1
|
Dong H, Sun Y, Nie L, Cui A, Zhao P, Leung WK, Wang Q. Metabolic memory: mechanisms and diseases. Signal Transduct Target Ther 2024; 9:38. [PMID: 38413567 PMCID: PMC10899265 DOI: 10.1038/s41392-024-01755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
Metabolic diseases and their complications impose health and economic burdens worldwide. Evidence from past experimental studies and clinical trials suggests our body may have the ability to remember the past metabolic environment, such as hyperglycemia or hyperlipidemia, thus leading to chronic inflammatory disorders and other diseases even after the elimination of these metabolic environments. The long-term effects of that aberrant metabolism on the body have been summarized as metabolic memory and are found to assume a crucial role in states of health and disease. Multiple molecular mechanisms collectively participate in metabolic memory management, resulting in different cellular alterations as well as tissue and organ dysfunctions, culminating in disease progression and even affecting offspring. The elucidation and expansion of the concept of metabolic memory provides more comprehensive insight into pathogenic mechanisms underlying metabolic diseases and complications and promises to be a new target in disease detection and management. Here, we retrace the history of relevant research on metabolic memory and summarize its salient characteristics. We provide a detailed discussion of the mechanisms by which metabolic memory may be involved in disease development at molecular, cellular, and organ levels, with emphasis on the impact of epigenetic modulations. Finally, we present some of the pivotal findings arguing in favor of targeting metabolic memory to develop therapeutic strategies for metabolic diseases and provide the latest reflections on the consequences of metabolic memory as well as their implications for human health and diseases.
Collapse
Affiliation(s)
- Hao Dong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuezhang Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lulingxiao Nie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Aimin Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pengfei Zhao
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Wai Keung Leung
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Cui Y, Zhang Y, Liu Y, Zhou Z, Zhu L, Zhou CX. EN1 promotes lung metastasis of salivary adenoid cystic carcinoma by regulating the PI3K-AKT pathway and epithelial-mesenchymal transition. Cancer Cell Int 2024; 24:51. [PMID: 38291456 PMCID: PMC10829235 DOI: 10.1186/s12935-024-03230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Engrailed homeobox 1 (EN1) is a candidate oncogene that is epigenetically modified in salivary adenoid cystic carcinoma (SACC). We investigated the expression of EN1 in SACC tissues and cells, EN1 promoter methylation, and the role of EN1 in tumour progression in SACC. METHODS Thirty-five SACC samples were screened for key transcription factors that affect tumour progression. In vitro and in vivo assays were performed to determine the viability, tumorigenicity, and metastatic ability of SACC cells with modulated EN1 expression. Quantitative methylation-specific polymerase chain reaction analysis was performed on SACC samples. RESULTS EN1 was identified as a transcription factor that was highly overexpressed in SACC tissues, regardless of clinical stage and histology subtype, and its level of expression correlated with distant metastasis. EN1 promoted cell invasion and migration through epithelial-mesenchymal transition in vitro and enhanced SACC metastasis to the lung in vivo. RNA-seq combined with in vitro assays indicated that EN1 might play an oncogenic role in SACC through the PI3K-AKT pathway. EN1 mRNA levels were negatively correlated with promoter hypermethylation, and inhibition of DNA methylation by 5-aza-dC increased EN1 expression. CONCLUSIONS The transcription factor EN1 is overexpressed in SACC under methylation regulation and plays a pivotal role in SACC progression through the PI3K-AKT pathway. These results suggest that EN1 may be a diagnostic biomarker and a potential therapeutic target for SACC.
Collapse
Affiliation(s)
- Yajuan Cui
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Disease & National Engineering Research Center of Oral Biomaterials and Digital Medicine Devices, 22 South Avenue Zhongguancun, Haidian District, Beijing, 100081, PR China
| | - Ye Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Disease & National Engineering Research Center of Oral Biomaterials and Digital Medicine Devices, 22 South Avenue Zhongguancun, Haidian District, Beijing, 100081, PR China
| | - Yuping Liu
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Disease & National Engineering Research Center of Oral Biomaterials and Digital Medicine Devices, 22 South Avenue Zhongguancun, Haidian District, Beijing, 100081, PR China
| | - Zheng Zhou
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Disease & National Engineering Research Center of Oral Biomaterials and Digital Medicine Devices, 22 South Avenue Zhongguancun, Haidian District, Beijing, 100081, PR China
| | - Lijing Zhu
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Disease & National Engineering Research Center of Oral Biomaterials and Digital Medicine Devices, 22 South Avenue Zhongguancun, Haidian District, Beijing, 100081, PR China
| | - Chuan-Xiang Zhou
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Disease & National Engineering Research Center of Oral Biomaterials and Digital Medicine Devices, 22 South Avenue Zhongguancun, Haidian District, Beijing, 100081, PR China.
| |
Collapse
|
3
|
Tukek T, Pehlivan S, Medetalibeyoglu A, Serin I, Oyacı Y, Arıcı H, Senkal N, Pehlivan M, Isoglu-Alkac U, Kose M. The suppressor of cytokine signaling-1 ( SOCS1) gene polymorphism and promoter methylation correlate with the course of COVID-19. Pathog Glob Health 2023; 117:392-400. [PMID: 36448222 PMCID: PMC10177741 DOI: 10.1080/20477724.2022.2151861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The suppressor of the cytokine signaling-1 (SOCS1) gene is a short sequence located on chromosome 16 that functions to induce an appropriate immune response and is an essential physiological regulator of interferon (IFN) signaling. In addition to comparing the global DNA and SOCS1 gene promoter methylation status between our patients with coronavirus disease 2019 (COVID-19) and healthy controls, this study demonstrates the effect of the SOCS1 rs33989964 polymorphism on patients with COVID-19. The study group included 139 patients diagnosed with COVID-19 in our hospital's clinics between June and December 2020, and the control group included 78 healthy individuals. After comparing the initial gene polymorphisms of the patients with the healthy control group, three separate clinical subgroups were formed. The gene polymorphism distribution and the methylation status of SOCS1 were examined in these clinical subgroups. Hypomethylation of the SOCS1 gene was observed in the COVID-19 patient group compared to the healthy control group (p = 0.001). Between the patients divided into two separate clinical subgroups, those with severe and mild infections, the Del/Del genotype of the SOCS1 gene was more common in patients with severe infection than in patients with mild infection (p = 0.018). Patients with the CA/CA and CA/Del genotypes were 0.201 times more likely to have a severe infection (95% CI: 0.057-0.716, p = 0.007). Having a non-Del/Del genotype was a protective factor against severe infection. The effect of the SOCS1 rs33989964 polymorphism and methylation status of the SOCS1 gene throughout the COVID-19 pandemic could be significant contributions to the literature.
Collapse
Affiliation(s)
- Tufan Tukek
- Department of Internal Medicine, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sacide Pehlivan
- Department of Medical Biology, Faculty of Medicine, Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Alpay Medetalibeyoglu
- Department of Internal Medicine, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Istemi Serin
- Department of Hematology, Istanbul Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Yasemin Oyacı
- Department of Medical Biology, Faculty of Medicine, Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Huzeyfe Arıcı
- Department of Internal Medicine, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Naci Senkal
- Department of Internal Medicine, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mustafa Pehlivan
- Department of Hematology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ummuhan Isoglu-Alkac
- Department of Physiology, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Murat Kose
- Department of Internal Medicine, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
4
|
de Lima JD, de Paula AGP, Yuasa BS, de Souza Smanioto CC, da Cruz Silva MC, Dos Santos PI, Prado KB, Winter Boldt AB, Braga TT. Genetic and Epigenetic Regulation of the Innate Immune Response to Gout. Immunol Invest 2023; 52:364-397. [PMID: 36745138 DOI: 10.1080/08820139.2023.2168554] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gout is a disease caused by uric acid (UA) accumulation in the joints, causing inflammation. Two UA forms - monosodium urate (MSU) and soluble uric acid (sUA) have been shown to interact physically with inflammasomes, especially with the nod-like receptor (NLR) family pyrin domain containing 3 (NLRP3), albeit the role of the immune response to UA is poorly understood, given that asymptomatic hyperuricemia does also exist. Macrophage phagocytosis of UA activate NLRP3, lead to cytokines release, and ultimately, lead to chemoattract neutrophils and lymphocytes to the gout flare joint spot. Genetic variants of inflammasome genes and of genes encoding their molecular partners may influence hyperuricemia and gout susceptibility, while also influencing other comorbidities such as metabolic syndrome and cardiovascular diseases. In this review, we summarize the inflammatory responses in acute and chronic gout, specifically focusing on innate immune cell mechanisms and genetic and epigenetic characteristics of participating molecules. Unprecedently, a novel UA binding protein - the neuronal apoptosis inhibitor protein (NAIP) - is suggested as responsible for the asymptomatic hyperuricemia paradox.Abbreviation: β2-integrins: leukocyte-specific adhesion molecules; ABCG2: ATP-binding cassete family/breast cancer-resistant protein; ACR: American college of rheumatology; AIM2: absent in melanoma 2, type of pattern recognition receptor; ALPK1: alpha-protein kinase 1; ANGPTL2: angiopoietin-like protein 2; ASC: apoptosis-associated speck-like protein; BIR: baculovirus inhibitor of apoptosis protein repeat; BIRC1: baculovirus IAP repeat-containing protein 1; BIRC2: baculoviral IAP repeat-containing protein 2; C5a: complement anaphylatoxin; cAMP: cyclic adenosine monophosphate; CARD: caspase activation and recruitment domains; CARD8: caspase recruitment domain-containing protein 8; CASP1: caspase 1; CCL3: