1
|
Zhang Y, Gao S, Yao S, Weng D, Wang Y, Huang Q, Zhang X, Wang H, Xu W. IL-27 mediates immune response of pneumococcal vaccine SPY1 through Th17 and memory CD4 +T cells. iScience 2023; 26:107464. [PMID: 37588169 PMCID: PMC10425906 DOI: 10.1016/j.isci.2023.107464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/16/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023] Open
Abstract
Vaccination is an effective means of preventing pneumococcal disease and SPY1 is a live attenuated pneumococcal vaccine we obtained earlier. We found IL-27 and its specific receptor (WSX-1) were increased in SPY1 vaccinated mice. Bacterial clearance and survival rates were decreased in SPY1 vaccinated IL-27Rα-/- mice. The vaccine-induced Th17 cell response and IgA secretion were also suppressed in IL-27Rα-/- mice. STAT3 and NF-κB signaling and expression of the Th17 cell polarization-related cytokines were also decreased in IL-27Rα-/- bone-marrow-derived dendritic cells(BMDC) stimulated with inactivated SPY1. The numbers of memory CD4+T cells were also decreased in SPY1 vaccinated IL-27Rα-/- mice. These results suggested that IL-27 plays a protective role in SPY1 vaccine by promoting Th17 polarization through STAT3 and NF-κB signaling pathways and memory CD4+T cells production in the SPY1 vaccine. In addition, we found that the immune protection of SPY1 vaccine was independent of aerobic glycolysis.
Collapse
Affiliation(s)
- Yanyu Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Song Gao
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shifei Yao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Danlin Weng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yan Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Qi Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenchun Xu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Involvement of the capsular GalXM-induced IL-17 cytokine in the control of Cryptococcus neoformans infection. Sci Rep 2018; 8:16378. [PMID: 30401972 PMCID: PMC6219535 DOI: 10.1038/s41598-018-34649-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/22/2018] [Indexed: 12/22/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungus that can cause lethal brain infections in immunosuppressed individuals. Infection usually occurs via the inhalation of a spore or desiccated yeast which can then disseminate from the lung to the brain and other tissues. Dissemination and disease is largely influence by the production of copious amounts of cryptococcal polysaccharides, both which are secreted to the extracellular environment or assembled into a thick capsule surrounding the cell body. There are two important polysaccharides: glucuronoxylomannan (GXM) and galactoxylomannan, also called as glucuronoxylomanogalactan (GXMGal or GalXM). Although GXM is more abundant, GalXM has a more potent modulatory effect. In the present study, we show that GalXM is a potent activator of murine dendritic cells, and when co-cultured with T cells, induces a Th17 cytokine response. We also demonstrated that treating mice with GalXM prior to infection with C. neoformans protects from infection, and this phenomenon is dependent on IL-6 and IL-17. These findings help us understand the immune biology of capsular polysaccharides in fungal pathogenesis.
Collapse
|
3
|
Liao H, Peng X, Gan L, Feng J, Gao Y, Yang S, Hu X, Zhang L, Yin Y, Wang H, Xu X. Protective Regulatory T Cell Immune Response Induced by Intranasal Immunization With the Live-Attenuated Pneumococcal Vaccine SPY1 via the Transforming Growth Factor-β1-Smad2/3 Pathway. Front Immunol 2018; 9:1754. [PMID: 30116243 PMCID: PMC6082925 DOI: 10.3389/fimmu.2018.01754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/16/2018] [Indexed: 12/24/2022] Open
Abstract
Vaccine effectiveness is mainly determined by the mechanism mediating protection, emphasizing the importance of unraveling the protective mechanism for novel pneumococcal vaccine development. We previously demonstrated that the regulatory T cell (Treg) immune response has a protective effect against pneumococcal infection elicited by the live-attenuated pneumococcal vaccine SPY1. However, the mechanism underlying this protective effect remains unclear. In this study, a short synthetic peptide (P17) was used to downregulate Tregs during immunization and subsequent challenges in a mouse model. In immunized mice, increase in immune cytokines (IL-12p70, IL-4, IL-5, and IL-17A) induced by SPY1 were further upregulated by P17 treatment, whereas the decrease in the infection-associated inflammatory cytokine TNF-α by SPY1 was reversed. P17 also inhibited the increase in the immunosuppressive cytokine IL-10 and inflammatory mediator IL-6 in immunized mice. More severe pulmonary injuries and more dramatic inflammatory responses with worse survival in P17-treated immunized mice indicated the indispensable role of the Treg immune response in protection against pneumococcal infection by maintaining a balance among acquired immune responses stimulated by SPY1. Further studies revealed that the significant elevation of active transforming growth factor β (TGF-β)1 by SPY1 vaccination activated FOXP3, leading to increased frequencies of CD4+CD25+Foxp3+ T cells. Moreover, SPY1 vaccination elevated the levels of Smad2/3 and phosphor-Smad2/3 and downregulated the negative regulatory factor Smad7 in a time-dependent manner during pneumococcal infection, and these changes were reversed by P17 treatment. These results illustrate that SPY1-stimulated TGF-β1 induced the generation of SPY1-specific Tregs via the Smad2/3 signaling pathway. In addition, SPY1-specific Tregs may participate in protection via the enhanced expression of PD-1 and CTLA-4. The data presented here extend our understanding of how the SPY1-induced acquired Treg immune response contributes to protection elicited by live-attenuated vaccines and may be helpful for the evaluation of live vaccines and other mucosal vaccine candidates.
