1
|
Saha S, Tandon R, Sanku J, Kumari A, Shukla R, Srivastava N. siRNA-based Therapeutics in Hormone-driven Cancers: Advancements and benefits over conventional treatments. Int J Pharm 2025; 674:125463. [PMID: 40081431 DOI: 10.1016/j.ijpharm.2025.125463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/10/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Hormone-related cancers, also known as hormone-sensitive or hormone-dependent cancers, rely on hormones such as estrogen, testosterone, and progesterone for growth. These malignancies, including breast, pituitary, thyroid, ovarian, uterine, cervical, and prostate cancers, often exhibit accelerated progression in response to hormonal signaling. Small interfering RNA (siRNA) has emerged as a groundbreaking gene suppression therapy since the FDA approval of its first product in 2018. With over 200 ongoing clinical trials, siRNA is being actively explored as a targeted treatment for hormone-related cancers. Its ability to silence specific oncogenes offers significant advantages over conventional therapies, which are often associated with toxicity, resistance, and non-specific targeting. However, challenges in siRNA delivery remain a major barrier to its clinical translation, limiting its ability to reach target cells effectively. This review evaluates the potential of siRNA in hormone-related cancers, addressing the shortcomings of traditional treatments while examining novel strategies to enhance siRNA delivery and overcome tumor microenvironment obstacles. Notably, no existing literature comprehensively consolidates siRNA-based therapies for these cancers, emphasizing the importance of this manuscript in bridging current knowledge gaps and advancing the translational application of siRNA therapeutics.
Collapse
Affiliation(s)
- Sayani Saha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Reetika Tandon
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Jhansi Sanku
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Anchala Kumari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India.
| |
Collapse
|
2
|
Kang H, Ga YJ, Kim SH, Cho YH, Kim JW, Kim C, Yeh JY. Small interfering RNA (siRNA)-based therapeutic applications against viruses: principles, potential, and challenges. J Biomed Sci 2023; 30:88. [PMID: 37845731 PMCID: PMC10577957 DOI: 10.1186/s12929-023-00981-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
RNA has emerged as a revolutionary and important tool in the battle against emerging infectious diseases, with roles extending beyond its applications in vaccines, in which it is used in the response to the COVID-19 pandemic. Since their development in the 1990s, RNA interference (RNAi) therapeutics have demonstrated potential in reducing the expression of disease-associated genes. Nucleic acid-based therapeutics, including RNAi therapies, that degrade viral genomes and rapidly adapt to viral mutations, have emerged as alternative treatments. RNAi is a robust technique frequently employed to selectively suppress gene expression in a sequence-specific manner. The swift adaptability of nucleic acid-based therapeutics such as RNAi therapies endows them with a significant advantage over other antiviral medications. For example, small interfering RNAs (siRNAs) are produced on the basis of sequence complementarity to target and degrade viral RNA, a novel approach to combat viral infections. The precision of siRNAs in targeting and degrading viral RNA has led to the development of siRNA-based treatments for diverse diseases. However, despite the promising therapeutic benefits of siRNAs, several problems, including impaired long-term protein expression, siRNA instability, off-target effects, immunological responses, and drug resistance, have been considerable obstacles to the use of siRNA-based antiviral therapies. This review provides an encompassing summary of the siRNA-based therapeutic approaches against viruses while also addressing the obstacles that need to be overcome for their effective application. Furthermore, we present potential solutions to mitigate major challenges.
Collapse
Affiliation(s)
- Hara Kang
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Yun Ji Ga
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Soo Hyun Kim
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Young Hoon Cho
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Jung Won Kim
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Chaeyeon Kim
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Jung-Yong Yeh
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea.
- Research Institute for New Drug Development, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea.
- Convergence Research Center for Insect Vectors, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea.
- KU Center for Animal Blood Medical Science, College of Veterinary Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul, 05029, South Korea.