chemokine (C-C motif) ligand 3; CD14: cluster of differentiation 14; CD44: cluster of differentiation 44; Cg05102552: DNA-methylation site, usually cytosine followed by guanine nucleotides; contains arbitrary identification code; CIDEC: cell death-inducing DNA fragmentation factor-like effector family; CKD: chronic kidney disease; CNV: copy number variation; CPT1A: carnitine palmitoyl transferase - type 1a; CXCL1: chemokine (CXC motif) ligand 1; DAMPs: damage associated molecular patterns; DC: dendritic cells; DNMT(1): maintenance DNA methyltransferase; eQTL: expression quantitative trait loci; ERK1: extracellular signal-regulated kinase 1; ERK2: extracellular signal-regulated kinase 2; EULAR: European league against rheumatism; GMCSF: granulocyte-macrophage colony-stimulating factor; GWAS: global wide association studies; H3K27me3: tri-methylation at the 27th lysine residue of the histone h3 protein; H3K4me1: mono-methylation at the 4th lysine residue of the histone h3 protein; H3K4me3: tri-methylation at the 4th lysine residue of the histone h3 protein; HOTAIR: human gene located between hoxc11 and hoxc12 on chromosome 12; IκBα: cytoplasmatic protein/Nf-κb transcription inhibitor; IAP: inhibitory apoptosis protein; IFNγ: interferon gamma; IL-1β: interleukin 1 beta; IL-12: interleukin 12; IL-17: interleukin 17; IL18: interleukin 18; IL1R1: interleukin-1 receptor; IL-1Ra: interleukin-1 receptor antagonist; IL-22: interleukin 22; IL-23: interleukin 23; IL23R: interleukin 23 receptor; IL-33: interleukin 33; IL-6: interleukin 6; IMP: inosine monophosphate; INSIG1: insulin-induced gene 1; JNK1: c-jun n-terminal kinase 1; lncRNA: long non-coding ribonucleic acid; LRR: leucine-rich repeats; miR: mature non-coding microRNAs measuring from 20 to 24 nucleotides, animal origin; miR-1: miR followed by arbitrary identification code; miR-145: miR followed by arbitrary identification code; miR-146a: miR followed by arbitrary identification code, "a" stands for mir family; "a" family presents similar mir sequence to "b" family, but different precursors; miR-20b: miR followed by arbitrary identification code; "b" stands for mir family; "b" family presents similar mir sequence to "a" family, but different precursors; miR-221: miR - followed by arbitrary identification code; miR-221-5p: miR followed by arbitrary identification code; "5p" indicates different mature miRNAs generated from the 5' arm of the pre-miRNA hairpin; miR-223: miR followed by arbitrary identification code; miR-223-3p: mir followed by arbitrary identification code; "3p" indicates different mature miRNAs generated from the 3' arm of the pre-miRNA hairpin; miR-22-3p: miR followed by arbitrary identification code, "3p" indicates different mature miRNAs generated from the 3' arm of the pre-miRNA hairpin; MLKL: mixed lineage kinase domain-like pseudo kinase; MM2P: inductor of m2-macrophage polarization; MSU: monosodium urate; mTOR: mammalian target of rapamycin; MyD88: myeloid differentiation primary response 88; n-3-PUFAs: n-3-polyunsaturated fatty-acids; NACHT: acronym for NAIP (neuronal apoptosis inhibitor protein), C2TA (MHC class 2 transcription activator), HET-E (incompatibility locus protein from podospora anserina) and TP1 (telomerase-associated protein); NAIP: neuronal apoptosis inhibitory protein (human); Naip1: neuronal apoptosis inhibitory protein type 1 (murine); Naip5: neuronal apoptosis inhibitory protein type 5 (murine); Naip6: neuronal apoptosis inhibitory protein type 6 (murine); NBD: nucleotide-binding domain; Nek7: smallest NIMA-related kinase; NET: neutrophil extracellular traps; Nf-κB: nuclear factor kappa-light-chain-enhancer of activated b cells; NFIL3: nuclear-factor, interleukin 3 regulated protein; NIIMA: network of immunity in infection, malignancy, and autoimmunity; NLR: nod-like receptor; NLRA: nod-like receptor NLRA containing acidic domain; NLRB: nod-like receptor NLRA containing BIR domain; NLRC: nod-like receptor NLRA containing CARD domain; NLRC4: nod-like receptor family CARD domain containing 4; NLRP: nod-like receptor NLRA containing PYD domain; NLRP1: nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 1; NLRP12: nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 12; NLRP3: nod-like receptor family pyrin domain containing 3; NOD2: nucleotide-binding oligomerization domain; NRBP1: nuclear receptor-binding protein; Nrf2: nuclear factor erythroid 2-related factor 2; OR: odds ratio; P2X: group of membrane ion channels activated by the binding of extracellular; P2X7: p2x purinoceptor 7 gene; p38: member of the mitogen-activated protein kinase family; PAMPs: pathogen associated molecular patters; PBMC: peripheral blood mononuclear cells; PGGT1B: geranylgeranyl transferase type-1 subunit beta; PHGDH: phosphoglycerate dehydrogenase; PI3-K: phospho-inositol; PPARγ: peroxisome proliferator-activated receptor gamma; PPARGC1B: peroxisome proliferative activated receptor, gamma, coactivator 1 beta; PR3: proteinase 3 antigen; Pro-CASP1: inactive precursor of caspase 1; Pro-IL1β: inactive precursor of interleukin 1 beta; PRR: pattern recognition receptors; PYD: pyrin domain; RAPTOR: regulatory associated protein of mTOR complex 1; RAS: renin-angiotensin system; REDD1: regulated in DNA damage and development 1; ROS: reactive oxygen species; rs000*G: single nuclear polymorphism, "*G" is related to snp where replaced nucleotide is guanine, usually preceded by an id number; SLC2A9: solute carrier family 2, member 9; SLC7A11: solute carrier family 7, member 11; SMA: smooth muscular atrophy; Smac: second mitochondrial-derived activator of caspases; SNP: single nuclear polymorphism; Sp3: specificity protein 3; ST2: serum stimulation-2; STK11: serine/threonine kinase 11; sUA: soluble uric acid; Syk: spleen tyrosine kinase; TAK1: transforming growth factor beta activated kinase; Th1: type 1 helper T cells; Th17: type 17 helper T cells; Th2: type 2 helper T cells; Th22: type 22 helper T cells; TLR: tool-like receptor; TLR2: toll-like receptor 2; TLR4: toll-like receptor 4; TNFα: tumor necrosis factor alpha; TNFR1: tumor necrosis factor receptor 1; TNFR2: tumor necrosis factor receptor 2; UA: uric acid; UBAP1: ubiquitin associated protein; ULT: urate-lowering therapy; URAT1: urate transporter 1; VDAC1: voltage-dependent anion-selective channel 1.
Collapse
Affiliation(s)
- Jordana Dinorá de Lima
- Microbiology, Parasitology and Pathology Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
| | | | - Bruna Sadae Yuasa
- Microbiology, Parasitology and Pathology Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
| | | | - Maria Clara da Cruz Silva
- Microbiology, Parasitology and Pathology Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
| | | | - Karin Braun Prado
- Genetics Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
| | - Angelica Beate Winter Boldt
- Program of Internal Medicine, Universidade Federal do Parana (UFPR), Curitiba, Brazil
- Genetics Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
| | - Tárcio Teodoro Braga
- Microbiology, Parasitology and Pathology Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
- Biosciences and Biotechnology Program, Instituto Carlos Chagas (ICC), Fiocruz-Parana, Brazil
| |
Collapse
|
5
|
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, Zheng MH, Li F, Yuan LQ, Li ZH. Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Signal Transduct Target Ther 2023; 8:98. [PMID: 36864020 PMCID: PMC9981733 DOI: 10.1038/s41392-023-01333-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/02/2023] [Accepted: 01/18/2023] [Indexed: 03/04/2023] Open
Abstract
Epigenetics regulates gene expression and has been confirmed to play a critical role in a variety of metabolic diseases, such as diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), osteoporosis, gout, hyperthyroidism, hypothyroidism and others. The term 'epigenetics' was firstly proposed in 1942 and with the development of technologies, the exploration of epigenetics has made great progresses. There are four main epigenetic mechanisms, including DNA methylation, histone modification, chromatin remodelling, and noncoding RNA (ncRNA), which exert different effects on metabolic diseases. Genetic and non-genetic factors, including ageing, diet, and exercise, interact with epigenetics and jointly affect the formation of a phenotype. Understanding epigenetics could be applied to diagnosing and treating metabolic diseases in the clinic, including epigenetic biomarkers, epigenetic drugs, and epigenetic editing. In this review, we introduce the brief history of epigenetics as well as the milestone events since the proposal of the term 'epigenetics'. Moreover, we summarise the research methods of epigenetics and introduce four main general mechanisms of epigenetic modulation. Furthermore, we summarise epigenetic mechanisms in metabolic diseases and introduce the interaction between epigenetics and genetic or non-genetic factors. Finally, we introduce the clinical trials and applications of epigenetics in metabolic diseases.
Collapse
Affiliation(s)
- Yan-Lin Wu
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zheng-Jun Lin
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Fuxingzi Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Zhi-Hong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
6
|
Wang W, Li W, Duan H, Xu C, Tian X, Li S, Tan Q, Zhang D. Mediation by DNA methylation on the association of BMI and serum uric acid in Chinese monozygotic twins. Gene 2023; 850:146957. [PMID: 36243213 DOI: 10.1016/j.gene.2022.146957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 02/13/2023]
Abstract
Obesity is an established risk factor for hyperuricemia, but the mechanisms are only partially understood. We examined whether BMI-related DNA methylation (DNAm) variation would mediate the association of BMI with serum uric acid (SUA). We first conducted an epigenome-wide association analysis (EWAS) in 64 monozygotic twin pairs to detect BMI-related DNAm variation and then evaluated the mediated effect of DNAm using mediation analysis. Ontology enrichments analysis was performed for CpGs using GREAT tool. The genes where the candidate CpG mediators mapped were validated using gene expression data. BMI was positively associated with log10 transformed SUA level (β = 0.01, P < 0.001). The association between BMI and DNAm of 138 CpGs reached P < 1 × 10-4 level. Twenty BMI-related differentially methylated regions within MAP2K2, POU4F2, AGAP2, MRGPRE, ADM5, and NKX1-1 were found. Of the 138 CpGs, 4 within VENTX (involved in cellular responses to stress pathway), SMOC2 (enable calcium ion binding), and FSCN2 (a member of fascin protein family) mediated the association between BMI and SUA, with a mediating effect of 0.002-μmol/L lower log10 transformed SUA levels and a proportion of 18.89 %-24.92 % negative mediating effect. BMI × DNAm interactions on SUA were observed for 2 CpGs within VENTX. The gene expression level of VENTX was also negatively associated with SUA level. BMI-related DNAm variation may partially mediate the association of BMI with SUA.
