growth, metastasis, and therapeutic response. An improved understanding of how clock components regulate the symbiosis between cancer cells and the TME will inform the development of novel clock-oriented therapeutic strategies, including immunotherapy.
Collapse
Affiliation(s)
- Wenjing Xuan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Fatima Khan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Charles David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Amy B Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peiwen Chen
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
20
|
Per2 attenuates LPS-induced chondrocyte injury through the PTEN/PI3K/Akt signalling pathway. Biosci Rep 2021; 40:224736. [PMID: 32426819 PMCID: PMC7256672 DOI: 10.1042/bsr20200417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 01/03/2023] Open
Abstract
This research aimed to explore the role of period circadian clock 2 (Per2) in the evolution of osteoarthritis (OA) and the relevant mechanisms. Per2 messenger RNA (mRNA) and protein levels were markedly reduced in NHAC-kn cells treated with 5 µg/ml lipopolysaccharide (LPS) for 12 h. Then, pcDNA3.1-Per2 and si-Per2 were recruited to boost and reduce the expression of Per2, respectively. MTT assay, apoptosis analysis and enzyme-linked immunosorbent assay (ELISA) results showed that Per2 increased cell proliferation, while inhibited apoptosis and inflammation. Furthermore, the PTEN/PI3K/Akt signalling pathway was activated by Per2 overexpression; the CO-IP data confirmed that Per2 specifically bound to PTEN. Through employing IGF-1, a PI3K activator, we determined that Per2-mediated inflammation response in LPS-stimulated NHAC-kn cells through the PTEN/PI3K/Akt signalling pathway. In summary, the present study indicates that Per2 may serve as a novel therapeutic target through activating the PTEN/PI3K/Akt signalling pathway.
Collapse
|
21
|
Identification of hub genes correlated with sleep deprivation using co-expression analysis. Sleep Breath 2021; 25:1969-1976. [PMID: 33619665 DOI: 10.1007/s11325-021-02321-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 12/02/2020] [Accepted: 02/10/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Sleep deprivation (SD) has become a serious concern worldwide. This study aimed to identify key modules and candidate hub genes correlated with diseases caused by SD, using co-expression analysis. METHODS The weighted gene co-expression network analysis was performed to construct a co-expression network of hub genes correlated with SD. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to search for signaling pathways. The protein-protein interaction network analysis of central genes was performed to recognize the interactions among central genes. Molecular Complex Detection, a plugin in Cytoscape, was used to discover the hub gene clusters involved in SD. RESULTS A total of 564 genes in the yellow module were identified based on the results of topological overlap measure-based clustering. The yellow module showed a pivotal correlation with SD. Six hub gene clusters prominently associated with SD were identified. Heat shock protein family and circadian clock genes among them may be the hub genes involved in SD. CONCLUSIONS These genes and pathways might become therapeutic targets with clinical usefulness in the future.
Collapse
|
22
|
Morris G, Puri BK, Olive L, Carvalho A, Berk M, Walder K, Gustad LT, Maes M. Endothelial dysfunction in neuroprogressive disorders-causes and suggested treatments. BMC Med 2020; 18:305. [PMID: 33070778 PMCID: PMC7570030 DOI: 10.1186/s12916-020-01749-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Potential routes whereby systemic inflammation, oxidative stress and mitochondrial dysfunction may drive the development of endothelial dysfunction and atherosclerosis, even in an environment of low cholesterol, are examined. MAIN TEXT Key molecular players involved in the regulation of endothelial cell function are described, including PECAM-1, VE-cadherin, VEGFRs, SFK, Rho GEF TRIO, RAC-1, ITAM, SHP-2, MAPK/ERK, STAT-3, NF-κB, PI3K/AKT, eNOS, nitric oxide, miRNAs, KLF-4 and KLF-2. The key roles of platelet activation, xanthene oxidase and myeloperoxidase in the genesis of endothelial cell dysfunction and activation are detailed. The following roles of circulating reactive oxygen species (ROS), reactive nitrogen species and pro-inflammatory cytokines in the development of endothelial cell dysfunction are then described: paracrine signalling by circulating hydrogen peroxide, inhibition of eNOS and increased levels of mitochondrial ROS, including compromised mitochondrial dynamics, loss of calcium ion homeostasis and inactivation of SIRT-1-mediated signalling pathways. Next, loss of cellular redox homeostasis is considered, including further aspects of the roles of hydrogen peroxide signalling, the pathological consequences of elevated NF-κB, compromised S-nitrosylation and the development of hypernitrosylation and increased transcription of atherogenic miRNAs. These molecular aspects are then applied to neuroprogressive disorders by considering the following potential generators of endothelial dysfunction and activation in major depressive disorder, bipolar disorder and schizophrenia: NF-κB; platelet activation; atherogenic miRs; myeloperoxidase; xanthene oxidase and uric acid; and inflammation, oxidative stress, nitrosative stress and mitochondrial dysfunction. CONCLUSIONS Finally, on the basis of the above molecular mechanisms, details are given of potential treatment options for mitigating endothelial cell dysfunction and activation in neuroprogressive disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | | | - Lisa Olive
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- School of Psychology, Faculty of Health, Deakin University, Geelong, Australia
| | - Andre Carvalho
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Michael Berk
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia.
- Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| | - Ken Walder
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Lise Tuset Gustad
- Department of Circulation and medical imaging, Norwegian University of Technology and Science (NTNU), Trondheim, Norway
- Nord-Trøndelag Hospital Trust, Levanger Hospital, Levanger, Norway
| | - Michael Maes
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
23
|
Cherubini JM, Cheng JL, Williams JS, MacDonald MJ. Sleep deprivation and endothelial function: reconciling seminal evidence with recent perspectives. Am J Physiol Heart Circ Physiol 2020; 320:H29-H35. [PMID: 33064569 DOI: 10.1152/ajpheart.00607.2020] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sleep is critical for the maintenance of physiological homeostasis and, as such, inadequate sleep beckons a myriad of pathologies. Sleep deprivation is a growing health concern in contemporary society since short sleep durations are associated with increased cardiovascular disease risk and atherosclerotic plaque development. Vascular endothelial dysfunction is an antecedent to atherosclerosis and cardiovascular disease. Herein, we review seminal literature indicating that short sleep durations attenuate endothelial function and explore more recent evidence indicating that sleep deprivation perturbs autonomic balance and the circadian rhythmicity of peripheral vascular clock components. We further examine literature that indicates a mechanistic link between short sleep duration and endothelial dysfunction and subsequent morbidity. Understanding the mechanisms that regulate endothelial function in the context of sleep deprivation facilitates the development and optimization of interventions, such as exercise, that mitigate the ramifications of inadequate sleep on vascular function and cardiovascular health.Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/sleep-deprivation-and-endothelial-function/.
Collapse
Affiliation(s)
| | - Jem L Cheng
- Vascular Dynamics Lab, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
24
|
Münzel T, Steven S, Frenis K, Lelieveld J, Hahad O, Daiber A. Environmental Factors Such as Noise and Air Pollution and Vascular Disease. Antioxid Redox Signal 2020; 33:581-601. [PMID: 32245334 DOI: 10.1089/ars.2020.8090] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: According to the World Health Organization, noncommunicable diseases are the globally leading cause of mortality. Recent Advances: About 71% of 56 million deaths that occurred worldwide are due to noncommunicable cardiovascular risk factors, including tobacco smoking, unhealthy diets, lack of physical activity, overweight, arterial hypertension, diabetes, and hypercholesterolemia, which can be either avoided or substantially reduced. Critical Issues: Thus, it is estimated that 80% of premature heart disease, stroke, and diabetes can be prevented. More recent evidence indicates that environmental stressors such as noise and air pollution contribute significantly to the global burden of cardiovascular disease. In the present review, we focus primarily on important environmental stressors such as transportation noise and air pollution. We discuss the pathophysiology of vascular damage caused by these environmental stressors, with emphasis on early subclinical damage of the vasculature such as endothelial dysfunction and the role of oxidative stress. Future Directions: Lower legal thresholds and mitigation measures should be implemented and may help to prevent vascular damage.
Collapse
Affiliation(s)
- Thomas Münzel
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Berlin, Germany
| | - Sebastian Steven
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Katie Frenis
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Omar Hahad
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Berlin, Germany
| | - Andreas Daiber
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Berlin, Germany
| |
Collapse
|
25
|
Zhang Z, Yu B, Wang X, Luo C, Zhou T, Zheng X, Ding J. Circadian rhythm and atherosclerosis (Review). Exp Ther Med 2020; 20:96. [PMID: 32973945 PMCID: PMC7506962 DOI: 10.3892/etm.2020.9224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/11/2020] [Indexed: 12/28/2022] Open
Abstract
Atherosclerosis is the leading cause of morbidity and mortality worldwide. The underlying pathogenesis involves multiple metabolic disorders, endothelial dysfunction and a maladaptive immune response, and leads to chronic arterial wall inflammation. Numerous normal physiological activities exhibit daily rhythmicity, including energy metabolism, vascular function and inflammatory immunoreactions, and disrupted or misaligned circadian rhythms may promote the progression of atherosclerosis. However, the association between the circadian rhythm and atherosclerosis remains to be fully elucidated. In the present review, the effects of the circadian rhythm on atherosclerosis progression are discussed.
Collapse
Affiliation(s)
- Zaiqiang Zhang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Bin Yu
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Xinan Wang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Caiyun Luo
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Tian Zhou
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Xiaxia Zheng
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Jiawang Ding
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
26
|
Huang Q, Lv J, Dong T, Liu H, Xu L, Wu M. Cryptochrome 1 Alleviates the Antiproliferative Effect of Isoproterenol on Human Gastric Cancer Cells. Dose Response 2020; 18:1559325820939022. [PMID: 32694963 PMCID: PMC7350398 DOI: 10.1177/1559325820939022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Cryptochrome 1 (CRY1) is a key protein that regulates the feedback loop of circadian clock. The abnormal expression of CRY1 was reported in numerous cancers, and contributed to tumorigenesis and progression. But the underlying mechanism remains undefined. Methods: CRY1 overexpression was constructed by lentivirus vector. Gene and protein expression was detected by reverse transcription quantitative polymerase chain reaction and Western blot. Cell proliferation was analyzed by CCK-8 assay. Cell migration ability was analyzed by scratch assay and transwell migration assay. The cAMP concentration was measured by intracellular cAMP assay. Results: Overexpression of CRY1 showed slightly effect on the proliferation and migration of HGC-27 cells. Upon exposure to isoproterenol (ISO), a β-adrenergic receptor agonist, cell proliferation, and migration were inhibited while the cAMP/PKA pathway was activated and ERK1/2 phosphorylation was suppressed. CRY1 overexpression reduced cAMP accumulation, retained ERK1/2 phosphorylation level and alleviated the antiproliferative effect upon exposure to ISO. However, CRY1 overexpression was inoperative on the antiproliferative effect of forskolin (FSK), a direct activator of adenyl cyclase (AC), or 3-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase (PDE) inhibitor. Conclusions: Our results suggest CRY1 overexpression may protect cells from the antiproliferative effects via activation of the cAMP/PKA pathway through interrupting signal transduction from G protein-coupled receptors to AC.
