1
|
Kor A, Güven SC, Akan S, Eren F, Ecem Konak H, Maraş Y, Orhan K, Neşelioğlu S, Erten Ş. Serum netrin-1 levels are high in Rheumatoid arthritis associated interstitial lung disease. Clin Biochem 2024; 127-128:110760. [PMID: 38556035 DOI: 10.1016/j.clinbiochem.2024.110760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/28/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Recent data show that netrin-1 has a role in development of pulmonary fibrosis. This study was aimed to investigate serum netrin-1 level and its relation to interstitial lung disease(ILD) in patients with rheumatoid arthritis (RA). METHOD 42 RA patients with RA-ILD, 58 RA patients without RA-ILD (RA non-ILD group), and 61 healthy volunteers were included in this study. The modified DAS28-ESR score was used to calculate disease activity in RA patients. Using the quantitative immunoassay method, Serum netrin-1 levels were measured with an ELISA kit (Catalog number: E-EL-H2328; lab science, lot number: GZWTKZ5SWK, Texas, USA). RESULTS The median value of netrin-1 was found to be significantly higher in the RA-ILD group (82.9 [59.9-124]) compared to both the RA non-ILD group(52.9 [49.5-73.1])(B = -0.006, OR = 0.994, CI 95 %=0.989-0.999, P = 0.018) and the control group(53.5 [49.5-87.5]) (B: -0.005, OR: 0.994, CI 95 %: 0.990-0.999, p: 0.022). A cut-off value of 61.78 for netrin-1 was found to have a sensitivity of 73.8 % and a specificity of 69 % for the diagnosis of RA-ILD (AUC [95 %Cl] = 0.771 [0.679-0.862], p < 0.0001).It was found that high serum netrin-1 level was strongly associated with the RA-usual interstitial pneumonia(UIP) pattern and poorly related to the RA-nonspecific interstitial pneumonia(NSIP) pattern compared to the RA non-ILD group. CONCLUSIONS Netrin-1 is elevated in the serum of patients with RA-ILD, especially in the UIP pattern. Netrin-1 may be a potential candidate for predicting the development of RA-ILD that should be investigated in the pathophysiological and therapeutic fields..
Collapse
Affiliation(s)
- Ahmet Kor
- Department of Rheumatology, Aksaray Education and Research Hospital, Aksaray, Turkey.
| | - Serdar Can Güven
- Department of Rheumatology, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Selçuk Akan
- Department of Internal Medicine, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Funda Eren
- Department of Medical Biochemistry, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Hatice Ecem Konak
- Department of Rheumatology, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Yüksel Maraş
- Department of Rheumatology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Kevser Orhan
- Department of Rheumatology, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Salim Neşelioğlu
- Department of Medical Biochemistry, Ankara Yıldırım Beyazıt University, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Şükran Erten
- Department of Rheumatology, Ankara Yıldırım Beyazıt University, Ankara Bilkent City Hospital, Ankara, Turkey
| |
Collapse
|
2
|
He Y, Yao T, Zhang Y, Long L, Jiang G, Zhang X, Lv X, Han Y, Cheng X, Li M, Jiang M, Peng Z, Tao L, Meng J. Pyroptosis-related signatures predict immune characteristics and prognosis in IPF. Heliyon 2024; 10:e23683. [PMID: 38192798 PMCID: PMC10772192 DOI: 10.1016/j.heliyon.2023.e23683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/28/2023] [Accepted: 12/09/2023] [Indexed: 01/10/2024] Open
Abstract
The purpose of this work was to use integrated bioinformatics analysis to screen for pyroptosis-related genes (PRGs) and possible immunological phenotypes linked to the development and course of IPF. Transcriptome sequencing datasets GSE70866, GSE47460 and GSE150910 were obtained from GEO database. From the GSE70866 database, 34 PRGs with differential expression were found in IPF as compared to healthy controls. In addition, a diagnostic model containing 4 genes PRGs (CAMP, MKI67, TCEA3 and USP24) was constructed based on LASSO logistic regression. The diagnostic model showed good predictive ability to differentiate between IPF and healthy, with ROC-AUC ranging from 0.910 to 0.997 in GSE70866 and GSE150910 datasets. Moreover, based on a combined cohort of the Freiburg and the Siena cohorts from GSE70866 dataset, we identified ten PRGs that might predict prognosis for IPF. We constructed a prognostic model that included eight PRGs (CLEC5A, TREM2, MMP1, IRF2, SEZ6L2, ADORA3, NOS2, USP24) by LASSO Cox regression and validated it in the Leuven cohort. The risk model divided IPF patients from the combined cohort into high-risk and low-risk subgroups. There were significant differences between the two subgroups in terms of IPF survival and GAP stage. There is a close correlation between leukocyte migration, plasma membrane junction, and poor prognosis in a high-risk subgroup. Furthermore, a high-risk score was associated with more plasma cells, activated NK cells, monocytes, and activated mast cells. Additionally, we identified HDAC inhibitors in the cMAP database that might be therapeutic for IPF. To summarize, pyroptosis and its underlying immunological features are to blame for the onset and progression of IPF. PRG-based predictive models and drugs may offer new treatment options for IPF.
