1
|
Liu L, Hao Z, Yang X, Li Y, Wang S, Li L. Metabolic reprogramming in T cell senescence: a novel strategy for cancer immunotherapy. Cell Death Discov 2025; 11:161. [PMID: 40204707 PMCID: PMC11982223 DOI: 10.1038/s41420-025-02468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
The complex interplay between cancer progression and immune senescence is critically influenced by metabolic reprogramming in T cells. As T cells age, especially within the tumor microenvironment, they undergo significant metabolic shifts that may hinder their proliferation and functionality. This manuscript reviews how metabolic alterations contribute to T cell senescence in cancer and discusses potential therapeutic strategies aimed at reversing these metabolic changes. We explore interventions such as mitochondrial enhancement, glycolytic inhibition, and lipid metabolism adjustments that could rejuvenate senescent T cells, potentially restoring their efficacy in tumor suppression. This review also focuses on the significance of metabolic interventions in T cells with aging and further explores the future direction of the metabolism-based cancer immunotherapy in senescent T cells.
Collapse
Affiliation(s)
- Li Liu
- The Operation Room, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhanying Hao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xi Yang
- Department of General Surgery, Sanya People's Hospital, Sanya, China
| | - Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Siyang Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Linze Li
- The Operation Room, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Satyanarayanan SK, Yip TF, Han Z, Zhu H, Qin D, Lee SMY. Role of toll-like receptors in post-COVID-19 associated neurodegenerative disorders? Front Med (Lausanne) 2025; 12:1458281. [PMID: 40206484 PMCID: PMC11979212 DOI: 10.3389/fmed.2025.1458281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
In the intricate realm of interactions between hosts and pathogens, Toll-like receptors (TLRs), which play a crucial role in the innate immune response, possess the ability to identify specific molecular signatures. This includes components originating from pathogens such as SARS-CoV-2, as well as the resulting damage-associated molecular patterns (DAMPs), the endogenous molecules released after cellular damage. A developing perspective suggests that TLRs play a central role in neuroinflammation, a fundamental factor in neurodegenerative conditions like Alzheimer's and Parkinson's disease (PD). This comprehensive review consolidates current research investigating the potential interplay between TLRs, their signaling mechanisms, and the processes of neurodegeneration following SARS-CoV-2 infection with an aim to elucidate the involvement of TLRs in the long-term neurological complications of COVID-19 and explore the potential of targeting TLRs as a means of implementing intervention strategies for the prevention or treatment of COVID-19-associated long-term brain outcomes.
Collapse
Affiliation(s)
- Senthil Kumaran Satyanarayanan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Tsz Fung Yip
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zixu Han
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Huachen Zhu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Dajiang Qin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Suki Man Yan Lee
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Kos M, Bojarski K, Mertowska P, Mertowski S, Tomaka P, Zaborek-Łyczba M, Łyczba J, Dziki Ł, Grywalska E. Can the Analysis of Toll-like Receptors (TLR) on NK and NKT-like Cells Improve Gastric Cancer Diagnostics and Treatment? Cancers (Basel) 2024; 16:3854. [PMID: 39594809 PMCID: PMC11592653 DOI: 10.3390/cancers16223854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: The aim of this study was to determine the assessment of the percentage of NK and NKT-like cells expressing Toll-like receptors (TLR-2, TLR-3, TLR-4, and TLR-9) in patients with gastric cancer (GC) compared with healthy volunteers (HV) and to investigate differences according to cancer subtype. We also assessed TLR gene expression by RT-qPCR to assess whether TLRs could be diagnostic and prognostic biomarkers. Methods: The study included 86 patients with histologically confirmed gastric cancer and 30 healthy volunteers. Peripheral blood samples were collected from the participants, and TLR expression on NK and NKT-like cells was assessed by flow cytometry and RT-qPCR. The expression of TLR2, TLR3, TLR4, and TLR9 genes was assessed using genetic material derived from NK and NKT-like cells sourced from PBMC. The obtained results were statistically analyzed using Mann-Whitney U and Kruskal-Wallis tests, and the predictive ability of variables was assessed using ROC curve analysis. Results: A significantly higher expression of TLR receptors (TLR-2, TLR-3, TLR-4, and TLR-9) was found in patients with gastric cancer compared to healthy volunteers (p < 0.05). TLR expression also differed depending on the cancer subtype, and higher expression was observed in more advanced GC subtypes. RT-qPCR analysis showed significantly increased expression of TLR genes in the group of GC patients. ROC curves indicate a high ability of TLRs to differentiate between GC patients and healthy individuals. Conclusions: The expression of TLRs on NK and NKT-like cells is clearly increased in patients with gastric cancer, especially in more advanced subtypes of the tumor. The results suggest that TLRs could potentially be used as diagnostic and prognostic biomarkers and represent potential targets for immune therapies in GC. However, further studies are needed to determine the functional role of TLRs in disease progression and the possibility of their use in personalized treatment.