Collapse
Affiliation(s)
- Qianwu Huang
- Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui, China
| | - Jun Lv
- Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui, China.,Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui, China
| | - Ting Dong
- Encephalopathy Center, The First Affiliated Hospital of the University of Traditional Chinese Medicine in Anhui, Hefei, China
| | - Haijun Liu
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui, China
| | - Lei Xu
- Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui, China.,Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui, China
| | - Mingcai Wu
- Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui, China.,Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui, China
| |
Collapse
|
27
|
Yuan Y, Wu S, Li W, He W. A Tissue-Specific Rhythmic Recruitment Pattern of Leukocyte Subsets. Front Immunol 2020; 11:102. [PMID: 32117256 PMCID: PMC7033813 DOI: 10.3389/fimmu.2020.00102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/15/2020] [Indexed: 11/13/2022] Open
Abstract
The circulating of leukocytes in the vasculature to reach various organs is a crucial step that allows them to perform their function. With a sequence of interaction with the endothelial cells, the leukocytes emigrate from the circulation either by firm attachment to vascular beds or by trafficking into the tissues. Recent findings reveal that the leukocyte recruitment shows time as well as tissue specificity depending on the cell type and homing location. This spatiotemporal distribution of leukocyte subsets is driven by the circadian expression of pro-migratory molecules expressed on the leukocytes and the endothelium. Both the systemic circadian signals and the cell's intrinsic molecule clock contribute to the oscillatory expression of pro-migratory molecules. The rhythmic recruitment of leukocytes plays an important role in the time-dependency of immune responses. It also helps to update blood components and maintain the tissue circadian microenvironment. In this review, we discuss the current knowledge about the mechanisms of the circadian system regulating the leukocyte rhythmic migration, the recruitment pattern of leukocyte subsets into different tissue/organs, and the time-dependent effects behind this process.
Collapse
Affiliation(s)
- Yinglin Yuan
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China
| | - Shengwang Wu
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China
| | - Weiwei Li
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenyan He
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China
| |
Collapse
|
28
|
Münzel T, Kröller-Schön S, Oelze M, Gori T, Schmidt FP, Steven S, Hahad O, Röösli M, Wunderli JM, Daiber A, Sørensen M. Adverse Cardiovascular Effects of Traffic Noise with a Focus on Nighttime Noise and the New WHO Noise Guidelines. Annu Rev Public Health 2020; 41:309-328. [PMID: 31922930 DOI: 10.1146/annurev-publhealth-081519-062400] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Exposure to traffic noise is associated with stress and sleep disturbances. The World Health Organization (WHO) recently concluded that road traffic noise increases the risk for ischemic heart disease and potentially other cardiometabolic diseases, including stroke, obesity, and diabetes. The WHO report focused on whole-day noise exposure, but new epidemiological and translational field noise studies indicate that nighttime noise, in particular,is an important risk factor for cardiovascular disease (CVD) through increased levels of stress hormones and vascular oxidative stress, leading to endothelial dysfunction and subsequent development of various CVDs. Novel experimental studies found noise to be associated with oxidative stress-induced vascular and brain damage, mediated by activation of the NADPH oxidase, uncoupling of endothelial and neuronal nitric oxide synthase, and vascular/brain infiltration with inflammatory cells. Noise-induced pathophysiology was more pronounced in response to nighttime as compared with daytime noise. This review focuses on the consequences of nighttime noise.
