1
|
Tual M, Bellemare-Pelletier A, Moore S, Guipouy D, Farzam-Kia N, Jafarzadeh L, Quenneville J, Barrette B, Saba-El-Leil MK, Delisle JS, Gagnon E. MARC, a novel modular chimeric antigen receptor, improves T cell-based cancer immunotherapies by preventing early T cell exhaustion and enhancing persistence. J Immunother Cancer 2025; 13:e011829. [PMID: 40254394 PMCID: PMC12010287 DOI: 10.1136/jitc-2025-011829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Chimeric antigen receptor T cell (CAR-T)-based immunotherapies have reshaped the therapeutic landscape of cancer treatment, in particular for patients afflicted with leukemia. However, defects in CAR behaviors and clinical complications have hindered their widespread application across diverse cancer types. Chief among these defects is high tonic signaling, absent in native activating immune receptors, which accelerates T cell exhaustion and undermines treatment efficacy. We hypothesized that these limitations arise because current CAR architectures fail to replicate the modular design of native activating immune receptors, which integrate distinct receptor and signaling modules. This modular assembly is crucial for maintaining proper receptor regulation and function. METHODS Therefore, we set forth to develop a modular chimeric antigen receptor leveraging the same assembly principles found in native activating immune receptors to reestablish the intrinsic safeguards in receptor expression and signaling. RESULTS The resulting Modular Actuation Receptor Complex (MARC) displayed surface expression levels akin to its native immune receptor counterpart, the NK cell receptor KIR2DS3, while eliminating tonic signaling. In a clinically relevant mouse leukemia model, MARC-T cells exhibited remarkable long-term persistence and a less exhausted phenotype compared with conventional CAR-T cells. CONCLUSIONS With its modular architecture, the MARC offers unparalleled opportunities for optimization and broad applicability across different cell types, paving the way for transformative advancements in cell-based therapies. This innovation holds immense promise as a next-generation therapeutic tool in clinical settings.
Collapse
Affiliation(s)
- Margaux Tual
- Département de microbiologie, Université de Montréal, Montreal, Quebec, Canada
- Université de Montréal Institut de Recherche en Immunologie et en Cancérologie, Montréal, Québec, Canada
| | | | - Susan Moore
- Université de Montréal Institut de Recherche en Immunologie et en Cancérologie, Montréal, Québec, Canada
| | | | | | - Leila Jafarzadeh
- Médicine, Maisonneuve-Rosemont Hospital Research Centre, Montréal, Québec, Canada
| | - Jordan Quenneville
- Université de Montréal Institut de Recherche en Immunologie et en Cancérologie, Montréal, Québec, Canada
- Département de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Benoit Barrette
- Département de biologie et pathologie cellulaire, Université de Montréal, Montreal, Quebec, Canada
| | - Marc K Saba-El-Leil
- Université de Montréal Institut de Recherche en Immunologie et en Cancérologie, Montréal, Québec, Canada
| | | | - Etienne Gagnon
- Université de Montréal Institut de Recherche en Immunologie et en Cancérologie, Montréal, Québec, Canada
- Département de microbiobologie, infectriologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
2
|
Aguilar OA, Fong LK, Lanier LL. ITAM-based receptors in natural killer cells. Immunol Rev 2024; 323:40-53. [PMID: 38411263 PMCID: PMC11102329 DOI: 10.1111/imr.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
The ability of cells of the immune system to acquire features such as increased longevity and enhanced secondary responses was long thought to be restricted to cells of the adaptive immune system. Natural killer (NK) cells have challenged this notion by demonstrating that they can also gain adaptive features. This has been observed in both humans and mice during infection with cytomegalovirus (CMV). The generation of adaptive NK cells requires antigen-specific recognition of virally infected cells through stimulatory NK receptors. These receptors lack the ability to signal on their own and rather rely on adaptor molecules that contain ITAMs for driving signals. Here, we highlight our understanding of how these receptors influence the production of adaptive NK cells and propose areas in the field that merit further investigation.
Collapse
Affiliation(s)
- Oscar A. Aguilar
- Dept. of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California - San Francisco, San Francisco, CA, USA
| | - Lam-Kiu Fong
- Dept. of Pharmaceutical Chemistry, University of California – San Francisco, San Francisco, CA
| | - Lewis L. Lanier
- Dept. of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California - San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
T cell and B cell antigen receptors share a conserved core transmembrane structure. Proc Natl Acad Sci U S A 2022; 119:e2208058119. [PMID: 36409917 PMCID: PMC9860311 DOI: 10.1073/pnas.2208058119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The B cell and T cell antigen receptors (BCR and TCR) share a common architecture in which variable dimeric antigen-binding modules assemble with invariant dimeric signaling modules to form functional receptor complexes. In the TCR, a highly conserved T cell receptor αβ (TCRαβ) transmembrane (TM) interface forms a rigid structure around which its three dimeric signaling modules assemble through well-characterized polar interactions. Noting that the key features stabilizing this TCRαβ TM interface also appear with high evolutionary conservation in the TM sequences of the membrane immunoglobulin (mIg) heavy chains that form the BCR's homodimeric antigen-binding module, we asked whether the BCR contained an analogous TM structure. Using an unbiased biochemical and computational modeling approach, we found that the mouse IgM BCR forms a core TM structure that is remarkably similar to that of the TCR. This structure is reinforced by a network of interhelical hydrogen bonds, and our model is nearly identical to the arrangement observed in the just-released cryo-electron microscopy (cryo-EM) structures of intact human BCRs. Our biochemical analysis shows that the integrity of this TM structure is vital for stable assembly with the BCR signaling module CD79AB in the B cell endoplasmic reticulum, and molecular dynamics simulations indicate that BCRs of all five isotypes can form comparable structures. These results demonstrate that, despite their many differences in composition, complexity, and ligand type, TCRs and BCRs rely on a common core TM structure that has been shaped by evolution for optimal receptor assembly and stability in the cell membrane.
Collapse
|
4
|
Ben-Shmuel A, Sabag B, Puthenveetil A, Biber G, Levy M, Jubany T, Awwad F, Roy RK, Joseph N, Matalon O, Kivelevitz J, Barda-Saad M. Inhibition of SHP-1 activity by PKC-θ regulates NK cell activation threshold and cytotoxicity. eLife 2022; 11:73282. [PMID: 35258455 PMCID: PMC8903836 DOI: 10.7554/elife.73282] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/23/2022] [Indexed: 12/26/2022] Open
Abstract
Natural killer (NK) cells play a crucial role in immunity, killing virally infected and cancerous cells. The balance of signals initiated upon engagement of activating and inhibitory NK receptors with cognate ligands determines killing or tolerance. Nevertheless, the molecular mechanisms regulating rapid NK cell discrimination between healthy and malignant cells in a heterogeneous tissue environment are incompletely understood. The SHP-1 tyrosine phosphatase is the central negative NK cell regulator that dephosphorylates key activating signaling proteins. Though the mechanism by which SHP-1 mediates NK cell inhibition has been partially elucidated, the pathways by which SHP-1 is itself regulated remain unclear. Here, we show that phosphorylation of SHP-1 in NK cells on the S591 residue by PKC-θ promotes the inhibited SHP-1 ‘folded’ state. Silencing PKC-θ maintains SHP-1 in the active conformation, reduces NK cell activation and cytotoxicity, and promotes tumor progression in vivo. This study reveals a molecular pathway that sustains the NK cell activation threshold through suppression of SHP-1 activity.
Collapse
Affiliation(s)
- Aviad Ben-Shmuel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Batel Sabag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Abhishek Puthenveetil
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Guy Biber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Moria Levy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Tammir Jubany
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Fatima Awwad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Roshan Kumar Roy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Noah Joseph
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Jessica Kivelevitz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
5
|
Kratochvil HT, Newberry RW, Mensa B, Mravic M, DeGrado WF. Spiers Memorial Lecture: Analysis and de novo design of membrane-interactive peptides. Faraday Discuss 2021; 232:9-48. [PMID: 34693965 PMCID: PMC8979563 DOI: 10.1039/d1fd00061f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Membrane-peptide interactions play critical roles in many cellular and organismic functions, including protection from infection, remodeling of membranes, signaling, and ion transport. Peptides interact with membranes in a variety of ways: some associate with membrane surfaces in either intrinsically disordered conformations or well-defined secondary structures. Peptides with sufficient hydrophobicity can also insert vertically as transmembrane monomers, and many associate further into membrane-spanning helical bundles. Indeed, some peptides progress through each of these stages in the process of forming oligomeric bundles. In each case, the structure of the peptide and the membrane represent a delicate balance between peptide-membrane and peptide-peptide interactions. We will review this literature from the perspective of several biologically important systems, including antimicrobial peptides and their mimics, α-synuclein, receptor tyrosine kinases, and ion channels. We also discuss the use of de novo design to construct models to test our understanding of the underlying principles and to provide useful leads for pharmaceutical intervention of diseases.