| |
Collapse
|
3
|
Zou X, Guo Y, Mo Z. TLR3 serves as a novel diagnostic and prognostic biomarker and is closely correlated with immune microenvironment in three types of cancer. Front Genet 2022; 13:905988. [PMID: 36419829 PMCID: PMC9676367 DOI: 10.3389/fgene.2022.905988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/26/2022] [Indexed: 07/29/2023] Open
Abstract
Background: Toll-like receptor 3 (TLR3) plays an important role in both innate and adaptive immunity, but the prognostic value of TLR3 in heterogeneous tumors and the correlations between TLR3 expression and immune infiltration of heterogeneous tumors remain unclear. Methods: We investigated the expression of TLR3 in a variety of tumors and focused on the diagnostic and prognostic values of TLR3 in kidney renal clear cell carcinoma (KIRC), pancreatic adenocarcinoma (PAAD) and brain lower grade glioma (LGG) by GEPIA, DriverDBv3, UALCAN, TIMER, LinkedOmics, STRING, GeneMANIA and FunRich, as well as the possible mechanisms of TLR3 affecting tumor prognosis were discussed. Additionally, real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was used to validate TLR3 expression in early KIRC. We also compared the expression of TLR3 in the plasma of early KIRC patients and normal controls by enzyme linked immunosorbent assay (ELISA). Results: TLR3 expression was significantly different in multiple tumors compared with paracancerous nontumor tissues. Elevated expression of TLR3 contributed to the prolonged survival outcome in KIRC patients. Suppressed expression of TLR3 contributed to the prolonged survival outcome in LGG and PAAD patients. Moreover, TLR3 was significantly elevated in stage1, grade1 and N0 of KIRC. The expression and function of TLR3 in KIRC, LGG and PAAD were closely related to tumor immune microenvironment. TRAF6 was a key gene in the interactions between TLR3 and its interacting genes. Finally, the results of RT-qPCR and ELISA indicated that TLR3 expression levels were significantly raised in renal tissue and plasma of early KIRC patients. Conclusion: TLR3 has the potential to be a diagnostic biomarker of KIRC, LGG and PAAD as well as a biomarker for evaluating the prognosis of KIRC, LGG and PAAD, particularly for the early diagnosis of KIRC. TLR3 affects tumors mainly by acting on the immune microenvironment of KIRC, LGG and PAAD. These findings could lead to new insights into the immunotherapeutic targets for KIRC, LGG, and PAAD.
Collapse
Affiliation(s)
- Xiong Zou
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | - Yi Guo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zengnan Mo
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Suzuki M, Cooksley C, Suzuki T, Ramezanpour M, Nakazono A, Nakamaru Y, Homma A, Vreugde S. TLR Signals in Epithelial Cells in the Nasal Cavity and Paranasal Sinuses. FRONTIERS IN ALLERGY 2022; 2:780425. [PMID: 35387020 PMCID: PMC8974762 DOI: 10.3389/falgy.2021.780425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
The respiratory tract is constantly at risk of invasion by microorganisms such as bacteria, viruses, and fungi. In particular, the mucosal epithelium of the nasal cavity and paranasal sinuses is at the very forefront of the battles between the host and the invading pathogens. Recent studies have revealed that the epithelium not only constitutes a physical barrier but also takes an essential role in the activation of the immune system. One of the mechanisms equipped in the epithelium to fight against microorganisms is the Toll-like receptor (TLR) response. TLRs recognize common structural components of microorganisms and activate the innate immune system, resulting in the production of a plethora of cytokines and chemokines in the response against microbes. As the epithelia-derived cytokines are deeply involved in the pathogenesis of inflammatory conditions in the nasal cavity and paranasal sinuses, such as chronic rhinosinusitis (CRS) and allergic rhinitis (AR), the molecules involved in the TLR response may be utilized as therapeutic targets for these diseases. There are several differences in the TLR response between nasal and bronchial epithelial cells, and knowledge of the TLR signals in the upper airway is sparse compared to that in the lower airway. In this review, we provide recent evidence on TLR signaling in the upper airway, focusing on the expression, regulation, and responsiveness of TLRs in human nasal epithelial cells (HNECs). We also discuss how TLRs in the epithelium are involved in the pathogenesis of, and possible therapeutic targeting, for CRS and AR.