Collapse
Affiliation(s)
- Weijing Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, Shandong, China.
| | - Weilong Li
- Population Research Unit, Faculty of Social Sciences, University of Helsinki, Finland.
| | - Haiping Duan
- Qingdao Municipal Center for Disease Control and Prevention/Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Chunsheng Xu
- Qingdao Municipal Center for Disease Control and Prevention/Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and Prevention/Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Shuxia Li
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Qihua Tan
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
7
|
Tuncel FC, Serin I, Pehlivan S, Oyaci Y, Pehlivan M. Epigenetic and genetic investigation of SOCS-1 gene in patients with multiple myeloma. Blood Res 2022; 57:250-255. [PMID: 36289192 PMCID: PMC9812727 DOI: 10.5045/br.2022.2022097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/17/2022] [Accepted: 09/08/2022] [Indexed: 02/01/2023] Open
Abstract
Background The suppressor of cytokine signaling-1 (SOCS-1) functions to induce an appropriate immune response and is an essential physiological regulator of interferon signaling. DNA methylation involves adding a methyl group to the carbon 5 position of cytosine. Besides comparing SOCS-1 gene methylation status between patients with multiple myeloma (MM) and healthy controls, this study also aimed to demonstrate the effect of SOCS-1 gene distribution and the effect of methylation of SOCS-1 on progression-free survival (PFS) and overall survival (OS). Methods This study included 120 patients diagnosed with MM between January 2018 and 2020 and 80 healthy individuals. The distribution of the SOCS-1 genotypes was statistically compared between MM patients and healthy controls. Additionally, the statistically significant effects of these genotypes on survival were examined. Results The CA/CA genotype of SOCS-1 was significantly higher in healthy controls (P=0.001), while the Del/Del genotype was significantly higher in patients with MM (P=0.034). The percent methylated reference (PMR) value of the SOCS-1 gene was significantly higher in the healthy controls (median, 43.48; range, 2.76‒247.75; P=0.001). Patients with a PMR value of ≥43.48 were 3.125 times more likely to develop progression than those with a PMR value of <43.48. Conclusion The effects of SOCS-1 polymorphisms on the pathogenesis of.
Collapse
Affiliation(s)
- Fatıma Ceren Tuncel
- Department of Medical Biology, Faculty of Medicine, Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Istemi Serin
- Department of Hematology, Istanbul Training and Research Hospital, University of Health Sciences, Istanbul, Turkey,Correspondence to Istemi Serin, M.D., Department of Hematology, Istanbul Training and Research Hospital, University of Health Sciences, Org. Nafiz Gurman Cad. Fatih 34098, Istanbul, Turkey, E-mail:
| | - Sacide Pehlivan
- Department of Medical Biology, Faculty of Medicine, Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Yasemin Oyaci
- Department of Medical Biology, Faculty of Medicine, Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Mustafa Pehlivan
- Department of Hematology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
8
|
Huang CM, Chen YC, Lai IL, Chen HD, Huang PH, Tu SJ, Lee YT, Yen JC, Lin CL, Liu TY, Chang JG. Exploring RNA modifications, editing, and splicing changes in hyperuricemia and gout. Front Med (Lausanne) 2022; 9:889464. [PMID: 36148448 PMCID: PMC9487523 DOI: 10.3389/fmed.2022.889464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Hyperuricemia and gout are two of the most common metabolic disorders worldwide; their incidence is increasing with changes in lifestyle, and they are correlated with many diseases, including renal and cardiovascular diseases. The majority of studies on hyperuricemia and gout have focused on the discovery of the associated genes and their functions and on the roles of monocytes and neutrophils in the development of gout. Virtually no studies investigating the epigenomics of gout disease or exploring the clinical significance of such research have been conducted. In this study, we observed that the expression of enzymes involved in RNA modifications or RNA editing was affected in uric acid (UA)- or monosodium urate (MSU)-treated cell lines. RNA alternative splicing and splicing factors were also affected by UA or MSU treatment. We used transcriptome sequencing to analyze genome-wide RNA splicing and RNA editing and found significant changes in RNA splicing and RNA editing in MSU- or UA-treated THP-1 and HEK293 cells. We further found significant changes of RNA modifications, editing, and splicing in patients with gout. The data indicate that RNA modifications, editing, and splicing play roles in gout. The findings of this study may help to understand the mechanism of RNA splicing and modifications in gout, facilitating the development of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Chung-Ming Huang
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Chia Chen
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - I-Lu Lai
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Hong-Da Chen
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Po-Hao Huang
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Siang-Jyun Tu
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ya-Ting Lee
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Ju-Chen Yen
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Li Lin
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Ting-Yuan Liu
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jan-Gowth Chang
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
- *Correspondence: Jan-Gowth Chang,
| |
Collapse
|
9
|
Copur S, Demiray A, Kanbay M. Uric acid in metabolic syndrome: Does uric acid have a definitive role? Eur J Intern Med 2022; 103:4-12. [PMID: 35508444 DOI: 10.1016/j.ejim.2022.04.022] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 12/25/2022]
Abstract
Increased serum uric acid (SUA) levels are commonly seen in patients with metabolic syndrome and are widely accepted as risk factors for hypertension, gout, non-alcoholic fatty liver disease, chronic kidney disease (CKD), and cardiovascular diseases. Although some ambiguity for the exact role of uric acid (UA) in these diseases is still present, several pathophysiological mechanisms have been identified such as increased oxidative stress, inflammation, and apoptosis. Accumulating evidence in genomics enlightens genetic variabilities and some epigenetic changes that can contribute to hyperuricemia. Here we discuss the role of UA within metabolism and the consequences of asymptomatic hyperuricemia while providing newfound evidence for the associations between UA and gut microbiota and vitamin D. Increased SUA levels and beneficial effects of lowering SUA levels need to be elucidated more to understand its complicated function within different metabolic pathways and set optimal target levels for SUA for reducing risks for metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Atalay Demiray
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
10
|
Zhang M, Li J, Lin W, Qi L, Yao C, Zheng Z, Chen C, Duan S, Qi Y. EPAS1 Promoter Hypermethylation is a Diagnostic and Prognostic Biomarker for Non-Small Cell Lung Cancer. Genet Test Mol Biomarkers 2022; 26:360-374. [PMID: 35920832 DOI: 10.1089/gtmb.2021.0305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: The importance of promoter methylation in non-small cell lung cancers (NSCLCs) remains to be understood. Thus, we aimed to determine the diagnostic and prognostic value of methylation of the endothelial Per-Arnt-Sim (PAS) domain-containing protein 1 (EPAS1) promoter in NSCLC. Materials and Methods: EPAS1 promoter methylation levels were quantitated by a methylation-specific polymerase chain reaction. Furthermore, we evaluated the expression, promoter methylation, prognostic value, and impact on immune cell infiltration of EPAS1 by analyzing TCGA database or by web-based bioinformatics tools such as GEPIA, UALCAN, and MethSurv. Results: Our results demonstrated that promoter methylation of EPAS1 downregulated its expression in NSCLC tissues. Additionally, an area under the curve value of 0.772 indicated that methylation of the EPAS1 promoter is a potential diagnostic marker for NSCLC. Kaplan-Meier analysis demonstrated that high methylation levels of CpG sites in the EPAS1 promoter were indicative of worse overall survival (OS). Furthermore, EPAS1 expression levels were strongly correlated with infiltration of several types of immune cells, for instance, γδ T cells, T follicular helper cells, CD8+ T cells, and CD4+ T cells. Conclusions: Collectively, our findings demonstrated that methylation of the EPAS1 promoter is a promising prognostic biomarker for NSCLC and EPAS1 potentially plays an important role in immune cell infiltration in NSCLC.
Collapse
Affiliation(s)
- Mingfang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Pathology, Fujian Provincial Maternity Hospital, Fuzhou, China
| | - Weibin Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lin Qi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Caiyun Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhonghua Zheng
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Chujia Chen
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Shiwei Duan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Yuanlin Qi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Ying Y, Li X, Chen Y. Hypomethylation of the opioid receptor delta 1 gene combined with high opioid receptor delta 1 protein levels indicates increased risk of gout. J Clin Lab Anal 2022; 36:e24634. [PMID: 35908776 PMCID: PMC9459328 DOI: 10.1002/jcla.24634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
Background The purpose of this study was to identify biomarkers for the diagnosis of gout in Chinese Han males using methylation microarray profiling. Methods We screened for differentially methylated genes (DMGs) in gout using a methylation microarray and analyzed the functions of the DMGs using gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. We verified gene methylation levels by pyrosequencing and protein levels by enzyme‐linked immunosorbent assays (ELISAs). Statistical analyses were performed using SPSS. Two‐sided p values <0.05 were deemed to be statistically significant for all analyses. Results We identified 20,426 significant differential methylation sites (5719 high‐methylation sites and 14,707 low‐methylation sites). Bioinformatics analysis showed that the DMGs were mainly involved in 43 biological functions, 13 cellular components, 18 molecular functions, and 35 KEGG pathways. We selected opioid receptor delta 1 (OPRD1) for verification of methylation levels between 50 gout patients and 50 controls. The methylation levels of OPRD1 (Chr1:29,139,121) were significantly lower in the gout group (p < 0.05), while OPRD1 protein levels were significantly higher in the gout group (p < 0.05). In addition, the AUC of the combination of OPRD1 (Chr1:29,139,121) methylation and OPRD1 protein levels was 0.796 (0.710, 0.883) with a high sensitivity of 82% and a specificity of 68% (p < 0.001). Conclusions The combination of OPRD1 (Chr1:29,139,121) hypomethylation and high levels of OPRD1 protein is a potential biomarker for gout diagnosis.