Collapse
Affiliation(s)
- Thomas Münzel
- Center for Cardiology, University Medical Center Mainz, 55131 Mainz, Germany; .,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | | | - Matthias Oelze
- Center for Cardiology, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Tommaso Gori
- Center for Cardiology, University Medical Center Mainz, 55131 Mainz, Germany; .,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Frank P Schmidt
- Center for Cardiology, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Sebastian Steven
- Center for Cardiology, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Omar Hahad
- Center for Cardiology, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| | - Jean-Marc Wunderli
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Andreas Daiber
- Center for Cardiology, University Medical Center Mainz, 55131 Mainz, Germany; .,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Mette Sørensen
- Diet, Genes and Environment Unit, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark.,Department of Natural Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| |
Collapse
|
29
|
Zhang X, Wang Y, Zhao R, Hu X, Zhang B, Lv X, Guo Z, Zhang Z, Yuan J, Chu X, Wang F, Li G, Geng X, Liu Y, Sui L, Wang F. Folic Acid Supplementation Suppresses Sleep Deprivation-Induced Telomere Dysfunction and Senescence-Associated Secretory Phenotype (SASP). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4569614. [PMID: 31949878 PMCID: PMC6948340 DOI: 10.1155/2019/4569614] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/04/2019] [Accepted: 09/13/2019] [Indexed: 02/05/2023]
Abstract
Sleep deprivation is reported to cause oxidative stress and is hypothesized to induce subsequent aging-related diseases including chronic inflammation, Alzheimer's disease, and cardiovascular disease. However, how sleep deprivation contributes to the pathogenesis of sleep deficiency disorder remains incompletely defined. Accordingly, more effective treatment methods for sleep deficiency disorder are needed. Thus, to better understand the detailed mechanism of sleep deficiency disorder, a sleep deprivation mouse model was established by the multiple platform method in our study. The accumulation of free radicals and senescence-associated secretory phenotype (SASP) was observed in the sleep-deprived mice. Moreover, our mouse and human population-based study both demonstrated that telomere shortening and the formation of telomere-specific DNA damage are dramatically increased in individuals suffering from sleeplessness. To our surprise, the secretion of senescence-associated cytokines and telomere damage are greatly improved by folic acid supplementation in mice. Individuals with high serum baseline folic acid levels have increased resistance to telomere shortening, which is induced by insomnia. Thus, we conclude that folic acid supplementation could be used to effectively counteract sleep deprivation-induced telomere dysfunction and the associated aging phenotype, which may potentially improve the prognosis of sleeplessness disorder patients.
Collapse
Affiliation(s)
- Xiaoning Zhang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong 250012, China
| | - Yuwen Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Rui Zhao
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xianyun Hu
- Department of Medical Examination, Tianjin Worker's Hospital, Tianjin 300050, China
| | - Baoren Zhang
- Department of General Surgery, Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Lv
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhenglong Guo
- Department of Cell Biology, School of Basic Medical University, Tianjin Medical University, Tianjin 300070, China
| | - Zhiqiang Zhang
- Department of Pathology, Tianjin Hospital of ITCWM, Nankai Hospital, Tianjin 300100, China
| | - Jinghua Yuan
- School of Medicine, Hangzhou Normal University, Zhejiang 310036, China
| | - Xu Chu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Fei Wang
- Department of Neurology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Guang Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xin Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yang Liu
- Department of Radiobiology, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Lei Sui
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin 300070, China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 300381, China
| |
Collapse
|
30
|
Conditional Controlled Light/Dark Cycle Influences Exercise-Induced Benefits in a Rat Model with Osteoarthritis: In Vitro and In Vivo Study. J Clin Med 2019; 8:jcm8111855. [PMID: 31684092 PMCID: PMC6912430 DOI: 10.3390/jcm8111855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/23/2022] Open
Abstract
Physical exercise has long been recommended as a treatment for osteoarthritis (OA), though its effects vary based on the exercise protocol. Here, we examined whether environmental lighting conditions influence the anti-inflammatory benefits of exercise in a rat model of OA. Moderate-intensity treadmill exercise (Ex) was performed for six weeks under a 12:12 h light/dark (L/D) cycle, and compared against rats housed in a 24 h continuous light (L/L) environment. L/L conditions were associated with serological changes shortly after OA induction, which exacerbated the inflammatory microenvironment in the joint. Differentiation capacity was also impaired in bone precursor cells isolated from normal rats maintained under L/L conditions, despite elevated inflammatory responses. Exercise training under L/L conditions led to increased corticosterone levels in the blood, which exacerbated the progression of cartilaginous and synovial lesions. Osteoporotic phenomena were also observed in exercise-trained rats maintained under L/L conditions, along with inflammation-induced catabolism in the gastrocnemius muscle. Aberrant light/dark cycle conditions were also found to be associated with suppression of splenic Cry1 expression in exercise-trained rats, leading to dysregulation of immune responses. Taken together, these data suggest that lighting condition may be an important environmental factor influencing the exercise-induced benefits on OA.
Collapse
|
31
|
Tan X, Li L, Wang J, Zhao B, Pan J, Wang L, Liu X, Liu X, Liu Z. Resveratrol Prevents Acrylamide-Induced Mitochondrial Dysfunction and Inflammatory Responses via Targeting Circadian Regulator Bmal1 and Cry1 in Hepatocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8510-8519. [PMID: 31294559 DOI: 10.1021/acs.jafc.9b03368] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Acrylamide, mainly formed in Maillard browning reaction during food processing, causes defects in liver circadian clock and mitochondrial function by inducing oxidative stress. Resveratrol is a polyphenol that has powerful antioxidant and anti-inflammatory activity. However, the preventive effects of resveratrol on acrylamide-triggered oxidative damage and circadian rhythm disorders are unclear at the current stage. The present research revealed that resveratrol pretreatment prevented acrylamide-induced cell death, mitochondrial dysfunction, and inflammatory responses in HepG2 liver cells. Acrylamide significantly triggered disorders of circadian genes transcription and protein expressions including Bmal1 and Cry 1 in primary hepatocytes, which were prevented by resveratrol pretreatment. Moreover, we found that the beneficial effects of resveratrol on stimulating Nrf2/NQO-1 pathway and mitochondrial respiration complex expressions in acrylamide-treated cells were Bmal1-dependent. Similarly, the inhibitory effects of resveratrol on inflammation signaling NF-κB were Cry1-dependent. In conclusion, these results demonstrated resveratrol could be a promising compound in suppressing acrylamide-induced hepatotoxicity and balancing the circadian clock.