Collapse
Affiliation(s)
- Masanobu Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Clare Cooksley
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, Central Adelaide Local Health Network and the University of Adelaide, Adelaide, SA, Australia
| | - Takayoshi Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mahnaz Ramezanpour
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, Central Adelaide Local Health Network and the University of Adelaide, Adelaide, SA, Australia
| | - Akira Nakazono
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuji Nakamaru
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akihiro Homma
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Sarah Vreugde
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, Central Adelaide Local Health Network and the University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
5
|
Walters AA, Santacana-Font G, Li J, Routabi N, Qin Y, Claes N, Bals S, Tzu-Wen Wang J, Al-Jamal KT. Nanoparticle-Mediated In Situ Molecular Reprogramming of Immune Checkpoint Interactions for Cancer Immunotherapy. ACS NANO 2021; 15:17549-17564. [PMID: 34677938 PMCID: PMC8613910 DOI: 10.1021/acsnano.1c04456] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 06/01/2023]
Abstract
Immune checkpoint blockade involves targeting immune regulatory molecules with antibodies. Preclinically, complex multiantibody regimes of both inhibitory and stimulatory targets are a promising candidate for the next generation of immunotherapy. However, in this setting, the antibody platform may be limited due to excessive toxicity caused by off target effects as a result of systemic administration. RNA can be used as an alternate to antibodies as it can both downregulate immunosuppressive checkpoints (siRNA) or induce expression of immunostimulatory checkpoints (mRNA). In this study, we demonstrate that the combination of both siRNA and mRNA in a single formulation can simultaneously knockdown and induce expression of immune checkpoint targets, thereby reprogramming the tumor microenvironment from immunosuppressive to immunostimulatory phenotype. To achieve this, RNA constructs were synthesized and formulated into stable nucleic acid lipid nanoparticles (SNALPs); the SNALPs produced were 140-150 nm in size with >80% loading efficiency. SNALPs could transfect macrophages and B16F10 cells in vitro resulting in 75% knockdown of inhibitory checkpoint (PDL1) expression and simultaneously express high levels of stimulatory checkpoint (OX40L) with minimal toxicity. Intratumoral treatment with the proposed formulation resulted in statistically reduced tumor growth, a greater density of CD4+ and CD8+ infiltrates in the tumor, and immune activation within tumor-draining lymph nodes. These data suggest that a single RNA-based formulation can successfully reprogram multiple immune checkpoint interactions on a cellular level. Such a candidate may be able to replace future immune checkpoint therapeutic regimes composed of both stimulatory- and inhibitory-receptor-targeting antibodies.
Collapse
Affiliation(s)
- Adam A. Walters
- Institute
of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, United Kingdom
| | - Gemma Santacana-Font
- Institute
of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, United Kingdom
| | - Jin Li
- Institute
of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, United Kingdom
| | - Nadia Routabi
- Institute
of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, United Kingdom
| | - Yue Qin
- Institute
of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, United Kingdom
| | - Nathalie Claes
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
| | - Sara Bals
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
| | - Julie Tzu-Wen Wang
- Institute
of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, United Kingdom
| | - Khuloud T. Al-Jamal
- Institute
of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, United Kingdom
| |
Collapse
|
6
|
Bose CK. siRNA and Ovarian Cancer. INDIAN JOURNAL OF GYNECOLOGIC ONCOLOGY 2021. [DOI: 10.1007/s40944-021-00583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
TLR3 agonists: RGC100, ARNAX, and poly-IC: a comparative review. Immunol Res 2021; 69:312-322. [PMID: 34145551 PMCID: PMC8213534 DOI: 10.1007/s12026-021-09203-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022]
Abstract
Toll-like receptors 3 (TLR3) have been broadly studied among all TLRs over the last few decades together with its agonists due to their contribution to cancer regression. These agonists undeniably have some shared characteristics such as mimicking dsRNA but pathways through which they exhibit antitumor properties are relatively diverse. In this review, three widely studied agonists RGC100, ARNAX, and poly-IC are discussed along with their structural and physiochemical differences including the signaling cascades through which they exert their actions. Comparison has been made to identify the finest agonist with maximum effectivity and the least side effect profile.