Collapse
Affiliation(s)
- Yijun He
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Tingting Yao
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Yan Zhang
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Lingzhi Long
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Guoliang Jiang
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Xiangyu Zhang
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Xin Lv
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanyuan Han
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyun Cheng
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Mengyu Li
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Mao Jiang
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhangzhe Peng
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- National International Collaborative Research Center for Medical Metabolomics, Changsha, China
| | - Lijian Tao
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- National International Collaborative Research Center for Medical Metabolomics, Changsha, China
| | - Jie Meng
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
- National International Collaborative Research Center for Medical Metabolomics, Changsha, China
| |
Collapse
|
3
|
Lu Y, Tang K, Wang S, Gao P, Tian Z, Wang M, Chen J, Xiao C, Zhao J, Xie J. Genetic Programs Between Steroid-Sensitive and Steroid-Insensitive Interstitial Lung Disease. Inflammation 2023; 46:2120-2131. [PMID: 37561311 PMCID: PMC10673734 DOI: 10.1007/s10753-023-01866-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 08/11/2023]
Abstract
The effectiveness of corticosteroids (GCs) varies greatly in interstitial lung diseases (ILDs). In this study, we aimed to compare the gene expression profiles of patients with cryptogenic organizing pneumonia (COP), idiopathic pulmonary fibrosis (IPF), and non-specific interstitial pneumonia (NSIP) and identify the molecules and pathways responsible for GCs sensitivity in ILDs. Three datasets (GSE21411, GSE47460, and GSE32537) were selected. Differentially expressed genes (DEGs) among COP, IPF, NSIP, and healthy control (CTRL) groups were identified. Functional enrichment analysis and protein-protein interaction network analysis were performed to examine the potential functions of DEGs. There were 128 DEGs when COP versus CTRL, 257 DEGs when IPF versus CTRL, 205 DEGs when NSIP versus CTRL, and 270 DEGs when COP versus IPF. The DEGs in different ILDs groups were mainly enriched in the inflammatory response. Further pathway analysis showed that "interleukin (IL)-17 signaling pathway" (hsa04657) and "tumor necrosis factor (TNF) signaling pathway" were associated with different types of ILDs. A total of 10 genes associated with inflammatory response were identified as hub genes and their expression levels in the IPF group were higher than those in the COP group. Finally, we identified two GCs' response-related differently expressed genes (FOSL1 and DDIT4). Our bioinformatics analysis demonstrated that the inflammatory response played a pathogenic role in the progression of ILDs. We also illustrated that the inflammatory reaction was more severe in the IPF group compared to the COP group and identified two GCs' response-related differently expressed genes (FOSL1 and DDIT4) in ILDs.