Collapse
Affiliation(s)
- Xintong Tan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Ling Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Jia Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Beita Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Junru Pan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Leran Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Xiao Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| |
Collapse
|
32
|
Liu H, Chen A. Roles of sleep deprivation in cardiovascular dysfunctions. Life Sci 2019; 219:231-237. [PMID: 30630005 DOI: 10.1016/j.lfs.2019.01.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/14/2018] [Accepted: 01/06/2019] [Indexed: 01/09/2023]
Abstract
It is widely recognized that inadequate sleep is associated with multiple acute and chronic diseases and results in increased mortality and morbidity for cardiovascular diseases. In recent years, there has been increasing interest in sleep related investigations. Emerging evidence indicates that sleep deprivation changes the biological phenotypes of DNA, RNA and protein levels, but the underlying mechanisms are not clear. We summarized the current research on the detrimental roles of sleep deprivation on the heart and elucidated the underlying mechanisms of sleep deficiency to improve our understanding of sleep deprivation and the emerging strategies to target this process for therapeutic benefit.
Collapse
Affiliation(s)
- Haiqiong Liu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, NO. 253, Gongye Avenue, 510282 Guangzhou, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, NO. 253, Gongye Avenue, 510282 Guangzhou, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, NO. 253, Gongye Avenue, 510282 Guangzhou, China
| | - Aihua Chen
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, NO. 253, Gongye Avenue, 510282 Guangzhou, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, NO. 253, Gongye Avenue, 510282 Guangzhou, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, NO. 253, Gongye Avenue, 510282 Guangzhou, China.
| |
Collapse
|
33
|
Matos HDC, Koike BDV, Pereira WDS, de Andrade TG, Castro OW, Duzzioni M, Kodali M, Leite JP, Shetty AK, Gitaí DLG. Rhythms of Core Clock Genes and Spontaneous Locomotor Activity in Post- Status Epilepticus Model of Mesial Temporal Lobe Epilepsy. Front Neurol 2018; 9:632. [PMID: 30116220 PMCID: PMC6082935 DOI: 10.3389/fneur.2018.00632] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/12/2018] [Indexed: 12/16/2022] Open
Abstract
The interaction of Mesial Temporal Lobe Epilepsy (mTLE) with the circadian system control is apparent from an oscillatory pattern of limbic seizures, daytime's effect on seizure onset and the efficacy of antiepileptic drugs. Moreover, seizures per se can interfere with the biological rhythm output, including circadian oscillation of body temperature, locomotor activity, EEG pattern as well as the transcriptome. However, the molecular mechanisms underlying this cross-talk remain unclear. In this study, we systematically evaluated the temporal expression of seven core circadian transcripts (Bmal1, Clock, Cry1, Cry2, Per1, Per2, and Per3) and the spontaneous locomotor activity (SLA) in post-status epilepticus (SE) model of mTLE. Twenty-four hour oscillating SLA remained intact in post-SE groups although the circadian phase and the amount and intensity of activity were changed in early post-SE and epileptic phases. The acrophase of the SLA rhythm was delayed during epileptogenesis, a fragmented 24 h rhythmicity and extended active phase length appeared in the epileptic phase. The temporal expression of circadian transcripts Bmal1, Cry1, Cry2, Per1, Per2, and Per3 was also substantially altered. The oscillatory expression of Bmal1 was maintained in rats imperiled to SE, but with lower amplitude (A = 0.2) and an advanced acrophase in the epileptic phase. The diurnal rhythm of Cry1 and Cry2 was absent in the early post-SE but was recovered in the epileptic phase. Per1 and Per2 rhythmic expression were disrupted in post-SE groups while Per3 presented an arrhythmic profile in the epileptic phase, only. The expression of Clock did not display rhythmic pattern in any condition. These oscillating patterns of core clock genes may contribute to hippocampal 24 h cycling and, consequently to seizure periodicity. Furthermore, by using a pool of samples collected at 6 different Zeitgeber Times (ZT), we found that all clock transcripts were significantly dysregulated after SE induction, except Per3 and Per2. Collectively, altered SLA rhythm in early post-SE and epileptic phases implies a possible role for seizure as a nonphotic cue, which is likely linked to activation of hippocampal–accumbens pathway. On the other hand, altered temporal expression of the clock genes after SE suggests their involvement in the MTLE.