Collapse
Affiliation(s)
- Huong T Kratochvil
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| | - Robert W Newberry
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| | - Bruk Mensa
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| | - Marco Mravic
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
6
|
Clark JC, Damaskinaki FN, Cheung YFH, Slater A, Watson SP. Structure-function relationship of the platelet glycoprotein VI (GPVI) receptor: does it matter if it is a dimer or monomer? Platelets 2021; 32:724-732. [PMID: 33634725 DOI: 10.1080/09537104.2021.1887469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 10/22/2022]
Abstract
GPVI is a critical signaling receptor responsible for collagen-induced platelet activation and a promising anti-thrombotic target in conditions such as coronary artery thrombosis, ischemic stroke, and atherothrombosis. This is due to the ability to block GPVI while having minimal effects on hemostasis, making it a more attractive target over current dual-antiplatelet therapy (DAPT) with acetyl salicylic acid and P2Y12 inhibitors where bleeding can be a problem. Our current understanding of how the structure of GPVI relates to function is inadequate and recent studies contradict each other. In this article, we summarize the structure-function relationships underlying the activation of GPVI by its major ligands, including collagen, fibrin(ogen), snake venom toxins and charged exogenous ligands such as diesel exhaust particles. We argue that contrary to popular belief dimerization of GPVI is not required for binding to collagen but serves to facilitate binding through increased avidity, and that GPVI is expressed as a mixture of monomers and dimers on resting platelets, with binding of multivalent ligands inducing higher order clustering.
Collapse
Affiliation(s)
- Joanne C Clark
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK
| | - Foteini-Nafsika Damaskinaki
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK
- School of Pharmacy, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, UK
| | - Yam Fung Hilaire Cheung
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Bioanalytics, Leibniz-Institut Für Analytische Wissenschaften - ISAS -e.v, Dortmund, Germany
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK
| |
Collapse
|
7
|
Elucidation of the molecular interactions that enable stable assembly and structural diversity in multicomponent immune receptors. Proc Natl Acad Sci U S A 2021; 118:2026318118. [PMID: 34155106 DOI: 10.1073/pnas.2026318118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multicomponent immune receptors are essential complexes in which distinct ligand-recognition and signaling subunits are held together by interactions between acidic and basic residues of their transmembrane helices. A 2:1 acidic-to-basic motif in the transmembrane domains of the subunits is necessary and sufficient to assemble these receptor complexes. Here, we study a prototype for these receptors, a DAP12-NKG2C 2:1 heterotrimeric complex, in which the two DAP12 subunits each contribute a single transmembrane Asp residue, and the NKG2C subunit contributes a Lys to form the complex. DAP12 can also associate with 20 other subunits using a similar motif. Here, we use molecular-dynamics simulations to understand the basis for the high affinity and diversity of interactions in this group of receptors. Simulations of the transmembrane helices with differing protonation states of the Asp-Asp-Lys triad identified a structurally stable interaction in which a singly-protonated Asp-Asp pair forms a hydrogen-bonded carboxyl-carboxylate clamp that clasps onto a charged Lys side chain. This polar motif was also supported by density functional theory and a Protein Data Bank-wide search. In contrast, the helices are dynamic at sites distal to the stable carboxyl-carboxylate clamp motif. Such a locally stable but globally dynamic structure is well suited to accommodate the sequence and structural variations in the transmembrane helices of multicomponent receptors, which mix and match subunits to create combinatorial functional diversity from a limited number of subunits. It also supports a signaling mechanism based on multisubunit clustering rather than propagation of rigid conformational changes through the membrane.
Collapse
|
8
|
Chandler NJ, Call MJ, Call ME. T Cell Activation Machinery: Form and Function in Natural and Engineered Immune Receptors. Int J Mol Sci 2020; 21:E7424. [PMID: 33050044 PMCID: PMC7582382 DOI: 10.3390/ijms21197424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
The impressive success of chimeric antigen receptor (CAR)-T cell therapies in treating advanced B-cell malignancies has spurred a frenzy of activity aimed at developing CAR-T therapies for other cancers, particularly solid tumors, and optimizing engineered T cells for maximum clinical benefit in many different disease contexts. A rapidly growing body of design work is examining every modular component of traditional single-chain CARs as well as expanding out into many new and innovative engineered immunoreceptor designs that depart from this template. New approaches to immune cell and receptor engineering are being reported with rapidly increasing frequency, and many recent high-quality reviews (including one in this special issue) provide comprehensive coverage of the history and current state of the art in CAR-T and related cellular immunotherapies. In this review, we step back to examine our current understanding of the structure-function relationships in natural and engineered lymphocyte-activating receptors, with an eye towards evaluating how well the current-generation CAR designs recapitulate the most desirable features of their natural counterparts. We identify key areas that we believe are under-studied and therefore represent opportunities to further improve our grasp of form and function in natural and engineered receptors and to rationally design better therapeutics.
Collapse
Affiliation(s)
- Nicholas J. Chandler
- Structural Biology Division, Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; (N.J.C.); (M.J.C.)
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Melissa J. Call
- Structural Biology Division, Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; (N.J.C.); (M.J.C.)
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Matthew E. Call
- Structural Biology Division, Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; (N.J.C.); (M.J.C.)
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
9
|
Tang W, Wang C, Zhou Y, Luo J, Ye T, Yang B. Hydrocarbon-stapling stabilization of the reduced homodimerization interaction of hepatic cancer DAP12 transmembrane domain in water phase. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-019-01016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Dube N, Marzinek JK, Glen RC, Bond PJ. The structural basis for membrane assembly of immunoreceptor signalling complexes. J Mol Model 2019; 25:277. [PMID: 31456056 DOI: 10.1007/s00894-019-4165-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/15/2019] [Indexed: 11/25/2022]
Abstract
Immunoreceptors are TM complexes that consist of separate ligand-binding and signal-transducing modules. Mounting evidence suggests that interactions with the local environment may influence the architecture of these TM domains, which assemble via crucial sets of conserved ionisable residues, and also control the peripheral association of immunoreceptor tyrosine-based activation motifs (ITAMs) whose phosphorylation triggers cytoplasmic signalling cascades. We now report a molecular dynamics (MD) simulation study of the archetypal T cell receptor (TCR) and its cluster of differentiation 3 (CD3) signalling partners, along with the analogous DNAX-activation protein of 12 kDa (DAP12)/natural killer group 2C (NKG2C) complex. Based on > 15 μs of explicitly solvated, atomic-resolution sampling, we explore molecular aspects of immunoreceptor complex stability in different functionally relevant states. A novel alchemical approach is used to simulate the cytoplasmic CD3ε tail at different depths within lipid bilayer models, revealing that the conformation and cytoplasmic exposure of ITAMs are highly sensitive to local enrichment by different lipid species and to phosphorylation. Furthermore, simulations of the TCR and DAP12 TM domains in various states of oligomerisation suggest that, during the early stages of assembly, stable membrane insertion is facilitated by the interfacial lipid/solvent environment and/or partial ionisation of charged residues. Collectively, our results indicate that the architecture and mechanisms of signal transduction in immunoreceptor complexes are tightly regulated by interactions with the microenvironment.
