1
|
Canonical Wnt: a safeguard and threat for erythropoiesis. Blood Adv 2021; 5:3726-3735. [PMID: 34516644 DOI: 10.1182/bloodadvances.2021004845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/09/2021] [Indexed: 11/20/2022] Open
Abstract
Myeloid dysplastic syndrome (MDS) reflects a preleukemic bone marrow (BM) disorder with limited treatment options and poor disease survival. As only a minority of MDS patients are eligible for curative hematopoietic stem cell transplantation, there is an urgent need to develop alternative treatment options. Chronic activation of Wnt/β-catenin has been implicated to underlie MDS formation and recently assigned to drive MDS transformation to acute myeloid leukemia. Wnt/β-catenin signaling therefore may harbor a pharmaceutical target to treat MDS and/or prevent leukemia formation. However, targeting the Wnt/β-catenin pathway will also affect healthy hematopoiesis in MDS patients. The control of Wnt/β-catenin in healthy hematopoiesis is poorly understood. Whereas Wnt/β-catenin is dispensable for steady-state erythropoiesis, its activity is essential for stress erythropoiesis in response to BM injury and anemia. Manipulation of Wnt/β-catenin signaling in MDS may therefore deregulate stress erythropoiesis and even increase anemia severity. Here, we provide a comprehensive overview of the most recent and established insights in the field to acquire more insight into the control of Wnt/β-catenin signaling in healthy and inefficient erythropoiesis as seen in MDS.
Collapse
|
2
|
Krishnan M, Kumar S, Kangale LJ, Ghigo E, Abnave P. The Act of Controlling Adult Stem Cell Dynamics: Insights from Animal Models. Biomolecules 2021; 11:biom11050667. [PMID: 33946143 PMCID: PMC8144950 DOI: 10.3390/biom11050667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Adult stem cells (ASCs) are the undifferentiated cells that possess self-renewal and differentiation abilities. They are present in all major organ systems of the body and are uniquely reserved there during development for tissue maintenance during homeostasis, injury, and infection. They do so by promptly modulating the dynamics of proliferation, differentiation, survival, and migration. Any imbalance in these processes may result in regeneration failure or developing cancer. Hence, the dynamics of these various behaviors of ASCs need to always be precisely controlled. Several genetic and epigenetic factors have been demonstrated to be involved in tightly regulating the proliferation, differentiation, and self-renewal of ASCs. Understanding these mechanisms is of great importance, given the role of stem cells in regenerative medicine. Investigations on various animal models have played a significant part in enriching our knowledge and giving In Vivo in-sight into such ASCs regulatory mechanisms. In this review, we have discussed the recent In Vivo studies demonstrating the role of various genetic factors in regulating dynamics of different ASCs viz. intestinal stem cells (ISCs), neural stem cells (NSCs), hematopoietic stem cells (HSCs), and epidermal stem cells (Ep-SCs).
Collapse
Affiliation(s)
- Meera Krishnan
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Ex-pressway, Faridabad 121001, India; (M.K.); (S.K.)
| | - Sahil Kumar
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Ex-pressway, Faridabad 121001, India; (M.K.); (S.K.)
| | - Luis Johnson Kangale
- IRD, AP-HM, SSA, VITROME, Aix-Marseille University, 13385 Marseille, France;
- Institut Hospitalo Universitaire Méditerranée Infection, 13385 Marseille, France;
| | - Eric Ghigo
- Institut Hospitalo Universitaire Méditerranée Infection, 13385 Marseille, France;
- TechnoJouvence, 13385 Marseille, France
| | - Prasad Abnave
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Ex-pressway, Faridabad 121001, India; (M.K.); (S.K.)
- Correspondence:
| |
Collapse
|
3
|
Campbell CA, Fursova O, Cheng X, Snella E, McCune A, Li L, Solchenberger B, Schmid B, Sahoo D, Morton M, Traver D, Espín-Palazón R. A zebrafish model of granulin deficiency reveals essential roles in myeloid cell differentiation. Blood Adv 2021; 5:796-811. [PMID: 33560393 PMCID: PMC7876888 DOI: 10.1182/bloodadvances.2020003096] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/01/2020] [Indexed: 12/22/2022] Open
Abstract
Granulin is a pleiotropic protein involved in inflammation, wound healing, neurodegenerative disease, and tumorigenesis. These roles in human health have prompted research efforts to use granulin to treat rheumatoid arthritis and frontotemporal dementia and to enhance wound healing. But how granulin contributes to each of these diverse biological functions remains largely unknown. Here, we have uncovered a new role for granulin during myeloid cell differentiation. We have taken advantage of the tissue-specific segregation of the zebrafish granulin paralogues to assess the functional role of granulin in hematopoiesis without perturbing other tissues. By using our zebrafish model of granulin deficiency, we revealed that during normal and emergency myelopoiesis, myeloid progenitors are unable to terminally differentiate into neutrophils and macrophages in the absence of granulin a (grna), failing to express the myeloid-specific genes cebpa, rgs2, lyz, mpx, mpeg1, mfap4, and apoeb. Functionally, macrophages fail to recruit to the wound, resulting in abnormal healing. Our CUT&RUN experiments identify Pu.1, which together with Irf8, positively regulates grna expression. In vivo imaging and RNA sequencing experiments show that grna inhibits the expression of gata1, leading to the repression of the erythroid program. Importantly, we demonstrated functional conservation between the mammalian granulin and the zebrafish ortholog grna. Our findings uncover a previously unrecognized role for granulin during myeloid cell differentiation, which opens a new field of study that can potentially have an impact on different aspects of human health and expand the therapeutic options for treating myeloid disorders such as neutropenia or myeloid leukemia.