Collapse
Affiliation(s)
- Yanjiao Lu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kun Tang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Shanshan Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pengfei Gao
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Zhen Tian
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meijia Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinkun Chen
- Western University, 1151 Richmond Street, London, ON, N6A 3K7, Canada
| | - Chengfeng Xiao
- Department of Biology, Queens University, Kingston, ON, K7L 3N6, Canada
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Zhu X, Yuan S, Zheng X, Wang X, Zhang J. Pre-exposure to Aerosolized Polyvalent Bacterial Lysates Protects Against Bleomycin-Induced Pulmonary Fibrosis in Mice. Inflammation 2022; 45:1692-1699. [DOI: 10.1007/s10753-022-01653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 11/29/2022]
|
5
|
Parimon T, Hohmann MS, Yao C. Cellular Senescence: Pathogenic Mechanisms in Lung Fibrosis. Int J Mol Sci 2021; 22:6214. [PMID: 34207528 PMCID: PMC8227105 DOI: 10.3390/ijms22126214] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Pulmonary fibrosis is a chronic and fatal lung disease that significantly impacts the aging population globally. To date, anti-fibrotic, immunosuppressive, and other adjunct therapy demonstrate limited efficacies. Advancing our understanding of the pathogenic mechanisms of lung fibrosis will provide a future path for the cure. Cellular senescence has gained substantial interest in recent decades due to the increased incidence of fibroproliferative lung diseases in the older age group. Furthermore, the pathologic state of cellular senescence that includes maladaptive tissue repair, decreased regeneration, and chronic inflammation resembles key features of progressive lung fibrosis. This review describes regulatory pathways of cellular senescence and discusses the current knowledge on the senescence of critical cellular players of lung fibrosis, including epithelial cells (alveolar type 2 cells, basal cells, etc.), fibroblasts, and immune cells, their phenotypic changes, and the cellular and molecular mechanisms by which these cells contribute to the pathogenesis of pulmonary fibrosis. A few challenges in the field include establishing appropriate in vivo experimental models and identifying senescence-targeted signaling molecules and specific therapies to target senescent cells, known collectively as "senolytic" or "senotherapeutic" agents.
Collapse
Affiliation(s)
- Tanyalak Parimon
- Cedars-Sinai Medical Center, Department of Medicine, Women’s Guild Lung Institute, Los Angeles, CA 90048, USA
- Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Department of Medicine, Los Angeles, CA 90048, USA
| | - Miriam S. Hohmann
- Cedars-Sinai Medical Center, Department of Medicine, Women’s Guild Lung Institute, Los Angeles, CA 90048, USA
| | - Changfu Yao
- Cedars-Sinai Medical Center, Department of Medicine, Women’s Guild Lung Institute, Los Angeles, CA 90048, USA
| |
Collapse
|
6
|
Shao T, Shi X, Yang S, Zhang W, Li X, Shu J, Alqalyoobi S, Zeki AA, Leung PS, Shuai Z. Interstitial Lung Disease in Connective Tissue Disease: A Common Lesion With Heterogeneous Mechanisms and Treatment Considerations. Front Immunol 2021; 12:684699. [PMID: 34163483 PMCID: PMC8215654 DOI: 10.3389/fimmu.2021.684699] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/17/2021] [Indexed: 01/11/2023] Open
Abstract
Connective tissue disease (CTD) related interstitial lung disease (CTD-ILD) is one of the leading causes of morbidity and mortality of CTD. Clinically, CTD-ILD is highly heterogenous and involves rheumatic immunity and multiple manifestations of respiratory complications affecting the airways, vessels, lung parenchyma, pleura, and respiratory muscles. The major pathological features of CTD are chronic inflammation of blood vessels and connective tissues, which can affect any organ leading to multi-system damage. The human lung is particularly vulnerable to such damage because anatomically it is abundant with collagen and blood vessels. The complex etiology of CTD-ILD includes genetic risks, epigenetic changes, and dysregulated immunity, which interact leading to disease under various ill-defined environmental triggers. CTD-ILD exhibits a broad spectra of clinical manifestations: from asymptomatic to severe dyspnea; from single-organ respiratory system involvement to multi-organ involvement. The disease course is also featured by remissions and relapses. It can range from stability or slow progression over several years to rapid deterioration. It can also present clinically as highly progressive from the initial onset of disease. Currently, the diagnosis of CTD-ILD is primarily based on distinct pathology subtype(s), imaging, as well as related CTD and autoantibodies profiles. Meticulous comprehensive clinical and laboratory assessment to improve the diagnostic process and management strategies are much needed. In this review, we focus on examining the pathogenesis of CTD-ILD with respect to genetics, environmental factors, and immunological factors. We also discuss the current state of knowledge and elaborate on the clinical characteristics of CTD-ILD, distinct pathohistological subtypes, imaging features, and related autoantibodies. Furthermore, we comment on the identification of high-risk patients and address how to stratify patients for precision medicine management approaches.