Collapse
Affiliation(s)
- Namita Dube
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500107, India
| | - Jan K Marzinek
- Bioinformatics Institute (A*STAR), 30 Biopolis Str., #07-01 Matrix, Singapore, 138671, Singapore
| | - Robert C Glen
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Peter J Bond
- Bioinformatics Institute (A*STAR), 30 Biopolis Str., #07-01 Matrix, Singapore, 138671, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| |
Collapse
|
11
|
Connolly A, Gagnon E. Electrostatic interactions: From immune receptor assembly to signaling. Immunol Rev 2019; 291:26-43. [DOI: 10.1111/imr.12769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Audrey Connolly
- Institut de Recherche en Immunologie et Cancérologie/Institute for Research in Immunology and Cancer Montréal Québec Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine Université de Montréal Montréal Québec Canada
| | - Etienne Gagnon
- Institut de Recherche en Immunologie et Cancérologie/Institute for Research in Immunology and Cancer Montréal Québec Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine Université de Montréal Montréal Québec Canada
| |
Collapse
|
12
|
Ben-Shmuel A, Joseph N, Sabag B, Barda-Saad M. Lymphocyte mechanotransduction: The regulatory role of cytoskeletal dynamics in signaling cascades and effector functions. J Leukoc Biol 2019; 105:1261-1273. [DOI: 10.1002/jlb.mr0718-267r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| | - Noah Joseph
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| | - Batel Sabag
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| |
Collapse
|
13
|
Slater A, Perrella G, Onselaer MB, Martin EM, Gauer JS, Xu RG, Heemskerk JWM, Ariëns RAS, Watson SP. Does fibrin(ogen) bind to monomeric or dimeric GPVI, or not at all? Platelets 2018; 30:281-289. [DOI: 10.1080/09537104.2018.1508649] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Gina Perrella
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, The Netherlands
| | - Marie-Blanche Onselaer
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Eleyna M Martin
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Julia S Gauer
- Thrombosis and Tissue Repair Group, Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Rui-Gang Xu
- Thrombosis and Tissue Repair Group, Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Johan WM Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, The Netherlands
| | - Robert A S Ariëns
- Thrombosis and Tissue Repair Group, Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
14
|
Transmembrane features governing Fc receptor CD16A assembly with CD16A signaling adaptor molecules. Proc Natl Acad Sci U S A 2017; 114:E5645-E5654. [PMID: 28652325 DOI: 10.1073/pnas.1706483114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many activating immunoreceptors associate with signaling adaptor molecules like FcεR1γ or CD247. FcεR1γ and CD247 share high sequence homology and form disulphide-linked homodimers that contain a pair of acidic aspartic acid residues in their transmembrane (TM) domains that mediate assembly, via interaction with an arginine residue at a similar register to these aspartic acids, with the activating immunoreceptors. However, this model cannot hold true for receptors like CD16A, whose TM domains do not contain basic residues. We have carried out an extensive site-directed mutagenesis analysis of the CD16A receptor complex and now report that the association of receptor with the signaling adaptor depends on a network of polar and aromatic residues along the length of the TM domain. Molecular modeling indicates that CD16A TM residues F202, D205, and T206 form the core of the membrane-embedded trimeric interface by establishing highly favorable contacts to the signaling modules through rearrangement of a hydrogen bond network previously identified in the CD247 TM dimer solution NMR structure. Strikingly, the amino acid D205 also regulates the turnover and surface expression of CD16A in the absence of FcεR1γ or CD247. Modeling studies indicate that similar features underlie the association of other activating immune receptors, including CD64 and FcεR1α, with signaling adaptor molecules, and we confirm experimentally that equivalent F, D, and T residues in the TM domain of FcεR1α markedly influence the biology of this receptor and its association with FcεR1γ.
Collapse
|
15
|
Abstract
Triggering of cell-mediated immunity is largely dependent on the recognition of foreign or abnormal molecules by a myriad of cell surface-bound receptors. Many activating immune receptors do not possess any intrinsic signaling capacity but instead form noncovalent complexes with one or more dimeric signaling modules that communicate with a common set of kinases to initiate intracellular information-transfer pathways. This modular architecture, where the ligand binding and signaling functions are detached from one another, is a common theme that is widely employed throughout the innate and adaptive arms of immune systems. The evolutionary advantages of this highly adaptable platform for molecular recognition are visible in the variety of ligand-receptor interactions that can be linked to common signaling pathways, the diversification of receptor modules in response to pathogen challenges, and the amplification of cellular responses through incorporation of multiple signaling motifs. Here we provide an overview of the major classes of modular activating immune receptors and outline the current state of knowledge regarding how these receptors assemble, recognize their ligands, and ultimately trigger intracellular signal transduction pathways that activate immune cell effector functions.
Collapse
Affiliation(s)
- Richard Berry
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University , Clayton, Victoria 3800, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University , Clayton, Victoria 3800, Australia
| | - Matthew E Call
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research , Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne , Parkville, Victoria 3052, Australia
| |
Collapse
|
16
|
A conserved αβ transmembrane interface forms the core of a compact T-cell receptor-CD3 structure within the membrane. Proc Natl Acad Sci U S A 2016; 113:E6649-E6658. [PMID: 27791034 DOI: 10.1073/pnas.1611445113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The T-cell antigen receptor (TCR) is an assembly of eight type I single-pass membrane proteins that occupies a central position in adaptive immunity. Many TCR-triggering models invoke an alteration in receptor complex structure as the initiating event, but both the precise subunit organization and the pathway by which ligand-induced alterations are transferred to the cytoplasmic signaling domains are unknown. Here, we show that the receptor complex transmembrane (TM) domains form an intimately associated eight-helix bundle organized by a specific interhelical TCR TM interface. The salient features of this core structure are absolutely conserved between αβ and γδ TCR sequences and throughout vertebrate evolution, and mutations at key interface residues caused defects in the formation of stable TCRαβ:CD3δε:CD3γε:ζζ complexes. These findings demonstrate that the eight TCR-CD3 subunits form a compact and precisely organized structure within the membrane and provide a structural basis for further investigation of conformationally regulated models of transbilayer TCR signaling.
Collapse
|
17
|
Transmembrane Complexes of DAP12 Crystallized in Lipid Membranes Provide Insights into Control of Oligomerization in Immunoreceptor Assembly. Cell Rep 2015; 11:1184-92. [PMID: 25981043 DOI: 10.1016/j.celrep.2015.04.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/09/2015] [Accepted: 04/21/2015] [Indexed: 11/20/2022] Open
Abstract
The membrane-spanning α helices of single-pass receptors play crucial roles in stabilizing oligomeric structures and transducing biochemical signals across the membrane. Probing intermolecular transmembrane interactions in single-pass receptors presents unique challenges, reflected in a gross underrepresentation of their membrane-embedded domains in structural databases. Here, we present two high-resolution structures of transmembrane assemblies from a eukaryotic single-pass protein crystallized in a lipidic membrane environment. Trimeric and tetrameric structures of the immunoreceptor signaling module DAP12, determined to 1.77-Å and 2.14-Å resolution, respectively, are organized by the same polar surfaces that govern intramembrane assembly with client receptors. We demonstrate that, in addition to the well-studied dimeric form, these trimeric and tetrameric structures are made in cells, and their formation is competitive with receptor association in the ER. The polar transmembrane sequences therefore act as primary determinants of oligomerization specificity through interplay between charge shielding and sequestration of polar surfaces within helix interfaces.
Collapse
|
18
|
Wei P, Xu L, Li CD, Sun FD, Chen L, Tan T, Luo SZ. Molecular dynamic simulation of the self-assembly of DAP12-NKG2C activating immunoreceptor complex. PLoS One 2014; 9:e105560. [PMID: 25148259 PMCID: PMC4141757 DOI: 10.1371/journal.pone.0105560] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/24/2014] [Indexed: 01/26/2023] Open
Abstract
The DAP12-NKG2C activating immunoreceptor complex is one of the multisubunit transmembrane protein complexes in which ligand-binding receptor chains assemble with dimeric signal-transducing modules through non-covalent associations in their transmembrane (TM) domains. In this work, both coarse grained and atomistic molecular dynamic simulation methods were applied to investigate the self-assembly dynamics of the transmembrane domains of the DAP12-NKG2C activating immunoreceptor complex. Through simulating the dynamics of DAP12-NKG2C TM heterotrimer and point mutations, we demonstrated that a five-polar-residue motif including: 2 Asps and 2 Thrs in DAP12 dimer, as well as 1 Lys in NKG2C TM plays an important role in the assembly structure of the DAP12-NKG2C TM heterotrimer. Furthermore, we provided clear evidences to exclude the possibility that another NKG2C could stably associate with the DAP12-NKG2C heterotrimer. Based on the simulation results, we proposed a revised model for the self-assembly of DAP12-NKG2C activating immunoreceptor complex, along with a plausible explanation for the association of only one NKG2C with a DAP12 dimer.
Collapse
Affiliation(s)
- Peng Wei
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Lida Xu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Cheng-Dong Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Fu-De Sun
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Long Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Tianwei Tan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
19
|
The structure of the CD3ζζ transmembrane dimer in lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:739-46. [PMID: 24333300 DOI: 10.1016/j.bbamem.2013.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 11/23/2022]
Abstract
Virtually every aspect of the human adaptive immune response is controlled by T cells. The T cell receptor (TCR) complex is responsible for the recognition of foreign peptide sequences, forming the initial step in the elimination of germ-infected cells. The recognition leads to an extracellular conformational change that is transmitted intracellularly through the Cluster of Differentiation 3 (CD3) subunits of the TCR-CD3 complex. Here we address the interplay between the disulfide-linked CD3ζζ dimer, an essential signaling component of the TCR-CD3 complex, and its lipidic environment. The disulfide bond formation requires the absolute presence of a nearby conserved aspartic acid, a fact that has mystified the scientific community. We use atomistic simulation methods to demonstrate that the conserved aspartic acid pair of the CD3ζζ dimer leads to a deformation of the membrane. This deformation changes the local environment of the cysteines and promotes disulfide bond formation. We also investigate the role of a conserved Tyr, highlighting its possible role in the interaction with other transmembrane components of the TCR-CD3 complex.