Collapse
Affiliation(s)
- Heloisa de Carvalho Matos
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Brazil
| | | | - Wanessa Dos Santos Pereira
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Brazil
| | - Tiago G de Andrade
- Laboratory of Molecular Chronobiology, Federal University of Alagoas, Arapiraca, Brazil.,Department of Physiology and Pharmacology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Brazil
| | - Olagide W Castro
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, United States
| | - Marcelo Duzzioni
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, United States
| | - Maheedhar Kodali
- Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Joao P Leite
- Faculty of Medicine, Federal University of Alagoas, Maceio, Brazil
| | - Ashok K Shetty
- Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniel L G Gitaí
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Brazil.,Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
34
|
Anea CB, Merloiu AM, Fulton DJR, Patel V, Rudic RD. Immunohistochemistry of the circadian clock in mouse and human vascular tissues. ACTA ACUST UNITED AC 2018; 2. [PMID: 30101218 PMCID: PMC6085090 DOI: 10.20517/2574-1209.2018.46] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Aim The circadian clock is a molecular network that controls the body
physiological rhythms. In blood vessels, the circadian clock components
modulate vascular remodeling, blood pressure, and signaling. The goal in
this study was to determine the pattern of expression of circadian clock
proteins in the endothelium, smooth muscle, and adventitia of the
vasculature of human and mouse tissues. Methods Immunohistochemistry was performed in frozen sections of mouse aorta,
common carotid artery, femoral artery, lung, and heart at 12 AM and 12 PM
for Bmal1, Clock, Npas2, Per and other clock components. Studies of
expression were also assessed in human saphenous vein both by immunoblotting
and immunohistochemistry. Results In this study, we identified the expression of Bmal1, Clock, Npas,
Per1, Cry1, and accessory clock components by immunohistochemical staining
in the endothelium, smooth muscle and adventitia of the mouse vasculature
with differing temporal and cellular profiles depending on vasculature and
tissue analyzed. The human saphenous vein also exhibited expression of clock
genes that exhibited an oscillatory pattern in Bmal1 and Cry by
immunoblotting. Conclusion These studies show that circadian clock components display
differences in expression and localization throughout the cardiovascular
system, which may confer nuances of circadian clock signaling in a
cell-specific manner.
Collapse
Affiliation(s)
- Ciprian B Anea
- Department of Pharmacology & Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Ana M Merloiu
- Department of Pharmacology & Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - David J R Fulton
- Department of Pharmacology & Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Vijay Patel
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - R Dan Rudic
- Department of Pharmacology & Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
35
|
Torres-Ruiz J, Sulli A, Cutolo M, Shoenfeld Y. Air Travel, Circadian Rhythms/Hormones, and Autoimmunity. Clin Rev Allergy Immunol 2018; 53:117-125. [PMID: 28244020 DOI: 10.1007/s12016-017-8599-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biological rhythms are fundamental for homeostasis and have recently been involved in the regulatory processes of various organs and systems. Circadian cycle proteins and hormones have a direct effect on the inflammatory response and have shown pro- or anti-inflammatory effects in animal models of autoimmune diseases. The cells of the immune system have their own circadian rhythm, and the light-dark cycle directly influences the inflammatory response. On the other hand, patients with autoimmune diseases characteristically have sleep disorders and fatigue, and in certain disease, such as rheumatoid arthritis (RA), a frank periodicity in the signs and symptoms is recognized. The joint symptoms predominate in the morning, and apparently, subjects with RA have relative adrenal insufficiency, with a cortisol peak unable to control the late night load of pro-inflammatory cytokines. Transatlantic flights represent a challenge in the adjustment of biological rhythms, since they imply sleep deprivation, time zone changes, and potential difficulties for drug administration. In patients with autoimmune diseases, the use of DMARDs and prednisone at night is probably best suited to lessen morning symptoms. It is also essential to sleep during the trip to improve adaptation to the new time zone and to avoid, as far as possible, works involving flexible or nocturnal shifts. The study of proteins and hormones related to biological rhythms will demonstrate new pathophysiological pathways of autoimmune diseases, which will emphasize the use of general measures for sleep respect and methods for drug administration at key daily times to optimize their anti-inflammatory and immune modulatory effects.
Collapse
Affiliation(s)
- J Torres-Ruiz
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico city, Mexico
| | - A Sulli
- Research Laboratories and Academic Division of Clinical Rheumatology, Director Postgraduate School on Rheumatology-Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS San Martino AOU, Genoa, Italy
| | - M Cutolo
- Research Laboratories and Academic Division of Clinical Rheumatology, Director Postgraduate School on Rheumatology-Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS San Martino AOU, Genoa, Italy
| | - Y Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, 5265601, Tel-Hashomer, Israel.
| |
Collapse
|
36
|
Segal JP, Tresidder KA, Bhatt C, Gilron I, Ghasemlou N. Circadian control of pain and neuroinflammation. J Neurosci Res 2017; 96:1002-1020. [PMID: 28865126 DOI: 10.1002/jnr.24150] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/26/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022]
Abstract
The importance of a neuroinflammatory response to the development and maintenance of inflammatory and neuropathic pain have been highlighted in recent years. Inflammatory cells contributing to this response include circulating immune cells such as monocytes, T and B lymphocytes, and neutrophils, as well as microglia in the central nervous system. Pain signals are transmitted via sensory neurons in the peripheral nervous system, which express various receptors and channels that respond to mediators secreted from these inflammatory cells. Chronobiological rhythms, which include the 24-hr circadian cycle, have recently been shown to regulate both nervous and immune cell activity and function. This review examines the current literature on chronobiological control of neuroinflammatory processes, with a focus on inflammatory and neuropathic pain states. While the majority of this work has stemmed from observational studies in humans, recent advances in using animal models have highlighted distinct mechanisms underlying these interactions. Better understanding interactions between the circadian and neuroimmune systems can help guide the development of new treatments and provide improved care for patients suffering from acute and chronic pain.