Collapse
Affiliation(s)
- Marek Kos
- Department of Public Health, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Krzysztof Bojarski
- General Surgery Department, Independent Public Health Care Center in Łęczna (SP ZOZ in Leczna), 52 Krasnystawska Street, 21-010 Leczna, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Piotr Tomaka
- Department of Anesthesiology and Intensive Care, Independent Public Health Care Center in Łęczna (SP ZOZ in Leczna), 52 Krasnystawska Street, 21-010 Leczna, Poland
| | - Monika Zaborek-Łyczba
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Jakub Łyczba
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Łukasz Dziki
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, 251 Street, 92-213 Lodz, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (S.M.); (E.G.)
| |
Collapse
|
4
|
Xu W, Ye J, Cao Z, Zhao Y, Zhu Y, Li L. Glucocorticoids in lung cancer: Navigating the balance between immunosuppression and therapeutic efficacy. Heliyon 2024; 10:e32357. [PMID: 39022002 PMCID: PMC11252876 DOI: 10.1016/j.heliyon.2024.e32357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Glucocorticoids (GCs), a class of hormones secreted by the adrenal glands, are released into the bloodstream to maintain homeostasis and modulate responses to various stressors. These hormones function by binding to the widely expressed GC receptor (GR), thereby regulating a wide range of pathophysiological processes, especially in metabolism and immunity. The role of GCs in the tumor immune microenvironment (TIME) of lung cancer (LC) has been a focal point of research. As immunosuppressive agents, GCs exert a crucial impact on the occurrence, progression, and treatment of LC. In the TIME of LC, GCs act as a constantly swinging pendulum, simultaneously offering tumor-suppressive properties while diminishing the efficacy of immune-based therapies. The present study reviews the role and mechanisms of GCs in the TIME of LC.
Collapse
Affiliation(s)
| | | | - Zhendong Cao
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, 210017, China
| | - Yupei Zhao
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, 210017, China
| | - Yimin Zhu
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, 210017, China
| | - Lei Li
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, 210017, China
| |
Collapse
|
5
|
Del Carmen Camacho-Rea M, Martínez-Gómez LE, Martinez-Armenta C, Martínez-Nava GA, Ortega-Peña S, Olea-Torres J, Herrera-López B, Suarez-Ahedo C, Vázquez-Cárdenas P, Vidal-Vázquez RP, Ramírez-Hinojosa JP, Vargas-Alarcón G, Posadas-Sánchez R, Fragoso JM, De Jesús Martínez-Ruiz F, Zayago-Angeles DM, Mata-Miranda MM, Vazquez-Zapien GJ, Martínez-Cuazitl A, Garcia-Galicia A, Granados J, Ramos L, Rodríguez-Pérez JM, Pineda C, López-Reyes A. Association of TLR8 Variants in Sex-Based Clinical Differences in Patients with COVID-19. Biochem Genet 2024:10.1007/s10528-024-10839-w. [PMID: 38814383 DOI: 10.1007/s10528-024-10839-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
The host immune response might confer differential vulnerability to SARS-CoV-2 infection. The Toll-like receptor 8 (TLR8), could participated for severe COVID-19 outcomes. To investigated the relationship of TLR8 rs3764879-C/G, rs3764880-A/G, and rs3761624-A/G with COVID-19 outcomes and with biochemical parameters. A cross-sectional study of 830 laboratory-confirmed COVID-19 patients was performed, and classified into mild, severe, critical, and deceased outcomes. The TLR8 rs3764879-C/G, rs3764880-A/G, and rs3761624-A/G polymorphisms were genotyped. A logistic regression analysis was performed to determinate the association with COVID-19. A stratified analysis was by alleles was done with clinical and metabolic markets. In all outcomes, men presented the highest ferritin levels compared to women (P < 0.001). LDH levels were significantly different between sex in mild (P = 0.003), severe (P < 0.001) and deceased (P = 0.01) COVID-19 