Collapse
|
20
|
Identification and diversity of killer cell Ig-like receptors in Aotus vociferans, a New World monkey. PLoS One 2013; 8:e79731. [PMID: 24223188 PMCID: PMC3819253 DOI: 10.1371/journal.pone.0079731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/03/2013] [Indexed: 11/19/2022] Open
Abstract
Previous BAC clone analysis of the Platyrrhini owl monkey KIRs have shown an unusual genetic structure in some loci. Therefore, cDNAs encoding KIR molecules from eleven Aotus vociferans monkeys were characterized here; ten putative KIR loci were found, some of which encoded atypical proteins such as KIR4DL and transcripts predicted to encode a D0+D1 configuration (AOTVOKIR2DL1*01v1) which appear to be unique in the Aotus genus. Furthermore, alternative splicing was found as a likely mechanism for producing activator receptors in A. vociferans species. KIR proteins from New World monkeys may be split into three new lineages according to domain by domain phylogenetic analysis. Although the A. vociferans KIR family displayed a high divergence among paralogous genes, individual loci were limited in their genetic polymorphism. Selection analysis showed that both constrained and rapid evolution may operate within the AvKIR family. The frequent alternative splicing (as a likely mechanism generating activator receptors), the presence of KIR4DL and KIR2DL1 (D0+D1) molecules and other data reported here suggest that the KIR family in Aotus has had a rapid evolution, independent from its Catarrhini counterparts.
Collapse
|
21
|
Sharma S, Juffer AH. An atomistic model for assembly of transmembrane domain of T cell receptor complex. J Am Chem Soc 2013; 135:2188-97. [PMID: 23320396 DOI: 10.1021/ja308413e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The T cell receptor (TCR) together with accessory cluster of differentiation 3 (CD3) molecules (TCR-CD3 complex) is a key component in the primary function of T cells. The nature of association of the transmembrane domains is of central importance to the assembly of the complex and is largely unknown. Using multiscale molecular modeling and simulations, we have investigated the structure and assembly of the TCRα-CD3ε-CD3δ transmembrane domains both in membrane and in micelle environments. We demonstrate that in a membrane environment the transmembrane basic residue of the TCR closely interacts with both of the transmembrane acidic residues of the CD3 dimer. In contrast, in a micelle the basic residue interacts with only one of the acidic residues. Simulations of a recent micellar nuclear magnetic resonance structure of the natural killer (NK) cell-activating NKG2C-DAP12-DAP12 trimer in a membrane further indicate that the environment significantly affects the way these trimers associate. Since the currently accepted model for transmembrane association is entirely based on a micellar structure, we propose a revised model for the association of transmembrane domains of the activating immune receptors in a membrane environment.
Collapse
Affiliation(s)
- Satyan Sharma
- Biocenter Oulu and Department of Biochemistry, University of Oulu, P.O. Box 3000, Oulu FI-90014, Finland
| | | |
Collapse
|
22
|
Garcia KC. Reconciling views on T cell receptor germline bias for MHC. Trends Immunol 2012; 33:429-36. [PMID: 22771140 PMCID: PMC3983780 DOI: 10.1016/j.it.2012.05.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/13/2012] [Accepted: 05/13/2012] [Indexed: 01/25/2023]
Abstract
Whether MHC restriction by the T cell receptor (TCR) is a product of evolutionary pressures leading to germline-encoded 'rules of engagement' remains avidly debated. Structural results derived from analysis of TCR-peptide-MHC complexes appear to support a model of physical specificity between TCR germline V regions and MHC. Yet, some recent evidence suggests that thymic selection, and co-receptors may have misled us into thinking the TCR is exclusively MHC-specific, when in fact, TCRs can robustly engage non-MHC ligands when given the chance. Here, I propose that seemingly contradictory data and hypotheses for, and against, germline bias are, in fact, compatible and can be reconciled into a unifying model.
Collapse
Affiliation(s)
- K Christopher Garcia
- Howard Hughes Medical Institute, Department of Molecular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
23
|
Jung SM, Moroi M, Soejima K, Nakagaki T, Miura Y, Berndt MC, Gardiner EE, Howes JM, Pugh N, Bihan D, Watson SP, Farndale RW. Constitutive dimerization of glycoprotein VI (GPVI) in resting platelets is essential for binding to collagen and activation in flowing blood. J Biol Chem 2012; 287:30000-13. [PMID: 22773837 PMCID: PMC3436176 DOI: 10.1074/jbc.m112.359125] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/15/2012] [Indexed: 11/06/2022] Open
Abstract
The platelet collagen receptor glycoprotein VI (GPVI) has been suggested to function as a dimer, with increased affinity for collagen. Dissociation constants (K(d)) obtained by measuring recombinant GPVI binding to collagenous substrates showed that GPVI dimers bind with high affinity to tandem GPO (Gly-Pro-Hyp) sequences in collagen, whereas the markedly lower affinity of the monomer for all substrates implies that it is not the collagen-binding form of GPVI. Dimer binding required a high density of immobilized triple-helical (GPO)(10)-containing peptide, suggesting that the dimer binds multiple, discrete peptide helices. Differential inhibition of dimer binding by dimer-specific antibodies, m-Fab-F and 204-11 Fab, suggests that m-Fab-F binds at the collagen-binding site of the dimer, and 204-11 Fab binds to a discrete site. Flow cytometric quantitation indicated that GPVI dimers account for ~29% of total GPVI in resting platelets, whereas activation by either collagen-related peptide or thrombin increases the number of dimers to ~39 and ~44%, respectively. m-Fab-F inhibits both GPVI-dependent static platelet adhesion to collagen and thrombus formation on collagen under low and high shear, indicating that pre-existing dimeric GPVI is required for the initial interaction with collagen because affinity of the monomer is too low to support binding and that interaction through the dimer is essential for platelet activation. These GPVI dimers in resting circulating platelets will enable them to bind injury-exposed subendothelial collagen to initiate platelet activation. The GPVI-specific agonist collagen-related peptide or thrombin further increases the number of dimers, thereby providing a feedback mechanism for reinforcing binding to collagen and platelet activation.
Collapse
Affiliation(s)
- Stephanie M Jung
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sigalov AB. Interplay Between Protein Order, Disorder and Oligomericity in Receptor Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 725:50-73. [DOI: 10.1007/978-1-4614-0659-4_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Saether PC, Hoelsbrekken SE, Fossum S, Dissen E. Rat and Mouse CD94 Associate Directly with the Activating Transmembrane Adaptor Proteins DAP12 and DAP10 and Activate NK Cell Cytotoxicity. THE JOURNAL OF IMMUNOLOGY 2011; 187:6365-73. [DOI: 10.4049/jimmunol.1102345] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Freeman KW, Bowman BR, Zetter BR. Regenerative protein thymosin beta-4 is a novel regulator of purinergic signaling. FASEB J 2011; 25:907-15. [PMID: 21106936 DOI: 10.1096/fj.10-169417] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
By an unknown mechanism, β-thymosins are extracellular modulators of angiogenesis, inflammation, wound healing, and development. We were interested in identifying β-thymosin interactors and determining their importance in β-thymosins signaling in human vein endothelial cells (HUVECs). We performed pulldown experiments with biotinylated thymosin β-4 (Tβ4) in comparison to neutravidin beads alone and used mass spectrometric analysis to identify differentially interacting proteins. By this method, we identified F1-F0 ATP synthase, a known target of antiangiogenic angiostatin. By surface plasmon resonance, we determined for Tβ4 binding to the β subunit of ATP synthase a K(D) of 12 nM. Blocking antibodies and antagonists (oligomycin, IC(50) ∼1.8 μM; piceatannol, IC(50) ∼1.05 μM; and angiostatin, IC(50) ∼2.9 μg/ml) of ATP synthase inhibited the Tβ4-induced increase in cell surface ATP levels, as measured by luciferase assay, and the Tβ4-induced increase in HUVEC migration, as measured by transwell migration assay. Silencing of the ATP-responsive purinergic receptor P2X4 with siRNA also blocked Tβ4-induced HUVEC migration in a transwell assay. Furthermore, in silico we identified common amphiphilic α-helical structural similarities between β-thymosins and the inhibitory factor 1 (IF1), an inhibitor of ATP synthase hydrolysis. In summary, we have identified an extracellular signaling pathway where Tβ4 increases cell surface ATP levels via ATP synthase and have shown further that ATP-responsive P2X4 receptor is required for Tβ4-induced HUVEC migration.