Collapse
Affiliation(s)
- Julia P Segal
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Kaitlyn A Tresidder
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Charvi Bhatt
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Ian Gilron
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Anesthesiology & Perioperative Medicine, Queen's University, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Anesthesiology & Perioperative Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
37
|
Man GCW, Zhang T, Chen X, Wang J, Wu F, Liu Y, Wang CC, Cheong Y, Li TC. The regulations and role of circadian clock and melatonin in uterine receptivity and pregnancy-An immunological perspective. Am J Reprod Immunol 2017; 78. [DOI: 10.1111/aji.12715] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/04/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- Gene Chi Wai Man
- Department of Orthopaedics and Traumatology; Faculty of Medicine; The Prince of Wales Hospital; The Chinese University of Hong Kong; Shatin Hong Kong SAR
- Department of Obstetrics and Gynaecology; Faculty of Medicine; The Prince of Wales Hospital; The Chinese University of Hong Kong; Shatin Hong Kong SAR
| | - Tao Zhang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation; Fertility Center; Shenzhen Zhongshan Urology Hospital; Shenzhen China
| | - Xiaoyan Chen
- Department of Obstetrics and Gynaecology; Faculty of Medicine; The Prince of Wales Hospital; The Chinese University of Hong Kong; Shatin Hong Kong SAR
| | - Jianzhang Wang
- Department of Obstetrics and Gynaecology; Faculty of Medicine; The Prince of Wales Hospital; The Chinese University of Hong Kong; Shatin Hong Kong SAR
| | - Fangrong Wu
- Department of Obstetrics and Gynaecology; Faculty of Medicine; The Prince of Wales Hospital; The Chinese University of Hong Kong; Shatin Hong Kong SAR
| | - Yingyu Liu
- Department of Obstetrics and Gynaecology; Faculty of Medicine; The Prince of Wales Hospital; The Chinese University of Hong Kong; Shatin Hong Kong SAR
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology; Faculty of Medicine; The Prince of Wales Hospital; The Chinese University of Hong Kong; Shatin Hong Kong SAR
- Li Ka Shing Institute of Health Sciences; Faculty of Medicine; The Prince of Wales Hospital; The Chinese University of Hong Kong; Shatin Hong Kong SAR
- School of Biomedical Sciences; Faculty of Medicine; The Prince of Wales Hospital; The Chinese University of Hong Kong; Shatin Hong Kong SAR
| | - Ying Cheong
- Human Development and Health; Princess Anne Hospital; University of Southampton Faculty of Medicine; Southampton UK
| | - Tin Chiu Li
- Department of Obstetrics and Gynaecology; Faculty of Medicine; The Prince of Wales Hospital; The Chinese University of Hong Kong; Shatin Hong Kong SAR
| |
Collapse
|
38
|
Hand LE, Hopwood TW, Dickson SH, Walker AL, Loudon ASI, Ray DW, Bechtold DA, Gibbs JE. The circadian clock regulates inflammatory arthritis. FASEB J 2016; 30:3759-3770. [PMID: 27488122 PMCID: PMC5067252 DOI: 10.1096/fj.201600353r] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/27/2016] [Indexed: 12/12/2022]
Abstract
There is strong diurnal variation in the symptoms and severity of chronic inflammatory diseases, such as rheumatoid arthritis. In addition, disruption of the circadian clock is an aggravating factor associated with a range of human inflammatory diseases. To investigate mechanistic links between the biological clock and pathways underlying inflammatory arthritis, mice were administered collagen (or saline as a control) to induce arthritis. The treatment provoked an inflammatory response within the limbs, which showed robust daily variation in paw swelling and inflammatory cytokine expression. Inflammatory markers were significantly repressed during the dark phase. Further work demonstrated an active molecular clock within the inflamed limbs and highlighted the resident inflammatory cells, fibroblast-like synoviocytes (FLSs), as a potential source of the rhythmic inflammatory signal. Exposure of mice to constant light disrupted the clock in peripheral tissues, causing loss of the nighttime repression of local inflammation. Finally, the results show that the core clock proteins cryptochrome (CRY) 1 and 2 repressed inflammation within the FLSs, and provide novel evidence that a CRY activator has anti-inflammatory properties in human cells. We conclude that under chronic inflammatory conditions, the clock actively represses inflammatory pathways during the dark phase. This interaction has exciting potential as a therapeutic avenue for treatment of inflammatory disease.—Hand, L. E., Hopwood, T. W., Dickson, S. H., Walker, A. L., Loudon, A. S. I., Ray, D. W., Bechtold, D. A., Gibbs, J. E. The circadian clock regulates inflammatory arthritis.