Collapse
Affiliation(s)
- Ying Ying
- Department of Rheumatology, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo, Zhejiang, China
| | - Xiaoke Li
- Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Yong Chen
- Department of Rheumatology, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo, Zhejiang, China
| |
Collapse
|
12
|
Aytac HM, Pehlivan S, Pehlivan M, Oyaci Y. Quantitative detection of methylated SOCS-1 in schizophrenia and bipolar disorder considering SOCS-1 -1478CA/del polymorphism and clinical parameters. Ir J Med Sci 2022; 192:775-783. [PMID: 35593996 DOI: 10.1007/s11845-022-03030-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/12/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND We aimed to investigate the quantitative detection of methylated suppressor of cytokine signaling-1 (SOCS-1) in schizophrenia (SCZ) and bipolar disorder (BD), considering SOCS-1 -1478CA/del polymorphism and clinical parameters. METHODS Our research is a case-control study in which 114 patients with SCZ, 86 patients with BD, and 80 volunteers as a healthy group participated. Bisulfite-converted DNA samples were analyzed using the real-time quantitative methylation-specific PCR (qMS-PCR) method to measure the methylation level of the SOCS-1 gene. In addition, SOCS-1 -1478CA/del gene polymorphism was analyzed with the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). RESULTS When the SOCS-1 promoter methylation levels of SCZ and BD patients were compared with the control group, the methylation levels of SCZ and BD were significantly lower than the control group. An earlier age of illness onset was significantly related to the SOCS-1 promoter hypermethylation in DNA samples of SCZ patients. Again, SOCS-1 promoter hypermethylation was significantly associated with the higher Young Mania Rating Scale (YMRS) score in BD patients. While the SOCS-1 CA/CA genotype frequency was significantly higher in the control group than in the BD group, the del/del genotype was significantly related to a higher frequency of rapid cycling and a lower frequency of family history in the BD patient group. CONCLUSION In summary, the methylated SOCS-1 quantity in DNA samples of SCZ and BD patients were significantly lower than in control samples. Whereas the SOCS-1 -1478CA/del polymorphism was not related to SCZ, it may be associated with the BD.
Collapse
Affiliation(s)
- Hasan Mervan Aytac
- Department of Psychiatry, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey.
| | - Sacide Pehlivan
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mustafa Pehlivan
- Department of Hematology, Gaziantep University, Faculty of Medicine, Gaziantep, Turkey
| | - Yasemin Oyaci
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
13
|
Luo JF, Yao YD, Cheng CS, Lio CK, Liu JX, Huang YF, He F, Xie Y, Liu L, Liu ZQ, Zhou H. Sinomenine increases the methylation level at specific GCG site in mPGES-1 promoter to facilitate its specific inhibitory effect on mPGES-1. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194813. [PMID: 35417776 DOI: 10.1016/j.bbagrm.2022.194813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/08/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
Prostaglandin E2 (PGE2) in cancer and inflammatory diseases is a key mediator of disease progression. Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used to inhibit the expression of PGE2 by depressing cyclooxygenase (COX) in inflammatory treatments. However, the inhibition to COXs may cause serious side effects. Thus, it is urgent to develop new anti-inflammatory drugs aiming new targets to inhibit PGE2 production. Microsomal prostaglandin E synthase 1 (mPGES-1) catalyzes the final step of PGE2 biosynthesis. Therefore, the selective inhibition of mPGES-1 has become a promising strategy in the treatments of cancer and inflammatory diseases. Our previous studies confirmed that sinomenine (SIN) is a specific mPGES-1 inhibitor. However, the exact mechanism by which SIN inhibits mPGES-1 remains unknown. This study aimed to explain the regulation effect of SIN to mPGES-1 gene expression by its DNA methylation induction effect. We found that the demethylating agent 5-azacytidine (5-AzaC) reversed the inhibitory effect of SIN to mPGES-1. Besides, SIN selectively increased the methylation level of the promoter region in the mPGES-1 gene while the pretreatment of 5-AzaC suppressed this effect. The results also shows that pretreatment with SIN increased the methylation level of specific GCG sites in the promoter region of mPGES-1. This specific methylation site may become a new biomarker for predicting and diagnosing RA and cancer with high expression of mPGES-1. Also, our research provides new ideas and solutions for clinical diagnosis and treatment of diseases related to mPGES-1 and for targeted methylation strategy in drug development.
Collapse
Affiliation(s)
- Jin-Fang Luo
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao, PR China; Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guian District, Guiyang, Guizhou, PR China
| | - Yun-Da Yao
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao, PR China
| | - Chun-Song Cheng
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao, PR China; Key Laboratory of Plant Ex-situ Conservation and Research Center of Resource Plant, Lushan Botanical Garden, Chinese Academy of Science, Jiujiang City, Jiangxi Province, PR China
| | - Chon-Kit Lio
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao, PR China
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, PR China
| | - Yu-Feng Huang
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao, PR China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong, PR China
| | - Fan He
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao, PR China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong, PR China
| | - Ying Xie
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao, PR China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong, PR China.
| | - Liang Liu
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao, PR China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong, PR China.
| | - Zhong-Qiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China.
| | - Hua Zhou
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao, PR China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China.
| |
Collapse
|
14
|
Zhang D, Zhang D, Wang C, Zhang R, Li Q, Xiong Y. Mechanism of DNA methylation-mediated downregulation of O6-Methylguanine-DNA methyltransferase in cartilage injury of Kashin-Beck Disease. Rheumatology (Oxford) 2021; 61:3471-3480. [PMID: 34888649 DOI: 10.1093/rheumatology/keab913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/29/2021] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Kashin-Beck Disease (KBD) is an endemic osteoarthropathy, in which excessive apoptosis of chondrocytes occurs. O6-methylguanine-DNA methyltransferase (MGMT), a DNA damage repair gene, plays an important role in apoptosis but the mechanism is unclear in KBD cartilage injury. This study was to investigate the expression and promoter methylation of MGMT in KBD patients and its role in DNA damage and apoptosis of chondrocytes. METHODS MGMT mRNA and protein level were detected by quantitative real-time PCR and immunohistochemistry. Demethylation of MGMT was carried out using 5-Aza-2'-deoxycytidine, and the methylation level of MGMT promoter was measured by quantitative methylation specific PCR. Next, shRNA was used to knockdown the expression of MGMT. Cell viability, apoptosis and DNA damage were determined by MTT assay, flow cytometry, Hoechst 33342 staining and alkaline comet assay following T-2 toxin and selenium treatment. RESULTS MGMT protein expression and mRNA levels were decreased (p = 0.02, p = 0.007) and promoter methylation was increased (p = 0.008) in KBD patients. Meanwhile, MGMT level was upregulated by 5-Aza-2'-deoxycytidine in chondrocytes (p = 0.0002). DNA damage and apoptosis rates were increased in MGMT-silenced chondrocytes (all p < 0.0001). Furthermore, DNA damage and apoptosis were increseaed in chondrocytes treated with T-2 toxin (all p < 0.0001), but were decreased after selenium treatment (p < 0.0001, p = 0.01). Decreased mRNA level and increased methylation of MGMT were found in T-2 toxin group (p = 0.005, p = 0.002), while selenium reversed it (p = 0.02, p = 0.004). CONCLUSIONS MGMT might play a crucial part in the pathogenesis of KBD cartilage injury, which providing a therapeutic target for KBD.
Collapse
Affiliation(s)
- Dandan Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, China
| | - Di Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, China
| | - Chen Wang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, China
| | - Rongqiang Zhang
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Qiang Li
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, China
| | - Yongmin Xiong
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, China
| |
Collapse
|
15
|
Arumugam T, Ramphal U, Adimulam T, Chinniah R, Ramsuran V. Deciphering DNA Methylation in HIV Infection. Front Immunol 2021; 12:795121. [PMID: 34925380 PMCID: PMC8674454 DOI: 10.3389/fimmu.2021.795121] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
With approximately 38 million people living with HIV/AIDS globally, and a further 1.5 million new global infections per year, it is imperative that we advance our understanding of all factors contributing to HIV infection. While most studies have focused on the influence of host genetic factors on HIV pathogenesis, epigenetic factors are gaining attention. Epigenetics involves alterations in gene expression without altering the DNA sequence. DNA methylation is a critical epigenetic mechanism that influences both viral and host factors. This review has five focal points, which examines (i) fluctuations in the expression of methylation modifying factors upon HIV infection (ii) the effect of DNA methylation on HIV viral genes and (iii) host genome (iv) inferences from other infectious and non-communicable diseases, we provide a list of HIV-associated host genes that are regulated by methylation in other disease models (v) the potential of DNA methylation as an epi-therapeutic strategy and biomarker. DNA methylation has also been shown to serve as a robust therapeutic strategy and precision medicine biomarker against diseases such as cancer and autoimmune conditions. Despite new drugs being discovered for HIV, drug resistance is a problem in high disease burden settings such as Sub-Saharan Africa. Furthermore, genetic therapies that are under investigation are irreversible and may have off target effects. Alternative therapies that are nongenetic are essential. In this review, we discuss the potential role of DNA methylation as a novel therapeutic intervention against HIV.
Collapse
Affiliation(s)
- Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Upasana Ramphal
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Theolan Adimulam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Romona Chinniah
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
16
|
Wolyncewicz B, Major TJ, Delahunt B, Thunders M. The epigenome: key to understanding and predicting gout flares. Pathology 2021; 53:824-829. [PMID: 34657735 DOI: 10.1016/j.pathol.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 11/26/2022]
Abstract
Gout is a form of arthritis, resulting from an inflammatory reaction to the deposition of monosodium urate (MSU) crystals in the synovial fluid of the joint space. It is characterised by periods of acute inflammation in the affected joint, or joints (known as gout flares), separated by asymptomatic periods. There seems to be substantial overlap between environmental triggers of gout flares and common environmental modifiers (diet, pharmaceuticals, and stress) of epigenetic markers (DNA methylation, histone modifications, and ncRNA). Very few studies have looked at whether environment is influencing gout through epigenetic mechanisms. The pathogenesis of gouty inflammation is well understood but understanding the variation of response to hyperuricaemia in terms of gout flare initiation is less well known. In this review, we will examine the potential of epigenomics in understanding how gout flares may occur, both in terms of development of hyperuricaemia and the inflammatory response. Looking at the epigenome and its intersection with lifestyle could help identify new targets and strategies for effective management of gout flares.