Collapse
Affiliation(s)
- Kevin W Freeman
- Vascular Biology Program and Department of Surgery, Children's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
27
|
Campbell KS, Purdy AK. Structure/function of human killer cell immunoglobulin-like receptors: lessons from polymorphisms, evolution, crystal structures and mutations. Immunology 2011; 132:315-25. [PMID: 21214544 DOI: 10.1111/j.1365-2567.2010.03398.x] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Stimulation or tolerance of natural killer (NK) cells is achieved through a cross-talk of signals derived from cell surface activating and inhibitory receptors. Killer cell immunoglobulin-like receptors (KIR) are a family of highly polymorphic activating and inhibitory receptors that serve as key regulators of human NK cell function. Distinct structural domains in different KIR family members determine function by providing docking sites for ligands or signalling proteins. Here, we review a growing body of literature that has identified important structural elements on KIR that contribute to function through studies of engineered mutants, natural polymorphic sequence variants, crystal structure data and the conservation of protein sequences throughout primate evolution. Extensive natural polymorphism is associated with both human KIR and their ligands, MHC class I (HLA-A, -B and -C) molecules, and numerous studies have demonstrated associations between inheritance of certain combinations of KIR and HLA genes and susceptibility to several diseases, including viral infections, autoimmune disorders and cancers. In addition, certain KIR/HLA combinations can influence pregnancy and the outcome of haematopoietic stem cell transplantation. In view of the significant regulatory influences of KIR on immune function and human health, it is essential to fully understand the impacts of these polymorphic sequence variations on ligand recognition, expression and function of the receptor.
Collapse
Affiliation(s)
- Kerry S Campbell
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | |
Collapse
|
28
|
Call ME, Chou JJ. A view into the blind spot: solution NMR provides new insights into signal transduction across the lipid bilayer. Structure 2010; 18:1559-69. [PMID: 21134635 PMCID: PMC3108049 DOI: 10.1016/j.str.2010.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 11/15/2010] [Accepted: 11/16/2010] [Indexed: 01/29/2023]
Abstract
One of the most fundamental problems in cell biology concerns how cells communicate with their surroundings through surface receptors. The last few decades have seen major advances in understanding the mechanisms of receptor-ligand recognition and the biochemical consequences of such encounters. This review describes the emergence of solution nuclear magnetic resonance (NMR) spectroscopy as a powerful tool for the structural characterization of membrane-associated protein domains involved in transmembrane signaling. We highlight particularly instructive examples from the fields of immunoreceptor biology, growth hormone signaling, and cell adhesion. These signaling complexes comprise multiple subunits each spanning the membrane with a single helical segment that links extracellular ligand-binding domains to the cell interior. The apparent simplicity of this domain organization belies the complexity involved in cooperative assembly of functional structures that translate information across the cellular boundary.
Collapse
Affiliation(s)
- Matthew E. Call
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - James J. Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
29
|
Call ME, Wucherpfennig KW, Chou JJ. The structural basis for intramembrane assembly of an activating immunoreceptor complex. Nat Immunol 2010; 11:1023-9. [PMID: 20890284 PMCID: PMC3215083 DOI: 10.1038/ni.1943] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 09/09/2010] [Indexed: 11/09/2022]
Abstract
Many receptors that activate cells of the immune system are multisubunit membrane protein complexes in which ligand recognition and signaling functions are contributed by separate protein modules. Receptors and signaling subunits assemble through contacts among basic and acidic residues in their transmembrane domains to form the functional complexes. Here we report the nuclear magnetic resonance (NMR) structure of the membrane-embedded, heterotrimeric assembly formed by association of the DAP12 signaling module with the natural killer (NK) cell-activating receptor NKG2C. The main intramembrane contact site is formed by a complex electrostatic network involving five hydrophilic transmembrane residues. Functional mutagenesis demonstrated that similar polar intramembrane motifs are also important for assembly of the NK cell-activating NKG2D-DAP10 complex and the T cell antigen receptor (TCR)-invariant signaling protein CD3 complex. This structural motif therefore lies at the core of the molecular organization of many activating immunoreceptors.
Collapse
Affiliation(s)
- Matthew E Call
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
30
|
Sigalov AB. The SCHOOL of nature: IV. Learning from viruses. SELF/NONSELF 2010; 1:282-298. [PMID: 21487503 PMCID: PMC3062383 DOI: 10.4161/self.1.4.13279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/04/2010] [Accepted: 08/05/2010] [Indexed: 02/05/2023]
Abstract
During the co-evolution of viruses and their hosts, the latter have equipped themselves with an elaborate immune system to defend themselves from the invading viruses. In order to establish a successful infection, replicate and persist in the host, viruses have evolved numerous strategies to counter and evade host antiviral immune responses as well as exploit them for productive viral replication. These strategies include those that modulate signaling mediated by cell surface receptors. Despite tremendous advancement in recent years, the exact molecular mechanisms underlying these critical points in viral pathogenesis remain unknown. In this work, based on a novel platform of receptor signaling, the Signaling Chain HOmoOLigomerization (SCHOOL) platform, I suggest specific mechanisms used by different viruses such as human immunodeficiency virus (HIV), cytomegalovirus (CMV), severe acute respiratory syndrome coronavirus, human herpesvirus 6 and others, to modulate receptor signaling. I also use the example of HIV and CMV to illustrate how two unrelated enveloped viruses use a similar SCHOOL mechanism to modulate the host immune response mediated by two functionally different receptors: T cell antigen receptor and natural killer cell receptor, NKp30. This suggests that it is very likely that similar general mechanisms can be or are used by other viral and possibly non-viral pathogens. Learning from viruses how to target cell surface receptors not only helps us understand viral strategies to escape from the host immune surveillance, but also provides novel avenues in rational drug design and the development of new therapies for immune disorders.
Collapse
|
31
|
Sigalov AB. The SCHOOL of nature: III. From mechanistic understanding to novel therapies. SELF/NONSELF 2010; 1:192-224. [PMID: 21487477 PMCID: PMC3047783 DOI: 10.4161/self.1.3.12794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/10/2010] [Accepted: 06/11/2010] [Indexed: 11/19/2022]
Abstract
Protein-protein interactions play a central role in biological processes and thus represent an appealing target for innovative drug design and development. They can be targeted by small molecule inhibitors, modulatory peptides and peptidomimetics, which represent a superior alternative to protein therapeutics that carry many disadvantages. Considering that transmembrane signal transduction is an attractive process to therapeutically control multiple diseases, it is fundamentally and clinically important to mechanistically understand how signal transduction occurs. Uncovering specific protein-protein interactions critical for signal transduction, a general platform for receptor-mediated signaling, the signaling chain homooligomerization (SCHOOL) platform, suggests these interactions as universal therapeutic targets. Within the platform, the general principles of signaling are similar for a variety of functionally unrelated receptors. This suggests that global therapeutic strategies targeting key protein-protein interactions involved in receptor triggering and transmembrane signal transduction may be used to treat a diverse set of diseases. This also assumes that clinical knowledge and therapeutic strategies can be transferred between seemingly disparate disorders, such as T cell-mediated skin diseases and platelet disorders or combined to develop novel pharmacological approaches. Intriguingly, human viruses use the SCHOOL-like strategies to modulate and/or escape the host immune response. These viral mechanisms are highly optimized over the millennia, and the lessons learned from viral pathogenesis can be used practically for rational drug design. Proof of the SCHOOL concept in the development of novel therapies for atopic dermatitis, rheumatoid arthritis, cancer, platelet disorders and other multiple indications with unmet needs opens new horizons in therapeutics.