Collapse
Affiliation(s)
- Hongyi Liao
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xiaoqiong Peng
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingling Gan
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, Sichuan, China
| | - Jiafu Feng
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, Sichuan, China
| | - Yue Gao
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Shenghui Yang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuexue Hu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Liping Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xiuyu Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Gan L, Zhang X, Xu X, Xu W, Lu C, Cui J, Wang H. spd1672, a novel in vivo-induced gene, affects inflammatory response in a murine model of Streptococcus pneumoniae infection. Can J Microbiol 2018; 64:401-408. [DOI: 10.1139/cjm-2017-0662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
spd1672, a novel Streptococcus pneumoniae (hereinafter S. pn) gene induced in vivo, has been identified to contribute to the virulence of S. pn; however, the role of spd1672 during host innate immune reaction against S. pn infection is unknown. In the present study, mice were infected with wild-type D39 and mutant D39Δspd1672 strains. Compared with the D39-infected mice, reduced bacterial load and attenuated inflammatory response were observed in the D39Δspd1672-treated mice. The levels of proinflammatory cytokines, including IFN-γ, TNF-α, and IL-1β, in the blood of D39Δspd1672-infected mice were lower than that in the D39-infected group. Additionally, attenuated activation of STAT3 and AKT was observed in the D39Δspd1672-infected mice. In conclusion, our data indicated that spd1672 expression modulates the release of proinflammatory cytokines, and AKT–STAT3 signaling appears to participate in the process. In conclusion, the present study extends our understanding of the role of an in vivo-induced gene in S. pn–host interaction.
Collapse
Affiliation(s)
- Lingling Gan
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, Sichuan 621000, China
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiuyu Xu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wenchun Xu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Chang Lu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jin Cui
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, China
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hong Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
5
|
Xiao Y, Deng T, Shang Z, Wang D. Adiponectin inhibits oxidization-induced differentiation of T helper cells through inhibiting costimulatory CD40 and CD80. ACTA ACUST UNITED AC 2017; 50:e6227. [PMID: 28513775 PMCID: PMC5479391 DOI: 10.1590/1414-431x20176227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/27/2017] [Indexed: 12/19/2022]
Abstract
Adiponectin is a multifunctional adipokine that has several oligomeric forms in the blood stream, which broadly regulates innate and acquired immunity. Therefore, in this study, we aimed to observe the differentiation of T helper (Th) cells and expression of costimulatory signaling molecules affected by adiponectin. The mRNA and protein expression levels of adiponectin and its receptors in oxidized low density lipoprotein cholesterol-treated endothelial cells were assayed by real time PCR and immunofluorescence. The endothelial cells were then treated with adiponectin with or without adipoR1 or adipoR2 siRNA and co-cultured with T lymphocytes. The distribution of Th1, Th2 and Th17 subsets were assayed by flow cytometry. The effects of adiponectin on costimulatory signaling molecules HLA-DR, CD80, CD86 and CD 40 was also assayed by flow cytometry. The results showed that endothelial cells expressed adiponectin and its receptor adipoR1 and adipoR2, but not T-cadherin. Adiponectin suppressed Th1 and Th17 differentiation through adipoR1 receptor, contributed to the inhibition of CD80 and CD40, and inhibited differentiation of Th1 and Th17 by inhibiting antigen presenting action.
Collapse
Affiliation(s)
- Y Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - T Deng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Z Shang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - D Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|