Collapse
Affiliation(s)
- Ben Wolyncewicz
- Otago Medical School, Division of Health Sciences, University of Otago, Dunedin, New Zealand
| | - Tanya J Major
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Brett Delahunt
- Department of Pathology and Molecular Medicine, Wellington School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand
| | - Michelle Thunders
- Department of Pathology and Molecular Medicine, Wellington School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand.
| |
Collapse
|
17
|
Xu G, Wang Z, Li L, Li W, Hu J, Wang S, Deng H, Li B, Wang C, Shen Z, Han L. Hypermethylation of dihydrofolate reductase promoter increases the risk of hypertension in Chinese. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2020; 25:117. [PMID: 33912227 PMCID: PMC8067893 DOI: 10.4103/jrms.jrms_895_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/03/2020] [Accepted: 07/15/2020] [Indexed: 11/28/2022]
Abstract
Background: DNA methylation was considered to play an important role in hypertension. However, the direct association between dihydrofolate reductase (DHFR) promoter methylation and hypertension remains unclear. We thus aimed to investigate the relationship between DNA methylation of DHFR promoter and hypertension. Materials and Methods: A total of 371 hypertensive patients (diastolic blood pressure ≥90 mmHg and/or systolic blood pressure ≥140 mmHg or a history of antihypertensive treatment) and 320 age- and sex-matched healthy controls from the Hypertension Management Information System in Nanshan Community Health Service Centers were included in this case–control study. Quantitative methylation-specific polymerase chain reaction was used to measure the level of DHFR promoter methylation, which was presented as the percentage of methylated reference (PMR). A multivariate logistic regression model was used to explore the risk of DHFR promoter methylation. Results: Our results indicated that the level of DHFR promoter methylation was higher in hypertensive patients (median PMR, 34.32%; interquartile range, 11.34–119.60) than in healthy controls (median PMR, 18.45%; interquartile range, 8.16–35.40) (P < 0.001). Multivariable analysis showed that the risk of DHFR promoter hypermethylation was significantly higher in hypertensive patients than in healthy controls (odds ratio = 3.94, 95% confidence interval = 2.56–6.02, P < 0.001). Furthermore, hypermethylation was positively associated with sex, high blood homocysteine levels, and alcohol drinking. In particular, the area under the receiver operating characteristic curve was 0.688 (0.585–0.668) for the male hypertensive patients, suggesting the potential diagnostic value of DHFR promoter methylation in male hypertension. Conclusion: Our results demonstrated that DHFR promoter hypermethylation is positively associated with the risk of hypertension in Chinese.
Collapse
Affiliation(s)
- Guodong Xu
- Medical Record Statistics Room, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, PR China.,Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Zhiyi Wang
- Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Lian Li
- Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Wenxia Li
- Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jingcen Hu
- Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shuyu Wang
- Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Bo Li
- Department of Non-Communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, Guangdong, China
| | - Changyi Wang
- Department of Non-Communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, Guangdong, China
| | - Zhishen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Liyuan Han
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China.,Department of Global Health, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
| |
Collapse
|
18
|
Chu C, Xu G, Li X, Duan Z, Tao L, Cai H, Yang M, Zhang X, Chen B, Zheng Y, Shi H, Li X. Sustained expression of MCP-1 induced low wall shear stress loading in conjunction with turbulent flow on endothelial cells of intracranial aneurysm. J Cell Mol Med 2020; 25:110-119. [PMID: 33332775 PMCID: PMC7810920 DOI: 10.1111/jcmm.15868] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/30/2020] [Accepted: 08/24/2020] [Indexed: 12/28/2022] Open
Abstract
Shear stress was reported to regulate the expression of AC007362, but its underlying mechanisms remain to be explored. In this study, to isolate endothelial cells of blood vessels, unruptured and ruptured intracranial aneurysm (IA) tissues were collected from IA patients. Subsequently, quantitative real‐time PCR (qRT‐PCR), Western blot and luciferase assay were performed to investigate the relationships between AC007362, miRNAs‐493 and monocyte chemoattractant protein‐1 (MCP‐1) in human umbilical vein endothelial cells (HUVECs) exposed to shear stress. Reduced representation bisulphite sequencing (RRBS) was performed to assess the level of DNA methylation in AC007362 promoter. Accordingly, AC007362 and MCP‐1 were significantly up‐regulated while miR‐493 was significantly down‐regulated in HUVECs exposed to shear stress. AC007362 could suppress the miR‐493 expression and elevate the MCP‐1 expression, and miR‐493 was shown to respectively target AC007362 and MCP‐1. Moreover, shear stress in HUVECs led to the down‐regulated DNA methyltransferase 1 (DNMT1), as well as the decreased DNA methylation level of AC007362 promoter. Similar results were also observed in ruptured IA tissues when compared with unruptured IA tissues. In conclusion, this study presented a deep insight into the operation of the regulatory network of AC007362, miR‐493 and MCP‐1 upon shear stress. Under shear stress, the expression of AC007362 was enhanced by the inhibited promoter DNA methylation, while the expression of MCP‐1 was enhanced by sponging the expression of miR‐493.
Collapse
Affiliation(s)
- Cheng Chu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Gang Xu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaocong Li
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Zuowei Duan
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Lihong Tao
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Hongxia Cai
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Ming Yang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xinjiang Zhang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Bin Chen
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yanyu Zheng
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Hongcan Shi
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaoyu Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Li X, Bu S, Pan RR, Zhou C, Qu K, Ying X, Zhong J, Xiao J, Yuan Q, Zhang S, Tipton L, Wang Y, Deng Y, Duan S. The values of AHCY and CBS promoter methylation on the diagnosis of cerebral infarction in Chinese Han population. BMC Med Genomics 2020; 13:163. [PMID: 33138824 PMCID: PMC7607831 DOI: 10.1186/s12920-020-00798-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/16/2020] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The goal of our study is to investigate whether the methylation levels of AHCY and CBS promoters are related to the risk of cerebral infarction by detecting the methylation level of AHCY and CBS genes. METHODS We extracted peripheral venous blood from 152 patients with cerebral infarction and 152 gender- and age-matched healthy controls, and determined methylation levels of AHCY and CBS promoters using quantitative methylation-specific polymerase chain reaction. We used the percentage of methylation reference (PMR) to indicate gene methylation level. RESULTS We compared the promoter methylation levels of two genes (AHCY and CBS) in peripheral blood DNA between the cerebral infarction case group and the control group. Our study showed no significant difference in AHCY promoter methylation between case and control. Subgroup analysis by gender showed that the methylation level of AHCY in males in the case group was lower than that in the control group, but the difference was not statistically significant in females. In a subgroup analysis by age, there was no significant difference in the AHCY methylation level between the case and control in the young group (≤44 years old). However, the level of AHCY gene methylation in the middle-aged group (45-59 years old) was significantly higher and the aged group (≥60 years old) was significantly lower than that in the control groups. However, CBS promoter methylation levels were significantly lower in the case group than in the control group (median PMR: 70.20% vs 104.10%, P = 3.71E-10). In addition, the CBS methylation levels of males and females in the case group were significantly lower than those in the control group (male: 64.33% vs 105%, P = 2.667E-08; female: 78.05% vs 102.8%, P = 0.003). We also found that the CBS levels in the young (23-44), middle-aged (45-59), and older (60-90) groups were significantly lower than those in the control group (young group: 69.97% vs 114.71%; P = 0.015; middle-aged group: 56.04% vs 91.71%; P = 6.744E-06; older group: 81.6% vs 119.35%; P = 2.644E-04). Our ROC curve analysis of CBS hypomethylation showed an area under the curve of 0.713, a sensitivity of 67.4%, and a specificity of 74.0%. CONCLUSION Our study suggests that hypomethylation of the CBS promoter may be closely related to the risk of cerebral infarction and may be used as a non-invasive diagnostic biomarker for cerebral infarction.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Neurology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450006, Henan, China
| | - Shufang Bu
- Department of Neurology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450006, Henan, China
| | - Ran Ran Pan
- School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Cong Zhou
- School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Kun Qu
- Department of Neurology, the 960th of Hospital of PLA, Zibo, 255330, Shandong, China
| | - Xiuru Ying
- School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jie Zhong
- School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jianhao Xiao
- Department of Neurology, the Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Qian Yuan
- Department of Neurology, the Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Simiao Zhang
- Department of Neurology, the Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Laura Tipton
- Bioinformatics Core, Department of Complementary and Integrative Medicine and John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, 96822, USA
| | - Yunliang Wang
- Department of Neurology, the Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, Henan, China.
| | - Youping Deng
- Bioinformatics Core, Department of Complementary and Integrative Medicine and John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, 96822, USA.
| | - Shiwei Duan
- School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
20
|
LEPR hypomethylation is significantly associated with gastric cancer in males. Exp Mol Pathol 2020; 116:104493. [PMID: 32659237 DOI: 10.1016/j.yexmp.2020.104493] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 05/28/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Previous study has shown LEPR is a candidate gene of prediction and treatment of gastric cancer (GC). The purpose of this study was to test whether LEPR methylation could predict the risk of GC. MATERIALS AND METHODS Tumor tissues and 5-cm adjacent non-tumor tissues from 117 newly diagnosed and untreated GC patients were collected for the current methylation study. LEPR methylation levels were determined by quantitative methylation specific PCR (qMSP), and the methylation level of LEPR was described by the percentage of methylated reference (PMR). RESULTS Our results showed that LEPR methylation levels were significantly lower in tumor tissues than those in adjacent non-tumor tissues (median PMR: 36.64% vs. 50.29%, P = 1E-4). In addition, LEPR methylation levels were found to be significantly associated with platelet (r = -0.198, P = .037). Further subgroup analysis showed that the association of LEPR promoter hypomethylation with GC was specific to males (males: P = 7E-5; females: P = .500). Notably, significant hypomethylation of LEPR promoter was found only in GC patients without recurrence (P = .002) but not in GC patients with recurrence (P = .146). The AUC of LEPR hypomethylation for identification of GC risk was 0.649 with a sensitivity of 67.5% and a specificity of 63.2%. In addition, the AUC of LEPR hypomethylation in males was 0.685 with a sensitivity of 68.4% and a specificity of 69.6%. CONCLUSION LEPR hypomethylation can be used to predict the risk of GC in males. And it might also have the potential to predict the recurrence in GC patients.