Collapse
|
32
|
Abstract
SUMMARY The glycoprotein VI (GPVI)-FcR gamma-chain complex initiates powerful activation of platelets by the subendothelial matrix proteins collagen and laminin through an immunoreceptor tyrosine-based activation motif (ITAM)-regulated signaling pathway. ITAMs are characterized by two YxxL sequences separated by 6-12 amino acids and are found associated with several classes of immunoglobulin (Ig) and C-type lectin receptors in hematopoietic cells, including Fc receptors. Cross-linking of the Ig GPVI leads to phosphorylation of two conserved tyrosines in the FcR gamma-chain ITAM by Src family tyrosine kinases, followed by binding and activation of the tandem SH2 domain-containing Syk tyrosine kinase and stimulation of a downstream signaling cascade that culminates in activation of phospholipase Cgamma2 (PLCgamma2). In contrast, the C-type lectin receptor CLEC-2 mediates powerful platelet activation through Src and Syk kinases, but regulates Syk through a novel dimerization mechanism via a single YxxL motif known as a hemITAM. CLEC-2 is a receptor for podoplanin, which is expressed at high levels in several tissues, including type 1 lung alveolar cells, lymphatic endothelial cells, kidney podocytes and some tumors, but is absent from vascular endothelial cells and platelets. In this article, we compare the mechanism of platelet activation by GPVI and CLEC-2 and consider their functional roles in hemostasis and other vascular processes, including maintenance of vascular integrity, angiogenesis and lymphogenesis.
Collapse
Affiliation(s)
- S P Watson
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | | | | |
Collapse
|
33
|
Platzer B, Fiebiger E. The signal peptide of the IgE receptor alpha-chain prevents surface expression of an immunoreceptor tyrosine-based activation motif-free receptor pool. J Biol Chem 2010; 285:15314-15323. [PMID: 20304923 PMCID: PMC2865261 DOI: 10.1074/jbc.m110.104281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 02/22/2010] [Indexed: 01/02/2023] Open
Abstract
The high affinity receptor for IgE, Fc epsilon receptor I (FcepsilonRI), is an activating immune receptor and key regulator of allergy. Antigen-mediated cross-linking of IgE-loaded FcepsilonRI alpha-chains induces cell activation via immunoreceptor tyrosine-based activation motifs in associated signaling subunits, such as FcepsilonRI gamma-chains. Here we show that the human FcepsilonRI alpha-chain can efficiently reach the cell surface by itself as an IgE-binding receptor in the absence of associated signaling subunits when the endogenous signal peptide is swapped for that of murine major histocompatibility complex class-I H2-K(b). This single-chain isoform of FcepsilonRI exited the endoplasmic reticulum (ER), trafficked to the Golgi and, subsequently, trafficked to the cell surface. Mutational analysis showed that the signal peptide regulates surface expression in concert with other described ER retention signals of FcepsilonRI-alpha. Once the FcepsilonRI alpha-chain reached the cell surface by itself, it formed a ligand-binding receptor that stabilized upon IgE contact. Independently of the FcepsilonRI gamma-chain, this single-chain FcepsilonRI was internalized after receptor cross-linking and trafficked into a LAMP-1-positive lysosomal compartment like multimeric FcepsilonRI. These data suggest that the single-chain isoform is capable of shuttling IgE-antigen complexes into antigen loading compartments, which plays an important physiologic role in the initiation of immune responses toward allergens. We propose that, in addition to cytosolic and transmembrane ER retention signals, the FcepsilonRI alpha-chain signal peptide contains a negative regulatory signal that prevents expression of an immunoreceptor tyrosine-based activation motif-free IgE receptor pool, which would fail to induce cell activation.
Collapse
Affiliation(s)
- Barbara Platzer
- Department of Medicine, Division of Gastroenterology and Nutrition, Children's Hospital Boston, Boston, Massachusetts 02115
| | - Edda Fiebiger
- Department of Medicine, Division of Gastroenterology and Nutrition, Children's Hospital Boston, Boston, Massachusetts 02115.
| |
Collapse
|
34
|
Sigalov AB. The SCHOOL of nature: II. Protein order, disorder and oligomericity in transmembrane signaling. SELF/NONSELF 2010; 1:89-102. [PMID: 21487511 PMCID: PMC3065667 DOI: 10.4161/self.1.2.11590] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 02/20/2010] [Accepted: 02/22/2010] [Indexed: 11/19/2022]
Abstract
Recent reports have revealed that many proteins that do not adopt globular structures under native conditions, thus termed intrinsically disordered proteins (IDPs), are involved in cell signaling. Intriguingly, physiologically relevant oligomerization of IDPs has been recently observed and shown to exhibit unique biophysical characteristics, including the lack of significant changes in chemical shift and peak intensity upon binding. In this work, I summarize several distinct features of protein disorder that are especially important as related to receptor-mediated transmembrane signal transduction. I also hypothesize that interactions of IDPs with their protein or lipid partners represent a general biphasic process with the "no disorder-to-order" fast interaction which, depending on the interacting partner, may or may not be accompanied by the slow formation of a secondary structure. Further, I suggest signaling-related functional connections between protein order, disorder, and oligomericity and hypothesize that receptor oligomerization induced or tuned upon ligand binding outside the cell is translated across the membrane into protein oligomerization inside the cell, thus providing a general platform, the Signaling Chain HOmoOLigomerization (SCHOOL) platform, for receptor-mediated signaling. This structures our current multidisciplinary knowledge and views of the mechanisms governing the coupling of recognition to signal transduction and cell response. Importantly, this approach not only reveals previously unrecognized striking similarities in the basic mechanistic principles of function of numerous functionally diverse and unrelated surface membrane receptors, but also suggests the similarity between therapeutic targets, thus opening new horizons for both fundamental and clinically relevant studies.
Collapse
|
35
|
Structural biology of the T-cell receptor: insights into receptor assembly, ligand recognition, and initiation of signaling. Cold Spring Harb Perspect Biol 2010; 2:a005140. [PMID: 20452950 DOI: 10.1101/cshperspect.a005140] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The T-cell receptor (TCR)-CD3 complex serves as a central paradigm for general principles of receptor assembly, ligand recognition, and signaling in the immune system. There is no other receptor system that matches the diversity of both receptor and ligand components. The recent expansion of the immunological structural database is beginning to identify key principles of MHC and peptide recognition. The multicomponent assembly of the TCR complex illustrates general principles used by many receptors in the immune system, which rely on basic and acidic transmembrane residues to guide assembly. The intrinsic binding of the cytoplasmic domains of the CD3epsilon and zeta chains to the inner leaflet of the plasma membrane represents a novel mechanism for control of receptor activation: Insertion of critical CD3epsilon tyrosines into the hydrophobic membrane core prevents their phosphorylation before receptor engagement.
Collapse
|
36
|
Kruse PH, Rosner C, Walter L. Characterization of rhesus macaque KIR genotypes and haplotypes. Immunogenetics 2010; 62:281-93. [PMID: 20195593 DOI: 10.1007/s00251-010-0433-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 02/08/2010] [Indexed: 12/22/2022]
Abstract
Certain combinations of the killer immunoglobulin-like receptors (KIR) and major histocompatibility complex class I ligands in humans predispose carriers to a variety of diseases, requiring sophisticated genotyping of the highly polymorphic and diverse KIR and HLA genes. Particularly, KIR genotyping is challenging due to polymorphisms (allelic substitutions), genomic diversity (presence/absence of genes), and frequent duplications. Rhesus macaques are often used as important animal models of human diseases such as, e.g. AIDS. However, typing of rhesus macaque KIR genes has not been described so far. In this study, we report the identification of additional novel rhesus macaque KIR cDNA sequences and a sequence-specific KIR genotyping assay. From a cohort of four rhesus macaque families with a total of 70 individuals, we identified 25 distinct KIR genotypes. Segregation analyses of KIR genes and of two polymorphic microsatellite markers allowed the identification of 21 distinct KIR haplotypes in these families, with five to 11 segregating KIR genes per haplotype. Our analyses confirmed and extended knowledge on differential gene KIR gene content in macaques and indicate that rhesus macaque and human KIR haplotypes show a comparable level of diversity and complexity.
Collapse
Affiliation(s)
- Philip H Kruse
- Primate Genetics Laboratory, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | | | | |
Collapse
|
37
|
Sigalov AB. The SCHOOL of nature: I. Transmembrane signaling. SELF/NONSELF 2010; 1:4-39. [PMID: 21559175 PMCID: PMC3091606 DOI: 10.4161/self.1.1.10832] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 11/19/2022]
Abstract
Receptor-mediated transmembrane signaling plays an important role in health and disease. Recent significant advances in our understanding of the molecular mechanisms linking ligand binding to receptor activation revealed previously unrecognized striking similarities in the basic structural principles of function of numerous cell surface receptors. In this work, I demonstrate that the Signaling Chain Homooligomerization (SCHOOL)-based mechanism represents a general biological mechanism of transmembrane signal transduction mediated by a variety of functionally unrelated single- and multichain activating receptors. within the SCHOOL platform, ligand binding-induced receptor clustering is translated across the membrane into protein oligomerization in cytoplasmic milieu. This platform resolves a long-standing puzzle in transmembrane signal transduction and reveals the major driving forces coupling recognition and activation functions at the level of protein-protein interactions-biochemical processes that can be influenced and controlled. The basic principles of transmembrane signaling learned from the SCHOOL model can be used in different fields of immunology, virology, molecular and cell biology and others to describe, explain and predict various phenomena and processes mediated by a variety of functionally diverse and unrelated receptors. Beyond providing novel perspectives for fundamental research, the platform opens new avenues for drug discovery and development.