Collapse
|
8
|
Zheng X, Li S, Yang H. Roles of Toll-Like Receptor 3 in Human Tumors. Front Immunol 2021; 12:667454. [PMID: 33986756 PMCID: PMC8111175 DOI: 10.3389/fimmu.2021.667454] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptor 3 (TLR3) is an important member of the TLR family, which is an important group of pathogen-associated molecular patterns. TLR3 can recognize double-stranded RNA and induce activation of NF-κB and the production of type I interferons. In addition to its immune-associated role, TLR3 has also been detected in some tumors. However TLR3 can play protumor or antitumor roles in different tumors or cell lines. Here, we review the basic signaling associated with TLR3 and the pro- or antitumor roles of TLR3 in different types of tumors and discuss the possible reasons for the opposing roles of TLR3 in tumors.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Song Li
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
9
|
Mielcarska MB, Bossowska-Nowicka M, Toka FN. Cell Surface Expression of Endosomal Toll-Like Receptors-A Necessity or a Superfluous Duplication? Front Immunol 2021; 11:620972. [PMID: 33597952 PMCID: PMC7882679 DOI: 10.3389/fimmu.2020.620972] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/11/2020] [Indexed: 12/28/2022] Open
Abstract
Timely and precise delivery of the endosomal Toll-like receptors (TLRs) to the ligand recognition site is a critical event in mounting an effective antimicrobial immune response, however, the same TLRs should maintain the delicate balance of avoiding recognition of self-nucleic acids. Such sensing is widely known to start from endosomal compartments, but recently enough evidence has accumulated supporting the idea that TLR-mediated signaling pathways originating in the cell membrane may be engaged in various cells due to differential expression and distribution of the endosomal TLRs. Therefore, the presence of endosomal TLRs on the cell surface could benefit the host responses in certain cell types and/or organs. Although not fully understood why, TLR3, TLR7, and TLR9 may occur both in the cell membrane and intracellularly, and it seems that activation of the immune response can be initiated concurrently from these two sites in the cell. Furthermore, various forms of endosomal TLRs may be transported to the cell membrane, indicating that this may be a normal process orchestrated by cysteine proteases-cathepsins. Among the endosomal TLRs, TLR3 belongs to the evolutionary distinct group and engages a different protein adapter in the signaling cascade. The differently glycosylated forms of TLR3 are transported by UNC93B1 to the cell membrane, unlike TLR7, TLR8, and TLR9. The aim of this review is to reconcile various views on the cell surface positioning of endosomal TLRs and add perspective to the implication of such receptor localization on their function, with special attention to TLR3. Cell membrane-localized TLR3, TLR7, and TLR9 may contribute to endosomal TLR-mediated inflammatory signaling pathways. Dissecting this signaling axis may serve to better understand mechanisms influencing endosomal TLR-mediated inflammation, thus determine whether it is a necessity for immune response or simply a circumstantial superfluous duplication, with other consequences on immune response.
Collapse
Affiliation(s)
- Matylda Barbara Mielcarska
- Division of Immunology, Institute of Veterinary Medicine, Department of Preclinical Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Bossowska-Nowicka
- Division of Immunology, Institute of Veterinary Medicine, Department of Preclinical Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Felix Ngosa Toka
- Division of Immunology, Institute of Veterinary Medicine, Department of Preclinical Sciences, Warsaw University of Life Sciences, Warsaw, Poland.,Center for Integrative Mammalian Research, Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
10
|
Preissner KT, Fischer S, Deindl E. Extracellular RNA as a Versatile DAMP and Alarm Signal That Influences Leukocyte Recruitment in Inflammation and Infection. Front Cell Dev Biol 2020; 8:619221. [PMID: 33392206 PMCID: PMC7775424 DOI: 10.3389/fcell.2020.619221] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Upon vascular injury, tissue damage, ischemia, or microbial infection, intracellular material such as nucleic acids and histones is liberated and comes into contact with the vessel wall and circulating blood cells. Such "Danger-associated molecular patterns" (DAMPs) may thus have an enduring influence on the inflammatory defense process that involves leukocyte recruitment and wound healing reactions. While different species of extracellular RNA (exRNA), including microRNAs and long non-coding RNAs, have been implicated to influence inflammatory processes at different levels, recent in vitro and in vivo work has demonstrated a major impact of ribosomal exRNA as a prominent DAMP on various steps of leukocyte recruitment within the innate immune response. This includes the induction of vascular hyper-permeability and vasogenic edema by exRNA via the activation of the "vascular endothelial growth factor" (VEGF) receptor-2 system, as well as the recruitment of leukocytes to the inflamed endothelium, the M1-type polarization of inflammatory macrophages, or the role of exRNA as a pro-thrombotic cofactor to promote thrombosis. Beyond sterile inflammation, exRNA also augments the docking of bacteria to host cells and the subsequent microbial invasion. Moreover, upon vessel occlusion and ischemia, the shear stress-induced release of exRNA initiates arteriogenesis (i.e., formation of natural vessel bypasses) in a multistep process that resembles leukocyte recruitment. Although exRNA can be counteracted for by natural circulating RNase1, under the conditions mentioned, only the administration of exogenous, thermostable, non-toxic RNase1 provides an effective and safe therapeutic regimen for treating the damaging activities of exRNA. It remains to be investigated whether exRNA may also influence viral infections (including COVID-19), e.g., by supporting the interaction of host cells with viral particles and their subsequent invasion. In fact, as a consequence of the viral infection cycle, massive amounts of exRNA are liberated, which can provoke further tissue damage and enhance virus dissemination. Whether the application of RNase1 in this scenario may help to limit the extent of viral infections like COVID-19 and impact on leukocyte recruitment and emigration steps in immune defense in order to limit the extent of associated cardiovascular diseases remains to be studied.