Collapse
|
21
|
Bodofsky S, Merriman TR, Thomas TJ, Schlesinger N. Advances in our understanding of gout as an auto-inflammatory disease. Semin Arthritis Rheum 2020; 50:1089-1100. [PMID: 32916560 DOI: 10.1016/j.semarthrit.2020.06.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/01/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
Gout, the most common inflammatory arthritis, is the result of hyperuricemia and inflammation induced by monosodium urate (MSU) crystal deposition. However, most people with hyperuricemia will never develop gout, implying a molecular-genetic contribution to the development of gout. Recent genomic studies reveal links between certain genetic variations and gout. We highlight recent advances in our understanding of gout as an auto-inflammatory disease. We review the auto-inflammatory aspects of gout, including the inflammasome and thirteen gout-associated inflammatory-pathway genes and associated comorbidities. This information provides important insights into emerging immune-modulating targets in the management of gout, and future novel therapeutic targets in gout treatment. Cumulatively, this has important implications for treating gout as an auto-inflammatory disease, as opposed to a purely metabolic disease.
Collapse
Affiliation(s)
- Shari Bodofsky
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States.
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - T J Thomas
- Division of Rheumatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Naomi Schlesinger
- Division of Rheumatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
22
|
Wang Z, Zhao Y, Phipps-Green A, Liu-Bryan R, Ceponis A, Boyle DL, Wang J, Merriman TR, Wang W, Terkeltaub R. Differential DNA Methylation of Networked Signaling, Transcriptional, Innate and Adaptive Immunity, and Osteoclastogenesis Genes and Pathways in Gout. Arthritis Rheumatol 2020; 72:802-814. [PMID: 31738005 DOI: 10.1002/art.41173] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE In gout, autoinflammatory responses to urate crystals promote acute arthritis flares, but the pathogeneses of tophi, chronic synovitis, and erosion are less well understood. Defining the pathways of epigenomic immunity training can reveal novel pathogenetic factors and biomarkers. The present study was undertaken to seminally probe differential DNA methylation patterns utilizing epigenome-wide analyses in patients with gout. METHODS Peripheral blood mononuclear cells (PBMCs) were obtained from a San Diego cohort of patients with gout (n = 16) and individually matched healthy controls (n = 14). PBMC methylome data were processed with ChAMP package in R. ENCODE data and Taiji data analysis software were used to analyze transcription factor (TF)-gene networks. As an independent validation cohort, whole blood DNA samples from New Zealand Māori subjects (n = 13 patients with gout, n = 16 control subjects without gout) were analyzed. RESULTS Differentially methylated loci clearly separated gout patients from controls, as determined by hierarchical clustering and principal components analyses. IL23R, which mediates granuloma formation and cell invasion, was identified as one of the multiple differentially methylated gout risk genes. Epigenome-wide analyses revealed differential methylome pathway enrichment for B and T cell receptor signaling, Th17 cell differentiation and interleukin-17 signaling, convergent longevity regulation, circadian entrainment, and AMP-activated protein kinase signaling, which are pathways that impact inflammation via insulin-like growth factor 1 receptor, phosphatidylinositol 3-kinase/Akt, NF-κB, mechanistic target of rapamycin signaling, and autophagy. The gout cohorts overlapped for 37 (52.9%) of the 70 TFs with hypomethylated sequence enrichment and for 30 (78.9%) of the 38 enriched KEGG pathways identified via TFs. Evidence of shared differentially methylated gout TF-gene networks, including the NF-κB activation-limiting TFs MEF2C and NFATC2, pointed to osteoclast differentiation as the most strongly weighted differentially methylated pathway that overlapped in both gout cohorts. CONCLUSION These findings of differential DNA methylation of networked signaling, transcriptional, innate and adaptive immunity, and osteoclastogenesis genes and pathways suggest that they could serve as novel therapeutic targets in the management of flares, tophi, chronic synovitis, and bone erosion in patients with gout.
Collapse
Affiliation(s)
| | | | | | - Ru Liu-Bryan
- University of California, San Diego and San Diego VAMC
| | | | | | - Jun Wang
- University of California, San Diego
| | | | - Wei Wang
- University of California, San Diego
| | | |
Collapse
|
23
|
Li X, Wu N, Ji H, Huang Y, Hu H, Li J, Mi S, Duan S, Chen X. A male-specific association between AGTR1 hypermethylation and coronary heart disease. Bosn J Basic Med Sci 2020; 20:31-36. [PMID: 31538912 PMCID: PMC7029202 DOI: 10.17305/bjbms.2019.4321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/07/2019] [Indexed: 01/09/2023] Open
Abstract
The AGTR1 gene encodes angiotensin II receptor type 1, which is involved in cardiovascular diseases such as coronary heart disease (CHD). In the current study, we analyzed AGTR1 promoter methylation level in a Han Chinese population by SYBR green-based quantitative methylation-specific PCR (qMSP). We collected blood samples from 761 CHD patients and 398 non-CHD controls at the Ningbo First Hospital. A data mining analysis was also performed to explore the association between AGTR1 methylation and AGTR1 gene expression, using datasets from the cBioPortal for Cancer Genomics and the Gene Expression Omnibus (GEO) database. Our results showed a significantly higher percentage of methylated reference (PMR) of AGTR1 in male CHD patients compared with male non-CHD controls (median PMR: 2.12% vs. 0.59%, p = 0.037). The data mining analysis showed that AGTR1 expression was significantly increased in human hepatoma HepG2 cells treated with the demethylation agent 5-aza-2’-deoxycytidine (fold = 3.12, p = 0.009). Further data mining analysis using the cholangiocarcinoma (TCGA, PanCancer Atlas) data indicated an inverse association between AGTR1 methylation and AGTR1 expression (r = -0.595, p = 1.29E-04). Overall, our results suggest that AGTR1 methylation is involved in the regulation of AGTR1 gene expression and that AGTR1 hypermethylation is associated with CHD in males. These findings may provide new clues about the pathogenesis of CHD.
Collapse
Affiliation(s)
- Xiaojing Li
- Key Laboratory of Ningbo First Hospital and Cardiovascular Center of Ningbo First Hospital, Ningbo University, Ningbo, China
| | - Nan Wu
- Key Laboratory of Ningbo First Hospital and Cardiovascular Center of Ningbo First Hospital, Ningbo University, Ningbo, China
| | - Huihui Ji
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Yi Huang
- Key Laboratory of Ningbo First Hospital and Cardiovascular Center of Ningbo First Hospital, Ningbo University, Ningbo, China
| | - Haochang Hu
- Key Laboratory of Ningbo First Hospital and Cardiovascular Center of Ningbo First Hospital, Ningbo University, Ningbo, China
| | - Jiyi Li
- Key Laboratory of Ningbo First Hospital and Cardiovascular Center of Ningbo First Hospital, Ningbo University, Ningbo, China
| | - Siyu Mi
- Key Laboratory of Ningbo First Hospital and Cardiovascular Center of Ningbo First Hospital, Ningbo University, Ningbo, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China.
| | - Xiaomin Chen
- Key Laboratory of Ningbo First Hospital and Cardiovascular Center of Ningbo First Hospital, Ningbo University, Ningbo, China.
| |
Collapse
|
24
|
Ying X, Pan R, Zhong J, Wu B, Jiang Y, Ying J, Zhou C, Dai J, Zhao S, Shen Y, Zhang W, Duan S. Significant association of EED promoter hypomethylation with colorectal cancer. Oncol Lett 2019; 18:1564-1570. [PMID: 31423224 DOI: 10.3892/ol.2019.10432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/12/2019] [Indexed: 01/02/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common and serious types of malignancy worldwide. The embryonic ectoderm development (EED) gene is important to maintain transcriptional repressive states of genes over successive cell generations. The present study aimed to investigate the association between EED methylation and CRC. A total of 111 CRC tissue samples, 111 paired para-tumor tissues and 20 colorectal normal tissues were obtained for EED methylation assay, which was performed using a quantitative methylation-specific polymerase chain reaction. The percentage of methylated reference was calculated to represent the DNA methylation level. A dual-luciferase reporter gene assay was used to detect the gene promoter activity of a EED fragment. The current results revealed a significant difference in the EED methylation levels among tumor, para-tumor and normal colorectal tissues (tumor vs. para-tumor vs. normal, 5.03±4.61 vs. 8.65±11.50 vs. 40.12±45.31; F=45.014; P<0.0001). The dual-luciferase reporter gene assay demonstrated that the transcriptional activity of recombinant pGL3-EED plasmid was significantly higher compared with that of the pGL3-Basic control vector (fold-change, 3.15; P=0.014), which suggests the EED fragment can promote gene expression. In conclusion, the present study demonstrated that EED hypomethylation may be an important factor associated with CRC.