Collapse
Affiliation(s)
- Alexander B Sigalov
- Department of Pathology; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
38
|
Norman PJ, Abi-Rached L, Gendzekhadze K, Hammond JA, Moesta AK, Sharma D, Graef T, McQueen KL, Guethlein LA, Carrington CVF, Chandanayingyong D, Chang YH, Crespí C, Saruhan-Direskeneli G, Hameed K, Kamkamidze G, Koram KA, Layrisse Z, Matamoros N, Milà J, Park MH, Pitchappan RM, Ramdath DD, Shiau MY, Stephens HAF, Struik S, Tyan D, Verity DH, Vaughan RW, Davis RW, Fraser PA, Riley EM, Ronaghi M, Parham P. Meiotic recombination generates rich diversity in NK cell receptor genes, alleles, and haplotypes. Genome Res 2009; 19:757-69. [PMID: 19411600 DOI: 10.1101/gr.085738.108] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Natural killer (NK) cells contribute to the essential functions of innate immunity and reproduction. Various genes encode NK cell receptors that recognize the major histocompatibility complex (MHC) Class I molecules expressed by other cells. For primate NK cells, the killer-cell immunoglobulin-like receptors (KIR) are a variable and rapidly evolving family of MHC Class I receptors. Studied here is KIR3DL1/S1, which encodes receptors for highly polymorphic human HLA-A and -B and comprises three ancient allelic lineages that have been preserved by balancing selection throughout human evolution. While the 3DS1 lineage of activating receptors has been conserved, the two 3DL1 lineages of inhibitory receptors were diversified through inter-lineage recombination with each other and with 3DS1. Prominent targets for recombination were D0-domain polymorphisms, which modulate enhancer function, and dimorphism at position 283 in the D2 domain, which influences inhibitory function. In African populations, unequal crossing over between the 3DL1 and 3DL2 genes produced a deleted KIR haplotype in which the telomeric "half" was reduced to a single fusion gene with functional properties distinct from its 3DL1 and 3DL2 parents. Conversely, in Eurasian populations, duplication of the KIR3DL1/S1 locus by unequal crossing over has enabled individuals to carry and express alleles of all three KIR3DL1/S1 lineages. These results demonstrate how meiotic recombination combines with an ancient, preserved diversity to create new KIR phenotypes upon which natural selection acts. A consequence of such recombination is to blur the distinction between alleles and loci in the rapidly evolving human KIR gene family.
Collapse
Affiliation(s)
- Paul J Norman
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jung SM, Tsuji K, Moroi M. Glycoprotein (GP) VI dimer as a major collagen-binding site of native platelets: direct evidence obtained with dimeric GPVI-specific Fabs. J Thromb Haemost 2009; 7:1347-55. [PMID: 19486274 DOI: 10.1111/j.1538-7836.2009.03496.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The platelet collagen receptor glycoprotein (GP) VI is suggested to exist as a dimer on the platelet surface, but no direct proof of the functional importance of dimer formation has been provided. OBJECTIVES To obtain direct evidence for GPVI dimers on the platelet membrane and their functional importance, Fab antibodies were developed that bind to GPVI dimer (GPVI-Fc2) but not to GPVI monomer (GPVIex) through a phage display method. RESULTS Six Fabs were found: B-F, only reactive with GPVI-Fc2, and A, mainly reactive with GPVI-Fc2, with some reactivity towards GPVIex; each Fab (Fab-dHLX-MH) forms a bivalent dimer (b-Fab) by dimerizing the dHLX domains from two Fab molecules. Fab F was subcloned to a monovalent format by deleting its dHLX domain. All b-Fabs induced platelet aggregation, but the monomeric form of Fab F (m-Fab-F) specifically inhibited collagen-induced aggregation. All b-Fabs and m-Fab-F inhibited GPVI-Fc2 binding to fibrous collagen. Immunoblotting showed that b-Fab-F and m-Fab-F bound weakly to GPVI-Fc2. Adding the anti-GPVI monoclonal antibody 204-11 increased the B(max) of m-Fab-F binding to GPVI-Fc2, suggesting that 204-11 binds to GPVI-Fc2 molecules not already in the appropriate conformation to recognize the Fab, converting them to a conformation reactive to the Fab. CONCLUSIONS GPVI forms a specific structure by dimerization that is necessary for the binding of this receptor to collagen fibrils. The binding of m-Fab-F to platelets directly demonstrates that GPVI is present as a functionally relevant dimer on the platelet surface.
Collapse
Affiliation(s)
- S M Jung
- Department of Protein Biochemistry, Institute of Life Science, Kurume University, Kurume-shi, Fukuoka-ken, Japan.
| | | | | |
Collapse
|
40
|
Singleton TE, Platzer B, Dehlink E, Fiebiger E. The first transmembrane region of the beta-chain stabilizes the tetrameric Fc epsilon RI complex. Mol Immunol 2009; 46:2333-9. [PMID: 19406478 PMCID: PMC2745130 DOI: 10.1016/j.molimm.2009.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 03/28/2009] [Indexed: 12/26/2022]
Abstract
The family of activating immune receptors stabilizes via the 3-helix assembly principle. A charged basic transmembrane residue interacts with two charged acidic transmembrane residues and forms a 3-helix interface to stabilize receptor complexes in the lipid bilayer. One family member, the high affinity receptor for IgE, Fc epsilon RI, is a key regulator of immediate allergic responses. Tetrameric Fc epsilon RI consists of the IgE-binding alpha-chain, the multimembrane-spanning beta-chain and a dimer of the gamma-subunit (Fc epsilon R gamma). Comparative analysis of these seven transmembrane regions indicates that Fc epsilon RI does not meet the charge requirements for the 3-helix assembly mechanism. We performed alanine mutagenesis to show that the only basic amino acid in the transmembrane regions, beta K97, is not involved in Fc epsilon RI stabilization or surface upregulation, a hallmark function of the beta-chain. Even a beta K97E mutant is functional despite four negatively charged acidic amino acids in the transmembrane regions. Using truncation mutants, we demonstrate that the first uncharged transmembrane domain of the beta-chain contains the interface for receptor stabilization. In vitro translation experiments depict the first transmembrane region as the internal signal peptide of the beta-chain. We also show that this beta-chain domain can function as a cleavable signal peptide when used as a leader peptide for a Type I protein. Our results provide evidence that tetrameric Fc epsilon RI does not assemble according to the 3-helix assembly principle. We conclude that receptors formed with multispanning proteins use different mechanisms of shielding transmembrane charged amino acids.
Collapse
Affiliation(s)
- Theresa E. Singleton
- Department of Medicine, Division of Gastroenterology and Nutrition, Children's Hospital Boston, Boston, MA 02115
| | - Barbara Platzer
- Department of Medicine, Division of Gastroenterology and Nutrition, Children's Hospital Boston, Boston, MA 02115
| | - Eleonora Dehlink
- Department of Medicine, Division of Gastroenterology and Nutrition, Children's Hospital Boston, Boston, MA 02115
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Edda Fiebiger
- Department of Medicine, Division of Gastroenterology and Nutrition, Children's Hospital Boston, Boston, MA 02115
| |
Collapse
|
41
|
Abstract
The DAP10 and DAP12 signaling subunits are highly conserved in evolution and associate with a large family of receptors in hematopoietic cells, including dendritic cells, plasmacytoid dendritic cells, neutrophils, basophils, eosinophils, mast cells, monocytes, macrophages, natural killer cells, and some B and T cells. Some receptors are able to associate with either DAP10 or DAP12, which contribute unique intracellular signaling functions. Studies of humans and mice deficient in these signaling subunits have provided surprising insights into the physiological functions of DAP10 and DAP12, demonstrating that they can either activate or inhibit immune responses. DAP10- and DAP12-associated receptors have been shown to recognize both host-encoded ligands and ligands encoded by microbial pathogens, indicating that they play an important role in innate immune responses.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Autoantigens/immunology
- Autoantigens/metabolism
- Carbohydrates/immunology
- Conserved Sequence/immunology
- Evolution, Molecular
- Feedback, Physiological/immunology
- Host-Pathogen Interactions/immunology
- Humans
- Immunity, Innate
- Infections/immunology
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Mice
- Natural Cytotoxicity Triggering Receptor 2/immunology
- Natural Cytotoxicity Triggering Receptor 2/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Semaphorins/immunology
- Semaphorins/metabolism
- Signal Transduction/immunology
- Stress, Physiological/immunology
- Triggering Receptor Expressed on Myeloid Cells-1
Collapse
Affiliation(s)
- Lewis L Lanier
- Department of Microbiology and Immunology, Cancer Research Institute, University of California San Francisco, San Francisco, CA 94143-0414, USA.