Collapse
Affiliation(s)
- Klaus T. Preissner
- Department of Biochemistry, Medical School, Justus Liebig University Giessen, Giessen, Germany
- Kerckhoff-Heart-Research-Institute, Department of Cardiology, Medical School, Justus Liebig University Giessen, Giessen, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical School, Justus Liebig University Giessen, Giessen, Germany
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, LMU Munich, Munich, Germany
| |
Collapse
|
11
|
Wu Y, Song T, Chen P, Jiang X, Wang Q, Chen Q. Prolonged siRNA expression in mammalian cells using an Epstein-Barr virus-based plasmid expression system. Biochem Biophys Res Commun 2020; 529:51-56. [PMID: 32560818 DOI: 10.1016/j.bbrc.2020.05.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 05/31/2020] [Indexed: 11/19/2022]
Abstract
RNA interference (RNAi) is a powerful tool in gene function analysis and disease treatment, especially diseases that are 'undruggable' by classical small molecules. However, the RNAi applications are limited due to some defects, such as short duration and toxic side effects. New strategies are still needed to improve RNAi applications. Previous studies have illustrated that Epstein-Barr virus nuclear antigen 1 (EBNA-1) and the origin of plasmid replication (oriP) are critical factors for EBV latent gene expression, which can keep the replication of the EBV genome as an extrachromosomal element for a relatively long time. Here we report a plasmid expression system on the base of oriP and EBNA-1, which could produce protein as well as short interfering RNAs(siRNAs) for a long time in mammalian cells. siRNA expression mediated by this system causes efficient and specific down-regulation of gene expression. Except for analyzing gene function, this study also provided a new optional and practical way for protein and/or RNAi-based therapies that require enduring effect.
Collapse
Affiliation(s)
- Yan Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Tianqiang Song
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Peipei Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xiaohong Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Qiang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Qihan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
12
|
Chaikeawkaew D, Everts V, Pavasant P. TLR3 activation modulates immunomodulatory properties of human periodontal ligament cells. J Periodontol 2020; 91:1225-1236. [PMID: 31981371 DOI: 10.1002/jper.19-0551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Toll-like receptors (TLR) are a group of receptors that play roles in the innate immune system. Human periodontal ligament cells (hPDL cells) express several TLRs, including TLR3, a nucleotide sensing receptor that recognizes double-stranded RNA from viral infection. However, its role in hPDL cells is unclear. The aim of this study was to investigate the responses of hPDL cells in terms of immunomodulation after TLR3 engagement. METHODS HPDL cells were treated with various doses of poly I:C, a TLR3 activator. The expression of interferon-gamma (IFNγ), indoleamine 2,3 dioxygenase (IDO), and human leukocyte antigen G (HLA-G) was determined. Chemical inhibitors and small interfering RNA (siRNA) were used to confirm the role of TLR3. Coculture with human peripheral blood mononuclear cells (PBMCs) with poly I:C-activated hPDL cells was performed. RESULTS Endosomal TLR3 in hPDL cells was observed by immunocytochemistry. Addition of poly I:C significantly enhanced the expression and secretion of IFNγ, IDO, and HLA-G. Knockdown of TLR3 using siRNA decreased the poly I:C-induced expression of these three molecules. Bafilomycin-A, an inhibitor of auto-phagosome and lysosome fusion, inhibited poly I:C-induced IDO and HLA-G expression, whereas cycloheximide and a TLR3-neutralizing antibody had no effect. In co-culture experiments, poly I:C-activated hPDL cells inhibited PBMCs proliferation and increased mRNA expression of forkhead box P3 (FOXP3), a transcription factor which is a marker of regulatory T cells. CONCLUSION Our findings indicated that TLR3 engagement of hPDL cells induced immunosuppressive properties of these cells. Because immunosuppressive properties play an important role in tissue healing and regeneration, activation of TLR3 may help to attenuate tissue destruction by limiting the inflammatory process and perhaps initiate the healing and regeneration process of the periodontium.