Collapse
Affiliation(s)
- Xiuru Ying
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Ranran Pan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Boyi Wu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yuting Jiang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jieer Ying
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Cong Zhou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Dai
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Shuangying Zhao
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yinan Shen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Wei Zhang
- Department of Preventive Medicine and The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
25
|
Wang C, Xu G, Wen Q, Peng X, Chen H, Zhang J, Xu S, Zhang C, Zhang M, Ma J, Hui Z, Wu G, Ma M. CBS promoter hypermethylation increases the risk of hypertension and stroke. Clinics (Sao Paulo) 2019; 74:e630. [PMID: 30916171 PMCID: PMC6438132 DOI: 10.6061/clinics/2019/e630] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 11/07/2018] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Cystathionine β-synthase is a major enzyme in the metabolism of plasma homocysteine. Hyperhomocysteinemia is positively associated with hypertension and stroke. The present study was performed to examine the possible effects of Cystathionine β-synthase promoter methylation on the development of hypertension and stroke. METHODS Using quantitative methylation-specific PCR, we determined the Cystathionine β-synthase methylation levels in 218 healthy individuals and 132 and 243 age- and gender-matched stroke and hypertensive patients, respectively. The relative changes in Cystathionine β-synthase promoter methylation were analyzed using the 2-ΔΔCt method. The percent of the methylated reference of Cystathionine β-synthase was used to represent the Cystathionine β-synthase promoter methylation levels. RESULTS In this study, the Cystathionine β-synthase promoter methylation levels of hypertensive and stroke participants were both higher than that of the healthy individuals (median percentages of the methylated reference were 50.61%, 38.05% and 30.53%, respectively, all p<0.001). Multivariable analysis showed that Cystathionine β-synthase promoter hypermethylation increased the risk of hypertension [odds ratio, OR (95% confidence interval, CI)=1.035 (1.025-1.045)] and stroke [OR (95% CI)=1.015 (1.003-1.028)]. The area under the curve of Cystathionine β-synthase promoter methylation was 0.844 (95% CI: 0.796-0.892) in male patients with hypertension and 0.722 (95% CI: 0.653-0.799) in male patients with stroke. CONCLUSION Cystathionine β-synthase promoter hypermethylation increases the risk of hypertension and stroke, especially in male patients.
Collapse
Affiliation(s)
- Changyi Wang
- Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou, China
- College of Traditional Chinese Medicine of Jinan University, Institute of Integrated Traditional Chinese and Western Medicine of Jinan University, Guangzhou, China
- Department of Cardiology. The Eighth Affiliated Hospital of Sun Yat-sen University. Shenzhen, China
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Guodong Xu
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo, China
| | - Qi Wen
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Xiaolin Peng
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Hongen Chen
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Jingwen Zhang
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Shan Xu
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Chunhui Zhang
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Min Zhang
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Jianping Ma
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Zhaohui Hui
- Shenzhen Xili People's Hospital, Shenzhen, China
| | - Guifu Wu
- Department of Cardiology. The Eighth Affiliated Hospital of Sun Yat-sen University. Shenzhen, China
- Corresponding authors. E-mail: /
| | - Min Ma
- College of Traditional Chinese Medicine of Jinan University, Institute of Integrated Traditional Chinese and Western Medicine of Jinan University, Guangzhou, China
- Corresponding authors. E-mail: /
| |
Collapse
|
26
|
Zhang L, Ji H, Huang Y, Hu H, Li B, Yang Y, Yu H, Chen X, Li W, Liu F, Wang S, Wang C, Chen K, Bao Y, Liu H, Duan S. Association of BAX hypermethylation with coronary heart disease is specific to individuals aged over 70. Medicine (Baltimore) 2019; 98:e14130. [PMID: 30681575 PMCID: PMC6358363 DOI: 10.1097/md.0000000000014130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION As a member of B-cell lymphoma-2 (BCL-2) gene family, BCL-2 associated X (BAX) is important for cell apoptosis. In this work, we investigated the association of BAX promoter DNA methylation with coronary heart disease (CHD) in Han Chinese. METHODS A SYBR green-based quantitative methylation specific PCR (qMSP) was used to test BAX methylation levels in 959 CHD cases and 514 controls. RESULTS Although BAX methylation was not associated with CHD in the total samples, further breakdown analysis by age showed that BAX hypermethylation was significantly associated with CHD for individuals aged over 70 (median percentage of methylation ratio [PMR], 10.70% in cases versus (vs) 2.25% in controls, P =.046). Moreover, BAX methylation was associated with smoking and lipoprotein A (Lp(a)) for individuals aged over 70 (CHD: smoking P = .012, Lp(a) P = .001; non-CHD: smoking P = .051, Lp(a) P = .004). Further analysis of Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) data showed BAX expression was upregulated by 5-aza-2'-deoxycytidine demethylation agent (fold = 1.66, P = .038) and inversely correlated with BAX methylation (r = -0.428, P = 8E-05). CONCLUSIONS Our study supported that BAX hypermethylation might contribute to CHD risk via downregulation of BAX expression for individuals aged over 70.
Collapse
Affiliation(s)
- Limei Zhang
- Department of Cardiology, Yinzhou People's Hospital, Ningbo University, Ningbo
| | - Huihui Ji
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| | - Yi Huang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| | - Haochang Hu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| | - Bin Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| | - Yong Yang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| | - Hang Yu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| | - Xiaoying Chen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| | - Wenxia Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| | - Fang Liu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| | - Shi Wang
- Department of Cardiology, Yinzhou People's Hospital, Ningbo University, Ningbo
| | - Chunming Wang
- Department of Cardiology, Yinzhou People's Hospital, Ningbo University, Ningbo
| | - Ke Chen
- Department of Cardiology, Yinzhou People's Hospital, Ningbo University, Ningbo
| | - Yingchun Bao
- Department of Cardiology, Yinzhou People's Hospital, Ningbo University, Ningbo
| | - Haibo Liu
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| |
Collapse
|
27
|
Xu G, Wang C, Ying X, Kong F, Ji H, Zhao J, Zhang X, Duan S, Han L, Li L. Serine hydroxymethyltransferase 1 promoter hypermethylation increases the risk of essential hypertension. J Clin Lab Anal 2018; 33:e22712. [PMID: 30411815 DOI: 10.1002/jcla.22712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Serine hydroxymethyltransferase 1 (SHMT1) is an enzyme involved in folic acid metabolism and is known to contribute to the development of hypertension. We evaluated the relationship between SHMT1 promoter methylation and essential hypertension (EH). METHODS Quantitative methylation-specific polymerase chain reaction was used to measure the SHMT1 promoter methylation level in 241 EH patients and 288 age- and gender-matched healthy individuals. The diagnostic value of SHMT1 promoter hypermethylation was analyzed using a receiver operating characteristic (ROC) curve. The Gene Expression Omnibus (GEO) database and dual-luciferase reporter assay were used to validate our findings. RESULTS Compared with the control group, significant differences in SHMT1 promoter methylation were found in both EH and hyperhomocysteinemia groups (P < 0.001 and P = 0.029, respectively). The area under the curve of the diagnosis of SHMT1 promoter hypermethylation for EH was 0.808, with a sensitivity and specificity of 73.9% and 77.8%, respectively. The risk of SHMT1 promoter hypermethylation was significantly higher in the >65-year group than in the ≤65-year group (odds ratio = 3.925; 95% confidence interval = 2.141-7.196). In addition, GEO database analysis showed that 5-aza-deoxycytidine increased gene expression in several carotid endothelial cell lines. A dual-luciferase reporter assay revealed that the target sequence in the SHMT1 promoter upregulated gene expression. CONCLUSION Our findings indicate that SHMT1 promoter hypermethylation increases the risk of EH and may be a promising biomarker for EH.
Collapse
Affiliation(s)
- Guodong Xu
- Department of Preventive Medicine and Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Changyi Wang
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Xiuru Ying
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Fanqian Kong
- Department of Preventive Medicine and Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Huihui Ji
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Jinshun Zhao
- Department of Preventive Medicine and Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Xiaohong Zhang
- Department of Preventive Medicine and Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Liyuan Han
- Department of Preventive Medicine and Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Li Li
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
28
|
Hu H, Wang T, Pan R, Yang Y, Li B, Zhou C, Zhao J, Huang Y, Duan S. Hypermethylated Promoters of Secreted Frizzled-Related Protein Genes are Associated with Colorectal Cancer. Pathol Oncol Res 2018; 25:567-575. [PMID: 30368728 DOI: 10.1007/s12253-018-0505-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/15/2018] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of death worldwide. Aberrant DNA methylation has been recognized as one of the most common molecular alterations in CRC. The goal of this study was to investigate the diagnostic value of SFRP1 and SFRP2 methylation for CRC. A total of 80 pairs of CRC patients were recruited to test the association of SFRP1 and SFRP2 promotor methylation with CRC. Methylation assay was performed using quantitative methylation-specific polymerase chain reaction (qMSP) method. In this study, we found the methylation levels of SFRP1 and SFRP2 in CRC tumor tissues were significantly higher than those in the adjacent non-tumor tissues (SFRP1: P = 2E-5; SFRP2: P = 0.014). Further bioinformatics analysis of TCGA data confirmed the association of the two genes with CRC (SFRP1: P = 7E-21; SFRP2: P = 5E-24). Luciferase reporter gene assay showed that the recombinant plasmids with SFRP1 and SFRP2 fragments could significantly enhance promoter activity (SFRP1: P = 0.002; SFRP2: P = 0.004). In addition, SFRP1 and SFRP2 methylation were inversely correlated with the mRNA expression displayed by TCGA data mining (SFRP1: r = -0.432, P = 4E-11; SFRP2: r = -0.478, P = 1E-13). GEO data analysis indicated that SFRP1 and SFRP2 expression were increased in three CRC cell lines (COLO320, HCT116 and HT29) after 5'-AZA-deoxycytidine treatment, suggesting that DNA methylation played an important role in regulating gene expression of the two genes. Our results confirmed that promoter methylation of SFRP1 and SFRP2 contributed to the risk of CRC.
Collapse
Affiliation(s)
- Haochang Hu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Tiangong Wang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Ranran Pan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yong Yang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Bin Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Cong Zhou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jun Zhao
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yi Huang
- Department of Neurosurgery of Ningbo First Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang, China.