| |
Collapse
|
42
|
Fc receptor gamma-chain, a constitutive component of the IL-3 receptor, is required for IL-3-induced IL-4 production in basophils. Nat Immunol 2008; 10:214-22. [PMID: 19098920 DOI: 10.1038/ni.1686] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 10/31/2008] [Indexed: 01/05/2023]
Abstract
The Fc receptor common gamma-chain (FcRgamma) is a widely expressed adaptor bearing an immunoreceptor tyrosine-based activation motif (ITAM) that transduces activation signals from various immunoreceptors. We show here that basophils lacking FcRgamma developed normally and proliferated efficiently in response to interleukin 3 (IL-3) but were very impaired in IL-3-induced production of IL-4 and in supporting T helper type 2 differentiation. Through its transmembrane portion, FcRgamma associated constitutively with the common beta-chain of the IL-3 receptor and signaled by recruiting the kinase Syk. Retrovirus-mediated complementation demonstrated the essential function of the ITAM of FcRgamma in IL-3 signal transduction. Our results identify a previously unknown mechanism whereby FcRgamma functions to 'route' selective cytokine-triggered signals into the ITAM-mediated IL-4 production pathway.
Collapse
|
43
|
Signaling Chain Homooligomerization (SCHOOL) Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:121-63. [DOI: 10.1007/978-0-387-09789-3_12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Biassoni R. Natural killer cell receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:35-52. [PMID: 19065782 DOI: 10.1007/978-0-387-09789-3_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Natural killer (NK) cells are an important arm of the innate immune response that are directly involved in the recognition and lysis of virus-infected and tumor cells. Such function is under the control of a complex array of germline-encoded receptors able to deliver either inhibitory or activating signals. The majority of inhibitory receptors expressed by NK cells are major histocompatibility complex (MHC) class I-specific and display clonal and stochastic distribution on the cell surface. Thus, a given NK cell expresses at least one self class I inhibitory receptor. Under normal conditions, the strength of inhibitory signals delivered by multiple interactions always overrides the activating signals, resulting in NK cell self-tolerance. Under certain pathological conditions, such as viral infections or tumor transformation, the delicate balance of inhibition versus activation is broken, resulting in downregulation or loss of MHC class I expression. In general, the degree of inhibition induced by class I-specific receptors is proportional to the amount of these molecules on the cell surface. Thus, in transformed cells, this inhibition can be overridden by the triggering signal cascades, leading to cell activation. The majority of triggering receptors expressed by NK cells belong to the multichain immune recognition receptor (MIRR) family and use separate signal-transducing polypeptides similar to those used by other immune receptors such as the T-cell antigen receptor, the B-cell antigen receptor and other receptors expressed by myeloid cells. Inhibitory receptors are not members of the MIRR family but they are relevant for a better understanding the exquisite equilibrium and regulatory crosstalk between positive and negative signals.
Collapse
Affiliation(s)
- Roberto Biassoni
- Molecular Medicine, Istituto Giannina Gaslini, Largo G. Gaslini 5, 16147 Genova, Italy.
| |
Collapse
|
45
|
Moore DT, Berger BW, DeGrado WF. Protein-protein interactions in the membrane: sequence, structural, and biological motifs. Structure 2008; 16:991-1001. [PMID: 18611372 PMCID: PMC3771515 DOI: 10.1016/j.str.2008.05.007] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 05/25/2008] [Accepted: 05/30/2008] [Indexed: 01/10/2023]
Abstract
Single-span transmembrane (TM) helices have structural and functional roles well beyond serving as mere anchors to tether water-soluble domains in the vicinity of the membrane. They frequently direct the assembly of protein complexes and mediate signal transduction in ways analogous to small modular domains in water-soluble proteins. This review highlights different sequence and structural motifs that direct TM assembly and discusses their roles in diverse biological processes. We believe that TM interactions are potential therapeutic targets, as evidenced by natural proteins that modulate other TM interactions and recent developments in the design of TM-targeting peptides.
Collapse
Affiliation(s)
- David T. Moore
- Department of Biochemistry and Molecular Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | - Bryan W. Berger
- Department of Biochemistry and Molecular Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | - William F. DeGrado
- Department of Biochemistry and Molecular Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| |
Collapse
|
46
|
|
47
|
Abstract
Natural killer (NK) cells circulate through the blood, lymphatics and tissues, on patrol for the presence of transformed or pathogen-infected cells. As almost all NK cell receptors bind to host-encoded ligands, signals are constantly being transmitted into NK cells, whether they interact with normal or abnormal cells. The sophisticated repertoire of activating and inhibitory receptors that has evolved to regulate NK cell activity ensures that NK cells protect hosts against pathogens, yet prevents deleterious NK cell-driven autoimmune responses. Here I highlight recent advances in our understanding of the structural properties and signaling pathways of the inhibitory and activating NK cell receptors, with a particular focus on the ITAM-dependent activating receptors, the NKG2D-DAP10 receptor complexes and the CD244 receptor system.
Collapse
Affiliation(s)
- Lewis L Lanier
- Department of Microbiology and Immunology and the Cancer Research Institute, University of California San Francisco, San Francisco, California 94143-0414, USA.
| |
Collapse
|
48
|
Abstract
Protein-protein interactions play a central role in biological processes and thus are an appealing target for innovative drug design a nd development. They can be targeted bysmall molecule inhibitors, peptides and peptidomimetics, which represent an alternative to protein therapeutics that carry many disadvantages. In this chapter, I describe specific protein-protein interactions suggested by a novel model of immune signaling, the Signaling Chain HOmoOLigomerization (SCHOOL) model, to be critical for cell activation mediated by multichain immune recognition receptors (MIRRs) expressed on different cells of the hematopoietic system. Unraveling a long-standing mystery of MIRR triggering and transmembrane signaling, the SCHOOL model reveals the intrareceptor transmembrane interactions and interreceptor cytoplasmic homointeractions as universal therapeutic targets for a diverse variety of disorders mediated by immune cells. Further, assuming that the general principles underlying MIRR-mediated transmembrane signaling mechanisms are similar, the SCHOOL model can be applied to any particular receptor of the MIRR family. Thus, an important application of the SCHOOL model is that global therapeutic strategies targeting key protein-protein interactions involved in MIRR triggering and transmembrane signal transduction may be used to treat a diverse set of immune-mediated diseases. This assumes that clinical knowledge and therapeutic strategies can be transferred between seemingly disparate disorders, such as T-cell-mediated skin diseases and platelet disorders, or combined to develop novel pharmacological approaches. Intriguingly, the SCHOOL model unravels the molecular mechanisms underlying ability of different human viruses such as human immunodeficiency virus, cytomegalovirus and severe acute respiratory syndrome coronavirus to modulate and/or escape the host immune response. It also demonstrates how the lessons learned from viral pathogenesis can be used practically for rational drug design. Application of this model to platelet collagen receptor signaling has already led to the development of a novel concept of platelet inhibition and the invention of new platelet inhibitors, thus proving the suggested hypothesis and highlighting the importance and broad perspectives of the SCHOOL model in the development of new targeting strategies.
Collapse
|
49
|
Common themes in the assembly and architecture of activating immune receptors. Nat Rev Immunol 2007; 7:841-50. [PMID: 17960150 DOI: 10.1038/nri2186] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Each of the many different cell types of the immune system expresses one or several activating receptors which serve a central role in the cell's surveillance function. Many of these cell-surface receptors share a distinctive modular design that consists of a ligand-binding module with no intrinsic signalling capability that is non-covalently associated with one or more dimeric signalling modules. Receptor assembly is directed by unique polar contacts within the transmembrane domains, whereas extracellular contacts can contribute to stability and specificity. This Review discusses the structural basis of receptor assembly and the implications of these findings for the mechanisms of receptor triggering.
Collapse
|
50
|
|