Collapse
Affiliation(s)
- Daneeya Chaikeawkaew
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Oral Biology Graduate Program, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vincent Everts
- Department of Oral Cell Biology, Academic Center of Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Prasit Pavasant
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
13
|
Valdés López JF, Velilla PA, Urcuqui-Inchima S. Chikungunya Virus and Zika Virus, Two Different Viruses Examined with a Common Aim: Role of Pattern Recognition Receptors on the Inflammatory Response. J Interferon Cytokine Res 2019; 39:507-521. [DOI: 10.1089/jir.2019.0058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
| | - Paula Andrea Velilla
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
14
|
Chernikov IV, Vlassov VV, Chernolovskaya EL. Current Development of siRNA Bioconjugates: From Research to the Clinic. Front Pharmacol 2019; 10:444. [PMID: 31105570 PMCID: PMC6498891 DOI: 10.3389/fphar.2019.00444] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Small interfering RNAs (siRNAs) acting via RNA interference mechanisms are able to recognize a homologous mRNA sequence in the cell and induce its degradation. The main problems in the development of siRNA-based drugs for therapeutic use are the low efficiency of siRNA delivery to target cells and the degradation of siRNAs by nucleases in biological fluids. Various approaches have been proposed to solve the problem of siRNA delivery in vivo (e.g., viruses, cationic lipids, polymers, nanoparticles), but all have limitations for therapeutic use. One of the most promising approaches to solve the problem of siRNA delivery to target cells is bioconjugation; i.e., the covalent connection of siRNAs with biogenic molecules (lipophilic molecules, antibodies, aptamers, ligands, peptides, or polymers). Bioconjugates are "ideal nanoparticles" since they do not need a positive charge to form complexes, are less toxic, and are less effectively recognized by components of the immune system because of their small size. This review is focused on strategies and principles for constructing siRNA bioconjugates for in vivo use.
Collapse
Affiliation(s)
- Ivan V Chernikov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Valentin V Vlassov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena L Chernolovskaya
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
15
|
Bianchi F, Pretto S, Tagliabue E, Balsari A, Sfondrini L. Exploiting poly(I:C) to induce cancer cell apoptosis. Cancer Biol Ther 2017; 18:747-756. [PMID: 28881163 PMCID: PMC5678690 DOI: 10.1080/15384047.2017.1373220] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
TLR3 belong to the Toll-like receptors family, it is mainly expressed on immune cells where it senses pathogen-associated molecular patterns and initiates innate immune response. TLR3 agonist poly(I:C) was developed to mimic pathogens infection and boost immune system activation to promote anti-cancer therapy. Accordingly, TLR agonists were included in the National Cancer Institute list of immunotherapeutic agents with the highest potential to cure cancer. Besides well known effects on immune cells, poly(I:C) was also shown, in experimental models, to directly induce apoptosis in cancer cells expressing TLR3. This review presents the current knowledge on the mechanism of poly(I:C)-induced apoptosis in cancer cells. Experimental evidences on positive or negative regulators of TLR3-mediated apoptosis induced by poly(I:C) are reported and strategies are proposed to successfully promote this event in cancer cells. Cancer cells apoptosis is an additional arm offered by poly(I:C), besides activation of immune system, for the treatment of various type of cancer. A further dissection of TLR3 signaling would contribute to greater resolution of the critical steps that impede full exploitation of the poly(I:C)-induced apoptosis. Experimental evidences about negative regulator of poly(I:C)-induced apoptotic program should be considered in combinations with TLR3 agonists in clinical trials.
Collapse
Affiliation(s)
- Francesca Bianchi
- a Fondazione IRCCS Istituto Nazionale dei Tumori , Department of Research, Epidemiologia e Medicina Molecolare , via Amadeo 42, Milan , Italy.,b Università degli Studi di Milano , Dipartimento di Scienze Biomediche per la Salute , via Mangiagalli 31, Milan , Italy
| | - Samantha Pretto
- b Università degli Studi di Milano , Dipartimento di Scienze Biomediche per la Salute , via Mangiagalli 31, Milan , Italy
| | - Elda Tagliabue
- a Fondazione IRCCS Istituto Nazionale dei Tumori , Department of Research, Epidemiologia e Medicina Molecolare , via Amadeo 42, Milan , Italy
| | - Andrea Balsari
- a Fondazione IRCCS Istituto Nazionale dei Tumori , Department of Research, Epidemiologia e Medicina Molecolare , via Amadeo 42, Milan , Italy.,b Università degli Studi di Milano , Dipartimento di Scienze Biomediche per la Salute , via Mangiagalli 31, Milan , Italy
| | - Lucia Sfondrini
- b Università degli Studi di Milano , Dipartimento di Scienze Biomediche per la Salute , via Mangiagalli 31, Milan , Italy
| |
Collapse
|