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
29
|
Pan R, Zhou C, Dai J, Ying X, Yu H, Zhong J, Zhang Y, Wu B, Mao Y, Wu D, Ying J, Zhang W, Duan S. Endothelial PAS domain protein 1 gene hypomethylation is associated with colorectal cancer in Han Chinese. Exp Ther Med 2018; 16:4983-4990. [PMID: 30542453 PMCID: PMC6257466 DOI: 10.3892/etm.2018.6856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/23/2018] [Indexed: 12/17/2022] Open
Abstract
Endothelial PAS domain-containing protein 1 (EPAS1) serves a role in angiogenesis, which is important for the development of tumors, including colorectal cancer (CRC). The current study aimed to estimate whether EPAS1 methylation was associated with CRC. A two-stage association study of EPAS1 methylation and CRC was conducted. In the first phase, EPAS1 methylation was evaluated in the tumor and adjacent non-tumor tissue samples from 41 patients with sporadic CRC in Jiangsu province, China. The diagnostic value of methylation of EPAS1 for CRC in the second phase was evaluated in 79 patients with sporadic CRC and 22 normal individuals in Zhejiang province, China. The methylation assay was performed using a quantitative methylation-specific polymerase chain reaction (qMSP) method. The percentage of methylated reference (PMR) was used to quantify the methylation level. The first-stage results indicated that EPAS1 promoter methylation was significantly lower in CRC tumor tissues compared with 5-cm-para-tumor tissues (median PMR, 0.59 vs. 1.22%; P=0.027) and 10-cm-para-tumor tissues (median PMR, 0.59 vs. 1.89%; P=0.001). In addition, the second-stage results indicated that EPAS1 promoter methylation was significantly lower in tumor tissues compared with 5-cm-para-tumor tissues (median PMR, 1.91 vs. 6.25%; P=3×10−7) and normal intestinal tissues from healthy controls (median PMR, 1.91 vs. 28.4%; P=5×10−7). Receiver Operating Characteristic curve analysis of the second-stage data indicated that the highest area under the curve of EPAS1 hypomethylation was 0.851 between Zhejiang CRC tissues and Zhejiang normal intestinal tissues (sensitivity, 95.5%; specificity, 60.8%).
Collapse
Affiliation(s)
- Ranran Pan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Cong Zhou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Dai
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiuru Ying
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Hang Yu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yihan Zhang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Boyi Wu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yiyi Mao
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Dongping Wu
- Department of Medical Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Jieer Ying
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.,The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
30
|
Zhao Y, Zhou C, Yu H, Zhang W, Cheng F, Yu H, Zhou D, Li B, Liu J, Dai J, Zhong J, Chen M, Huang T, Pan R, Duan S, Hu Z. Association between the methylation of six apoptosis‑associated genes with autism spectrum disorder. Mol Med Rep 2018; 18:4629-4634. [PMID: 30221723 DOI: 10.3892/mmr.2018.9473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/17/2018] [Indexed: 11/05/2022] Open
Abstract
Excessive apoptosis hinders the process of brain maturation and is regarded as one of the principal risk factors for the development of autism spectrum disorder (ASD). The aim of the present study was to investigate the association between the methylation of six apoptosis‑associated genes [transforming growth factor β 1 (TGFB1), BCL2 associated X, apoptosis regulator, insulin like growth factor binding protein 3, protein kinase C β 1, presenilin 2 and C‑C motif chemokine ligand 2] and ASD. Using quantitative methylation‑specific polymerase chain reaction technology, DNA methylation levels were detected in 42 autistic and 26 control subjects. The logistic regression analysis results demonstrated that of the six genes, only TGFB1 was significantly hypomethylated in peripheral blood samples from children with autism compared with control samples (mean percentage of methylated reference, 0.011% vs. 0.019%; age‑adjusted P=0.028). In addition, TGFB1 methylation was identified to be positively associated with the interaction ability score from the Autism Behavior Checklist (r=0.452; P=0.035). These data suggested that decreased TGFB1 methylation may contribute to the development of ASD.
Collapse
Affiliation(s)
- Yuanzhi Zhao
- Department of Child Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315211, P.R. China
| | - Cong Zhou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Hang Yu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Wenwu Zhang
- Department of Child Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315211, P.R. China
| | - Fang Cheng
- Department of Child Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315211, P.R. China
| | - Haihang Yu
- Department of Child Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315211, P.R. China
| | - Dongsheng Zhou
- Department of Child Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315211, P.R. China
| | - Bin Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jing Liu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Dai
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Min Chen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Tianyi Huang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Ranran Pan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Zhenyu Hu
- Department of Child Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
31
|
Xu M, Li J, Chen X, Han L, Li L, Liu Y. MTHFD1 promoter hypermethylation increases the risk of hypertension. Clin Exp Hypertens 2018; 41:422-427. [PMID: 30183434 DOI: 10.1080/10641963.2018.1501057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVES Methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) plays an essential role in folate-mediated one-carbon metabolism which determines both homocysteine remethylation and de novo thymidylate biosynthesis. Hyperhomocysteinemia is positively associated with essential hypertension. This study aimed to investigate the association of MTHFD1 promoter methylation with essential hypertension. METHODS Using the quantitative methylation-specific polymerase chain reaction (qMSP), the levels of MTHFD1 promoter methylation in 243 essential hypertension patients, 218 age- and gender-matched healthy controls. The relative changes in serum MTHFD1 promoter methylation were analyzed using the 2-ΔΔCt method. The percent of methylated reference (PMR) of MTHFD1 was used to evaluate the MTHFD1 promoter methylation levels. RESULTS In our current study, the MTHFD1 promoter methylation of hypertensive patients were both higher than the healthy control group (median PMR were 8.97% and 5.69%, respectively, all p < 0.001). Multivariable analysis showed MTHFD1 promoter hypermethylation increase the risk of essential hypertension (OR, 1.336; 95%CI, 1.235-1.446; p < 0.001). The area under the curve (AUC) of MTHFD1 promoter methylation was 0.739 in total patients with essential hypertension. CONCLUSIONS MTHFD1 promoter hypermethylation was a potential biomarker for the diagnosis of essential hypertension.
Collapse
Affiliation(s)
- Miao Xu
- a Department of Endocrinology , Ningbo First Hospital, Ningbo Hospital of ZheJiang University , Ningbo , China
| | - Jialin Li
- a Department of Endocrinology , Ningbo First Hospital, Ningbo Hospital of ZheJiang University , Ningbo , China
| | - Xiaomin Chen
- b Department of Cardiology , Ningbo Hospital of ZheJiang University , Ningbo , China
| | - Liyuan Han
- c Department of Preventive Medicine , School of Medicine, Ningbo University , Ningbo , China
| | - Li Li
- a Department of Endocrinology , Ningbo First Hospital, Ningbo Hospital of ZheJiang University , Ningbo , China
| | - Yahui Liu
- d Clinical Laboratory , Ningbo First Hospital, Ningbo Hospital of ZheJiang University , Ningbo , China
| |
Collapse
|
32
|
Li B, Pan R, Zhou C, Dai J, Mao Y, Chen M, Huang T, Ying X, Hu H, Zhao J, Zhang W, Duan S. SMYD3 promoter hypomethylation is associated with the risk of colorectal cancer. Future Oncol 2018; 14:1825-1834. [PMID: 29969917 DOI: 10.2217/fon-2017-0682] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM SMYD3 encodes histone lysine methyltransferase. The goal of our study was to investigate the association between SMYD3 methylation and colorectal cancer (CRC). MATERIALS & METHODS SMYD3 methylation was measured by quantitative methylation-specific PCR method in 117 pairs of CRC tumor and para-tumor tissues. RESULTS Significantly lower SMYD3 methylation was observed in CRC tumor tissues than para-tumor tissues (p = 0.002). Further subgroup analysis by clinical features showed that significantly lower SMYD3 methylation were only observed in the CRC patients with tumors of moderately and well differentiation, positive lymph node metastasis, and stage III + IV. CONCLUSION Our work reported for the first time that SMYD3 promoter hypomethylation was associated with CRC.
Collapse
Affiliation(s)
- Bin Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Ranran Pan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Cong Zhou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Jie Dai
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Yiyi Mao
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Min Chen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Tianyi Huang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Xiuru Ying
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Haochang Hu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Jun Zhao
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Wei Zhang
- Department of Preventive Medicine & The Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| |
Collapse
|
33
|
Pan R, Yu H, Dai J, Zhou C, Ying X, Zhong J, Zhao J, Zhang Y, Wu B, Mao Y, Wu D, Ying J, Duan S. Significant association of PRMT6 hypomethylation with colorectal cancer. J Clin Lab Anal 2018; 32:e22590. [PMID: 29927001 DOI: 10.1002/jcla.22590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Protein arginine N-methyltransferase 6 (PRMT6) was deemed to be indispensable in the variety of biological processes. Upregulated PRMT6 was found in various human diseases including cancer. Herein, we investigated the performance of PRMT6 methylation in the diagnosis for CRC. METHODS A quantitative methylation-specific polymerase chain reaction (qMSP) method was used to measure PRMT6 promoter methylation. The percentage of methylated reference (PMR) was applied to represent gene methylation level. RESULTS Our data indicated that PRMT6 promoter methylation levels were significantly lower in CRC tissues than those in paired nontumor tissues (median PMR: 36.93% vs 63.12%, P = 1E-6) and normal intestinal tissues (median PMR: 36.93% vs 506.55%, P = 8E-12). We further examined the potential role of PRMT6 hypomethylation by the receiver operating characteristic (ROC) curve. Our results showed that the area under the curve (AUC) was 0.644 (95% CI = 0.596-0.733) between CRC tissues and paired nontumor tissues, 0.958 (95% CI = 0.919-0.998) between CRC tissues and normal intestinal tissues, and 0.899 (95% CI = 0.825-0.972) between paired nontumor tissues and normal intestinal tissues. CONCLUSION Our study firstly indicated that the hypomethylation of PRMT6 promoter could be a novel diagnostic biomarker for CRC.
Collapse
Affiliation(s)
- Ranran Pan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Hang Yu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jie Dai
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Cong Zhou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Xiuru Ying
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jie Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jun Zhao
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yihan Zhang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Boyi Wu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yiyi Mao
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Dongping Wu
- Department of Medical Oncology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Ningbo, Zhejiang, China
| | - Jieer Ying
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|