Collapse
Affiliation(s)
- Tihong Shao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Xiaodong Shi
- Rheumatology, First Hospital of Jilin University, Changchun, China
| | - Shanpeng Yang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Zhang
- Department of Pathology, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, China
| | - Xiaohu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jingwei Shu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shehabaldin Alqalyoobi
- Internal Medicine - Pulmonary, Critical Care, and Sleep Medicine, Brody School of Medicine, Greenville, NC, United States
| | - Amir A. Zeki
- University of California (U.C.), Davis, Lung Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, U.C. Davis School of Medicine, University of California, Davis, Davis, CA, United States
| | - Patrick S. Leung
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Manfredi A, Luppi F, Cassone G, Vacchi C, Salvarani C, Sebastiani M. Pathogenesis and treatment of idiopathic and rheumatoid arthritis-related interstitial pneumonia. The possible lesson from COVID-19 pneumonia. Expert Rev Clin Immunol 2020; 16:751-770. [PMID: 32722946 PMCID: PMC7594185 DOI: 10.1080/1744666x.2020.1803064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Main clinical manifestations of SARS-CoV-2 infection are characterized by fever, dyspnea, and interstitial pneumonia, frequently evolving in acute respiratory distress syndrome (ARDS). AREAS COVERED Features of coronavirus disease 2019 (COVID-19) presents some common points with interstitial lung disease (ILD) both idiopathic and related to rheumatoid arthritis (RA), typically characterized by a chronic progression over time and possibly complicated by acute exacerbation (AE). The study of common pathogenetic mechanisms, such as the involvement of toll-like receptor 4, could contribute to the knowledge and treatment of idiopathic and RA-ILD. Moreover, hyperinflammation, mainly characterized by increase of effector T-cells and inflammatory cytokines, and activation of coagulation cascade, observed in COVID-19 related ARDS have been already shown in patients with AE of idiopathic and RA-ILD. A literature search was performed in PubMed, Embase, Scopus, and Web of Science, together with a manual search in COVID-resource centers of the main journals. EXPERT OPINION Despite the uncertainty about pathogenetic aspects about COVID-19- pneumonia, it could be a possible model for other forms of ILD and AE. The great amount of data from studies on COVID-19 could be helpful in proposing safe therapeutic approaches for RA-ILD, in understanding pathogenesis of usual interstitial pneumonia and to develop new therapeutic strategies for AE.
Collapse
Affiliation(s)
- A Manfredi
- Rheumatology Unit, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria Policlinico Di Modena, Modena, Italy
| | - F Luppi
- Department of Medicine and Surgery, University of Milan Bicocca, Respiratory Unit, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - G Cassone
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
- Rheumatology Unit, Santa Maria Hospital, IRCCS, Reggio Emilia, Italy
| | - C Vacchi
- Rheumatology Unit, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria Policlinico Di Modena, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - C Salvarani
- Rheumatology Unit, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria Policlinico Di Modena, Modena, Italy
- Rheumatology Unit, Santa Maria Hospital, IRCCS, Reggio Emilia, Italy
| | - M Sebastiani
- Rheumatology Unit, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria Policlinico Di Modena, Modena, Italy
| |
Collapse
|
8
|
NK and NKT-like cells in granulomatous and fibrotic lung diseases. Clin Exp Med 2019; 19:487-494. [DOI: 10.1007/s10238-019-00578-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/29/2019] [Indexed: 01/17/2023]
|
9
|
Li F, Han F, Li H, Zhang J, Qiao X, Shi J, Yang L, Dong J, Luo M, Wei J, Liu X. Human placental mesenchymal stem cells of fetal origins-alleviated inflammation and fibrosis by attenuating MyD88 signaling in bleomycin-induced pulmonary fibrosis mice. Mol Immunol 2017; 90:11-21. [PMID: 28662409 DOI: 10.1016/j.molimm.2017.06.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 05/16/2017] [Accepted: 06/18/2017] [Indexed: 01/20/2023]
Abstract