outcomes. The GGG haplotype showed an Odds Ratio of 1.55 (Interval Confidence 95% 1.05-2.32; P = 0.03) in men. Among patients with severe outcome, we observed that the carriers of the GGG haplotype had lower Ferritin, C-reactive protein and LDH levels than the CAA carriers (P < 0.01). After further stratified by sex, these associations were also seen in the male patients, except for D-dimer. Interestingly, among men patients, we could observe associations between TLR8 haplotypes and Ferritin (P < 0.001), D-dimer (P = 0.04), C-reactive protein, and Lactate dehydrogenase in mild (P = 0.04) group. Our results suggest that even though TLR8 haplotypes show a significant association with COVID-19 outcomes, they are associated with clinical markers in COVID-19 severity.
Collapse
Affiliation(s)
- María Del Carmen Camacho-Rea
- Departamento de Nutrición Animal, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México
| | - Laura Edith Martínez-Gómez
- Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, 14389, CDMX, México
| | - Carlos Martinez-Armenta
- Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, 14389, CDMX, México
| | - Gabriela Angélica Martínez-Nava
- Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, 14389, CDMX, México
| | - Silvestre Ortega-Peña
- Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, 14389, CDMX, México
| | - Jessel Olea-Torres
- Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, 14389, CDMX, México
| | - Brígida Herrera-López
- Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, 14389, CDMX, México
| | - Carlos Suarez-Ahedo
- Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, 14389, CDMX, México
| | - Paola Vázquez-Cárdenas
- Centro de Innovación Médica Aplicada, Subdirección de Epidemiología E Infectología, Hospital General Dr. Manuel Gea González, CDMX, México
| | - Rosa P Vidal-Vázquez
- Centro de Innovación Médica Aplicada, Subdirección de Epidemiología E Infectología, Hospital General Dr. Manuel Gea González, CDMX, México
| | - Juan Pablo Ramírez-Hinojosa
- Centro de Innovación Médica Aplicada, Subdirección de Epidemiología E Infectología, Hospital General Dr. Manuel Gea González, CDMX, México
| | - Gilberto Vargas-Alarcón
- Centro de Innovación Médica Aplicada, Subdirección de Epidemiología E Infectología, Hospital General Dr. Manuel Gea González, CDMX, México
| | | | - José Manuel Fragoso
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, CDMX, México
| | - Felipe De Jesús Martínez-Ruiz
- Nuevo Hospital General Delegación Regional Sur de La Ciudad de México, Instituto de Seguridad y Servicios Sociales Para los Trabajadores del Estado (ISSSTE), CDMX, México
| | - Dulce María Zayago-Angeles
- Nuevo Hospital General Delegación Regional Sur de La Ciudad de México, Instituto de Seguridad y Servicios Sociales Para los Trabajadores del Estado (ISSSTE), CDMX, México
| | - Mónica Maribel Mata-Miranda
- Laboratorio de Biología Celular y Tisular, Laboratorio de Embriología, Escuela Militar de Medicina, Universidad del Ejército y Fuerza Aérea, CDMX, México
| | - Gustavo Jesús Vazquez-Zapien
- Laboratorio de Biología Celular y Tisular, Laboratorio de Embriología, Escuela Militar de Medicina, Universidad del Ejército y Fuerza Aérea, CDMX, México
| | - Adriana Martínez-Cuazitl
- Laboratorio de Biología Celular y Tisular, Laboratorio de Embriología, Escuela Militar de Medicina, Universidad del Ejército y Fuerza Aérea, CDMX, México
| | - Armando Garcia-Galicia
- Servicio de Cirugía General, Hospital Central Norte Petróleos Mexicanos (PEMEX), CDMX, México
| | - Julio Granados
- Departamento de Trasplantes, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México
| | - Luis Ramos
- Departamento de Trasplantes, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México
| | | | - Carlos Pineda
- Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, 14389, CDMX, México
| | - Alberto López-Reyes
- Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, 14389, CDMX, México.