Collapse
Affiliation(s)
- Laura E Hand
- Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Thomas W Hopwood
- Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Suzanna H Dickson
- Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Amy L Walker
- Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Andrew S I Loudon
- Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - David W Ray
- Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - David A Bechtold
- Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Julie E Gibbs
- Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| |
Collapse
|
39
|
Solovyov IA, Dobrovol’skaya EV, Moskalev AA. Genetic control of circadian rhythms and aging. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416040104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
40
|
Yao H, Sundar IK, Huang Y, Gerloff J, Sellix MT, Sime PJ, Rahman I. Disruption of Sirtuin 1-Mediated Control of Circadian Molecular Clock and Inflammation in Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2016; 53:782-92. [PMID: 25905433 DOI: 10.1165/rcmb.2014-0474oc] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the fourth most common cause of death, and it is characterized by abnormal inflammation and lung function decline. Although the circadian molecular clock regulates inflammatory responses, there is no information available regarding the impact of COPD on lung molecular clock function and its regulation by sirtuin 1 (SIRT1). We hypothesize that the molecular clock in the lungs is disrupted, leading to increased inflammatory responses in smokers and patients with COPD and its regulation by SIRT1. Lung tissues, peripheral blood mononuclear cells (PBMCs), and sputum cells were obtained from nonsmokers, smokers, and patients with COPD for measurement of core molecular clock proteins (BMAL1, CLOCK, PER1, PER2, and CRY1), clock-associated nuclear receptors (REV-ERBα, REV-ERBβ, and RORα), and SIRT1 by immunohistochemistry, immunofluorescence, and immunoblot. PBMCs were treated with the SIRT1 activator SRT1720 followed by LPS treatment, and supernatant was collected at 6-hour intervals. Levels of IL-8, IL-6, and TNF-α released from PBMCs were determined by ELISA. Expression of BMAL1, PER2, CRY1, and REV-ERBα was reduced in PBMCs, sputum cells, and lung tissues from smokers and patients with COPD when compared with nonsmokers. SRT1720 treatment attenuated LPS-mediated reduction of BMAL1 and REV-ERBα in PBMCs from nonsmokers. Additionally, LPS differentially affected the timing and amplitude of cytokine (IL-8, IL-6, and TNF-α) release from PBMCs in nonsmokers, smokers, and patients with COPD. Moreover, SRT1720 was able to inhibit LPS-induced cytokine release from cultured PBMCs. In conclusion, disruption of the molecular clock due to SIRT1 reduction contributes to abnormal inflammatory response in smokers and patients with COPD.
Collapse
Affiliation(s)
- Hongwei Yao
- Departments of 1 Environmental Medicine, Lung Biology and Disease Program
| | - Isaac K Sundar
- Departments of 1 Environmental Medicine, Lung Biology and Disease Program
| | - Yadi Huang
- Departments of 1 Environmental Medicine, Lung Biology and Disease Program
| | - Janice Gerloff
- Departments of 1 Environmental Medicine, Lung Biology and Disease Program
| | - Michael T Sellix
- 2 Medicine, Division of Endocrinology, Diabetes and Metabolism; and
| | - Patricia J Sime
- 3 Medicine, Pulmonary Diseases and Critical Care, University of Rochester Medical Center, Rochester, New York
| | - Irfan Rahman
- Departments of 1 Environmental Medicine, Lung Biology and Disease Program
| |
Collapse
|
41
|
Carter SJ, Durrington HJ, Gibbs JE, Blaikley J, Loudon AS, Ray DW, Sabroe I. A matter of time: study of circadian clocks and their role in inflammation. J Leukoc Biol 2016; 99:549-60. [PMID: 26856993 DOI: 10.1189/jlb.3ru1015-451r] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 01/08/2016] [Indexed: 12/21/2022] Open
Abstract
Circadian rhythms regulate changes in physiology, allowing organisms to respond to predictable environmental demands varying over a 24 h period. A growing body of evidence supports a key role for the circadian clock in the regulation of immune functions and inflammatory responses, which influence the understanding of infections and inflammatory diseases and their treatment. A variety of experimental methods have been used to assess the complex bidirectional crosstalk between the circadian clock and inflammation. In this review, we summarize the organization of the molecular clock, experimental methods used to study circadian rhythms, and both the inflammatory and immune consequences of circadian disturbance.
Collapse
Affiliation(s)
- Stuart J Carter
- *Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry, and Health, University of Sheffield, United Kingdom; Faculty of Medical and Human Sciences, Institute of Human Development, Manchester, United Kingdom; and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Hannah J Durrington
- *Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry, and Health, University of Sheffield, United Kingdom; Faculty of Medical and Human Sciences, Institute of Human Development, Manchester, United Kingdom; and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Julie E Gibbs
- *Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry, and Health, University of Sheffield, United Kingdom; Faculty of Medical and Human Sciences, Institute of Human Development, Manchester, United Kingdom; and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - John Blaikley
- *Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry, and Health, University of Sheffield, United Kingdom; Faculty of Medical and Human Sciences, Institute of Human Development, Manchester, United Kingdom; and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Andrew S Loudon
- *Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry, and Health, University of Sheffield, United Kingdom; Faculty of Medical and Human Sciences, Institute of Human Development, Manchester, United Kingdom; and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - David W Ray
- *Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry, and Health, University of Sheffield, United Kingdom; Faculty of Medical and Human Sciences, Institute of Human Development, Manchester, United Kingdom; and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ian Sabroe
- *Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry, and Health, University of Sheffield, United Kingdom; Faculty of Medical and Human Sciences, Institute of Human Development, Manchester, United Kingdom; and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
42
|
Yang L, Chu Y, Wang L, Wang Y, Zhao X, He W, Zhang P, Yang X, Liu X, Tian L, Li B, Dong S, Gao C. Overexpression of CRY1 protects against the development of atherosclerosis via the TLR/NF-κB pathway. Int Immunopharmacol 2015. [DOI: 10.1016/j.intimp.2015.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|