Pulmonary fibrosis is a progressive lung disease that its pathogenic mechanism currently is incompletely understood. Toll-like receptor (TLR) signaling has recently been identified as a regulator of inflammation and pulmonary fibrosis. In addition, mesenchymal stem cells (MSCs) of different origins offer a great promise in treatment of idiopathic pulmonary fibrosis (IPF). However mechanisms of pathogenic roles of TLR signaling and therapeutic effects of MSCs in the IPF remain elusive. In present study, the involvement of TLR signaling and the therapeutic role of MSCs were interrogated in MyD88-deficient mice using human placental MSCs of fetal origins (hfPMSCs). The results showed an alleviated pulmonary inflammation and fibrosis in myeloid differentiation primary response gene 88 (MyD88)-deficient mice treated with bleomycin (BLM), accompanied with a reduced TGF-β signaling and production of pro-fibrotic cytokines, including TNF-α, IL-1β. An exposure of HLF1 lung fibroblasts, A549 epithelial cells and RAW264.7 macrophages to BLM led an increased expression of key components of MyD88 and TGF-β signaling cascades. Of interest, enforced expression and inhibition of MyD88 protein resulted in an enhanced and a reduced TGF-β signaling in above cells in the presence of BLM, respectively. However, the addition of TGF-β1 showed a marginally inhibitory effect on MyD88 signaling in these cells in the absence of BLM. Importantly, the administration of hfPMSCs could significantly attenuate BLM-induced pulmonary fibrosis in mice, along with a reduced hydroxyproline (HYP) deposition, MyD88 and TGF-β signaling activation, and production of pro-fibrotic cytokines. These results may suggest an importance of MyD88/TGF-β signaling axis in the tissue homeostasis and functional integrity of lung in response to injury, which may offer a novel target for treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Feng Li
- Center of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Department of Laboratory Medicine, College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Fei Han
- Department of Laboratory Medicine, College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Hui Li
- Department of Laboratory Medicine, College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jia Zhang
- Department of Laboratory Medicine, College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Xia Qiao
- Center of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Juan Shi
- Center of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Li Yang
- The Center of Experimental Animals, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jianda Dong
- Department of Pathology, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Meihui Luo
- Center of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jun Wei
- Center of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Department of Laboratory Medicine, College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China; Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Xiaoming Liu
- College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
10
|
O'Dwyer DN, Dickson RP, Moore BB. The Lung Microbiome, Immunity, and the Pathogenesis of Chronic Lung Disease. THE JOURNAL OF IMMUNOLOGY 2017; 196:4839-47. [PMID: 27260767 DOI: 10.4049/jimmunol.1600279] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/24/2016] [Indexed: 12/17/2022]
Abstract
The development of culture-independent techniques for microbiological analysis has uncovered the previously unappreciated complexity of the bacterial microbiome at various anatomic sites. The microbiome of the lung has relatively less bacterial biomass when compared with the lower gastrointestinal tract yet displays considerable diversity. The composition of the lung microbiome is determined by elimination, immigration, and relative growth within its communities. Chronic lung disease alters these factors. Many forms of chronic lung disease demonstrate exacerbations that drive disease progression and are poorly understood. Mounting evidence supports ways in which microbiota dysbiosis can influence host defense and immunity, and in turn may contribute to disease exacerbations. Thus, the key to understanding the pathogenesis of chronic lung disease may reside in deciphering the complex interactions between the host, pathogen, and resident microbiota during stable disease and exacerbations. In this brief review we discuss new insights into these labyrinthine relationships.