| |
Collapse
|
6
|
Cui Sun M, Otálora-Alcaraz A, Prenderville JA, Downer EJ. Toll-like receptor signalling as a cannabinoid target. Biochem Pharmacol 2024; 222:116082. [PMID: 38438052 DOI: 10.1016/j.bcp.2024.116082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024]
Abstract
Toll-like receptors (TLRs) have become a focus in biomedicine and biomedical research given the roles of this unique family of innate immune proteins in immune activation, infection, and autoimmunity. It is evident that TLR dysregulation, and subsequent alterations in TLR-mediated inflammatory signalling, can contribute to disease pathogenesis, and TLR targeted therapies are in development. This review highlights evidence that cannabinoids are key regulators of TLR signalling. Cannabinoids include component of the plant Cannabis sativa L. (C. sativa), synthetic and endogenous ligands, and overall represent a class of compounds whose therapeutic potential and mechanism of action continues to be elucidated. Cannabinoid-based medicines are in the clinic, and are furthermore under intense investigation for broad clinical development to manage symptoms of a range of disorders. In this review, we present an overview of research evidence that signalling linked to a range of TLRs is targeted by cannabinoids, and such cannabinoid mediated effects represent therapeutic avenues for further investigation. First, we provide an overview of TLRs, adaptors and key signalling events, alongside a summary of evidence that TLRs are linked to disease pathologies. Next, we discuss the cannabinoids system and the development of cannabinoid-based therapeutics. Finally, for the bulk of this review, we systematically outline the evidence that cannabinoids (plant-derived cannabinoids, synthetic cannabinoids, and endogenous cannabinoid ligands) can cross-talk with innate immune signalling governed by TLRs, focusing specifically on each member of the TLR family. Cannabinoids should be considered as key regulators of signalling controlled by TLRs, and such regulation should be a major focus in terms of the anti-inflammatory propensity of the cannabinoid system.
Collapse
Affiliation(s)
- Melody Cui Sun
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Almudena Otálora-Alcaraz
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Jack A Prenderville
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Transpharmation Ireland Limited, Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Eric J Downer
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
7
|
Malik JA, Kaur G, Agrewala JN. Revolutionizing medicine with toll-like receptors: A path to strengthening cellular immunity. Int J Biol Macromol 2023; 253:127252. [PMID: 37802429 DOI: 10.1016/j.ijbiomac.2023.127252] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Toll-like receptors play a vital role in cell-mediated immunity, which is crucial for the immune system's defense against pathogens and maintenance of homeostasis. The interaction between toll-like-receptor response and cell-mediated immunity is complex and essential for effectively eliminating pathogens and maintaining immune surveillance. In addition to pathogen recognition, toll-like receptors serve as adjuvants in vaccines, as molecular sensors, and recognize specific patterns associated with pathogens and danger signals. Incorporating toll-like receptor ligands into vaccines can enhance the immune response to antigens, making them potent adjuvants. Furthermore, they bridge the innate and adaptive immune systems and improve antigen-presenting cells' capacity to process and present antigens to T cells. The intricate signaling pathways and cross-talk between toll-like-receptor and T cell receptor (TCR) signaling emphasize their pivotal role in orchestrating effective immune responses against pathogens, thus facilitating the development of innovative vaccine strategies. This article provides an overview of the current understanding of toll-like receptor response and explores their potential clinical applications. By unraveling the complex mechanisms of toll-like-receptor signaling, we can gain novel insights into immune responses and potentially develop innovative therapeutic approaches. Ongoing investigations into the toll-like-receptor response hold promise in the future in enhancing our ability to combat infections, design effective vaccines, and improve clinical outcomes.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab 140001, India
| | - Gurpreet Kaur
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab 140001, India; Department of Biotechnology, Chandigarh Group of Colleges, Landran, Mohali, Punjab 140055, India
| | - Javed N Agrewala
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab 140001, India.
| |
Collapse
|