Collapse
Affiliation(s)
- David N O'Dwyer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; and
| | - Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; and
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
11
|
Wang Y, Song W, Wu J, Li Z, Mu F, Li Y, Huang H, Zhu W, Zhang F. Modeling using clinical examination indicators predicts interstitial lung disease among patients with rheumatoid arthritis. PeerJ 2017; 5:e3021. [PMID: 28243535 PMCID: PMC5322753 DOI: 10.7717/peerj.3021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/24/2017] [Indexed: 01/21/2023] Open
Abstract
Interstitial lung disease (ILD) is a severe extra-articular manifestation of rheumatoid arthritis (RA) that is well-defined as a chronic systemic autoimmune disease. A proportion of patients with RA-associated ILD (RA-ILD) develop pulmonary fibrosis (PF), resulting in poor prognosis and increased lifetime risk. We investigated whether routine clinical examination indicators (CEIs) could be used to identify RA patients with high PF risk. A total of 533 patients with established RA were recruited in this study for model building and 32 CEIs were measured for each of them. To identify PF risk, a new artificial neural network (ANN) was built, in which inputs were generated by calculating Euclidean distance of CEIs between patients. Receiver operating characteristic curve analysis indicated that the ANN performed well in predicting the PF risk (Youden index = 0.436) by only incorporating four CEIs including age, eosinophil count, platelet count, and white blood cell count. A set of 218 RA patients with healthy lungs or suffering from ILD and a set of 87 RA patients suffering from PF were used for independent validation. Results showed that the model successfully identified ILD and PF with a true positive rate of 84.9% and 82.8%, respectively. The present study suggests that model integration of multiple routine CEIs contributes to identification of potential PF risk among patients with RA.
Collapse
Affiliation(s)
- Yao Wang
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, Heilongjiang Province, China; Department of Microbiology and Immunology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Wuqi Song
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Jing Wu
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Zhangming Li
- Department of Pharmacy Administration, Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Fengyun Mu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Yang Li
- Department of Rheumatology, The Second Affiliated Hospital of Harbin Medical University , Harbin , Heilongjiang Province , China
| | - He Huang
- Department of Rheumatology, The Second Affiliated Hospital of Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Wenliang Zhu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Fengmin Zhang
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University , Harbin , Heilongjiang Province , China
| |
Collapse
|
12
|
Margaritopoulos GA, Lasithiotaki I, Antoniou KM. Toll-like receptors and autophagy in interstitial lung diseases. Eur J Pharmacol 2016; 808:28-34. [PMID: 27687957 DOI: 10.1016/j.ejphar.2016.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/28/2016] [Accepted: 09/23/2016] [Indexed: 02/06/2023]
Abstract
Interstitial lung diseases (ILDs) include a number of diseases whose pathogenesis still is not fully understood. Idiopathic pulmonary fibrosis (IPF), the most frequent and severe form of ILDs is an epithelial-driven disease and the treatment consists of the use of antifibrotic agents. In the rest of ILDs an inflammation-driven pathway is believed to be the main pathogenetic mechanism and treatment consists of the use of immunomodulatory agents. In both groups it is believed that infection can play an important role in the development and progression of the diseases. The immune system can recognize exogenous threats or endogenous stress through specialized receptors namely pattern recognition receptors (PRRs) which in turn, initiate downstream signaling pathways to control immune responses. Recently, a link between PRRs and autophagy, a specialized biological process involved in maintaining cellular homeostasis but also involved in various immunologic processes, has been described. In this review, we focus on the reciprocal influences of PRRs with particular emphasis on Toll-like receptors and autophagy in modulating innate immune responses.
Collapse
Affiliation(s)
| | - Ismini Lasithiotaki
- Laboratory of Cellular and Molecular Pneumonology, Medical School, University of Crete, Heraklion 71110, Greece
| | - Katerina M Antoniou
- Laboratory of Cellular and Molecular Pneumonology, Medical School, University of Crete, Heraklion 71110, Greece
| |
Collapse
|
13
|
Hwang JH, Lyes M, Sladewski K, Enany S, McEachern E, Mathew DP, Das S, Moshensky A, Bapat S, Pride DT, Ongkeko WM, Crotty Alexander LE. Electronic cigarette inhalation alters innate immunity and airway cytokines while increasing the virulence of colonizing bacteria. J Mol Med (Berl) 2016; 94:667-79. [PMID: 26804311 DOI: 10.1007/s00109-016-1378-3] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/27/2015] [Accepted: 12/07/2015] [Indexed: 01/28/2023]
Abstract
UNLABELLED Electronic (e)-cigarette use is rapidly rising, with 20 % of Americans ages 25-44 now using these drug delivery devices. E-cigarette users expose their airways, cells of host defense, and colonizing bacteria to e-cigarette vapor (EV). Here, we report that exposure of human epithelial cells at the air-liquid interface to fresh EV (vaped from an e-cigarette device) resulted in dose-dependent cell death. After exposure to EV, cells of host defense-epithelial cells, alveolar macrophages, and neutrophils-had reduced antimicrobial activity against Staphylococcus aureus (SA). Mouse inhalation of EV for 1 h daily for 4 weeks led to alterations in inflammatory markers within the airways and elevation of an acute phase reactant in serum. Upon exposure to e-cigarette vapor extract (EVE), airway colonizer SA had increased biofilm formation, adherence and invasion of epithelial cells, resistance to human antimicrobial peptide LL-37, and up-regulation of virulence genes. EVE-exposed SA were more virulent in a mouse model of pneumonia. These data suggest that e-cigarettes may be toxic to airway cells, suppress host defenses, and promote inflammation over time, while also promoting virulence of colonizing bacteria. KEY MESSAGE Acute exposure to e-cigarette vapor (EV) is cytotoxic to airway cells in vitro. Acute exposure to EV decreases macrophage and neutrophil antimicrobial function. Inhalation of EV alters immunomodulating cytokines in the airways of mice. Inhalation of EV leads to increased markers of inflammation in BAL and serum. Staphylococcus aureus become more virulent when exposed to EV.
Collapse
Affiliation(s)
- John H Hwang
- Pulmonary and Critical Care Section, VA San Diego Healthcare System, 3350 La Jolla Village Dr, MC 111J, San Diego, CA, 92161, USA
- Department of Medicine, Division of Pulmonary and Critical Care, University of California at San Diego (UCSD), La Jolla, CA, 92093, USA
| | - Matthew Lyes
- Pulmonary and Critical Care Section, VA San Diego Healthcare System, 3350 La Jolla Village Dr, MC 111J, San Diego, CA, 92161, USA
- Duke University School of Medicine, Durham, NC, USA
| | - Katherine Sladewski
- Pulmonary and Critical Care Section, VA San Diego Healthcare System, 3350 La Jolla Village Dr, MC 111J, San Diego, CA, 92161, USA
| | - Shymaa Enany
- Pulmonary and Critical Care Section, VA San Diego Healthcare System, 3350 La Jolla Village Dr, MC 111J, San Diego, CA, 92161, USA
- Microbiology and Immunology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Elisa McEachern
- Pulmonary and Critical Care Section, VA San Diego Healthcare System, 3350 La Jolla Village Dr, MC 111J, San Diego, CA, 92161, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Denzil P Mathew
- Pulmonary and Critical Care Section, VA San Diego Healthcare System, 3350 La Jolla Village Dr, MC 111J, San Diego, CA, 92161, USA
| | - Soumita Das
- Departments of Pathology and Medicine, UCSD, La Jolla, CA, 92093, USA
| | - Alexander Moshensky
- Pulmonary and Critical Care Section, VA San Diego Healthcare System, 3350 La Jolla Village Dr, MC 111J, San Diego, CA, 92161, USA
| | - Sagar Bapat
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - David T Pride
- Departments of Pathology and Medicine, UCSD, La Jolla, CA, 92093, USA
| | - Weg M Ongkeko
- Division of Head and Neck Surgery, Department of Surgery, UCSD, La Jolla, CA, 92093, USA
| | - Laura E Crotty Alexander
- Pulmonary and Critical Care Section, VA San Diego Healthcare System, 3350 La Jolla Village Dr, MC 111J, San Diego, CA, 92161, USA.
- Department of Medicine, Division of Pulmonary and Critical Care, University of California at San Diego (UCSD), La Jolla, CA, 92093, USA.
| |
Collapse
|