Collapse
Affiliation(s)
- Clyde A Campbell
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Oksana Fursova
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Xiaoyi Cheng
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Elizabeth Snella
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Abbigail McCune
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Liangdao Li
- Section of Cell and Developmental Biology, University of California at San Diego, San Diego, CA
| | | | - Bettina Schmid
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Debashis Sahoo
- Department of Computer Science and Engineering, University of California at San Diego, San Diego, CA; and
| | - Mark Morton
- College of Veterinary Medicine, Iowa State University, Ames, IA
| | - David Traver
- Section of Cell and Developmental Biology, University of California at San Diego, San Diego, CA
| | - Raquel Espín-Palazón
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
- Section of Cell and Developmental Biology, University of California at San Diego, San Diego, CA
| |
Collapse
|
4
|
Danek P, Kardosova M, Janeckova L, Karkoulia E, Vanickova K, Fabisik M, Lozano-Asencio C, Benoukraf T, Tirado-Magallanes R, Zhou Q, Burocziova M, Rahmatova S, Pytlik R, Brdicka T, Tenen DG, Korinek V, Alberich-Jorda M. β-Catenin-TCF/LEF signaling promotes steady-state and emergency granulopoiesis via G-CSF receptor upregulation. Blood 2020; 136:2574-2587. [PMID: 32822472 PMCID: PMC7714095 DOI: 10.1182/blood.2019004664] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/09/2020] [Indexed: 12/11/2022] Open
Abstract
The canonical Wnt signaling pathway is mediated by interaction of β-catenin with the T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) transcription factors and subsequent transcription activation of Wnt-target genes. In the hematopoietic system, the function of the pathway has been mainly investigated by rather unspecific genetic manipulations of β-catenin that yielded contradictory results. Here, we used a mouse expressing a truncated dominant negative form of the human TCF4 transcription factor (dnTCF4) that specifically abrogates β-catenin-TCF/LEF interaction. Disruption of the β-catenin-TCF/LEF interaction resulted in the accumulation of immature cells and reduced granulocytic differentiation. Mechanistically, dnTCF4 progenitors exhibited downregulation of the Csf3r gene, reduced granulocyte colony-stimulating factor (G-CSF) receptor levels, attenuation of downstream Stat3 phosphorylation after G-CSF treatment, and impaired G-CSF-mediated differentiation. Chromatin immunoprecipitation assays confirmed direct binding of TCF/LEF factors to the promoter and putative enhancer regions of CSF3R. Inhibition of β-catenin signaling compromised activation of the emergency granulopoiesis program, which requires maintenance and expansion of myeloid progenitors. Consequently, dnTCF4 mice were more susceptible to Candida albicans infection and more sensitive to 5-fluorouracil-induced granulocytic regeneration. Importantly, genetic and chemical inhibition of β-catenin-TCF/LEF signaling in human CD34+ cells reduced granulocytic differentiation, whereas its activation enhanced myelopoiesis. Altogether, our data indicate that the β-catenin-TCF/LEF complex directly regulates G-CSF receptor levels, and consequently controls proper differentiation of myeloid progenitors into granulocytes in steady-state and emergency granulopoiesis. Our results uncover a role for the β-catenin signaling pathway in fine tuning the granulocytic production, opening venues for clinical intervention that require enhanced or reduced production of neutrophils.
Collapse
Affiliation(s)
- Petr Danek
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Miroslava Kardosova
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | | | - Elena Karkoulia
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Karolina Vanickova
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Matej Fabisik
- Department of Leukocyte Cell Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Carlos Lozano-Asencio
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Touati Benoukraf
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Qiling Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Monika Burocziova
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sarka Rahmatova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic; and
| | - Robert Pytlik
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic; and
| | - Tomas Brdicka
- Department of Leukocyte Cell Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | | | - Meritxell Alberich-Jorda
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
5
|
Soares-Lima SC, Pombo-de-Oliveira MS, Carneiro FRG. The multiple ways Wnt signaling contributes to acute leukemia pathogenesis. J Leukoc Biol 2020; 108:1081-1099. [PMID: 32573851 DOI: 10.1002/jlb.2mr0420-707r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/20/2020] [Accepted: 05/28/2020] [Indexed: 01/19/2023] Open
Abstract
WNT proteins constitute a very conserved family of secreted glycoproteins that act as short-range ligands for signaling with critical roles in hematopoiesis, embryonic development, and tissue homeostasis. These proteins transduce signals via the canonical pathway, which is β-catenin-mediated and better-characterized, or via more diverse noncanonical pathways that are β-catenin independent and comprise the planar cell polarity (PCP) pathway and the WNT/Ca++ pathways. Several proteins regulate Wnt signaling through a variety of sophisticated mechanisms. Disorders within the pathway can contribute to various human diseases, and the dysregulation of Wnt pathways by different molecular mechanisms is implicated in the pathogenesis of many types of cancer, including the hematological malignancies. The types of leukemia differ considerably and can be subdivided into chronic, myeloid or lymphocytic, and acute, myeloid or lymphocytic, leukemia, according to the differentiation stage of the predominant cells, the progenitor lineage, the diagnostic age strata, and the specific molecular drivers behind their development. Here, we review the role of Wnt signaling in normal hematopoiesis and discuss in detail the multiple ways canonical Wnt signaling can be dysregulated in acute leukemia, including alterations in gene expression and protein levels, epigenetic regulation, and mutations. Furthermore, we highlight the different impacts of these alterations, considering the distinct forms of the disease, and the therapeutic potential of targeting Wnt signaling.
Collapse
Affiliation(s)
- Sheila C Soares-Lima
- Epigenetics Group, Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Maria S Pombo-de-Oliveira
- Pediatric Hematology-Oncology Program Research Center, National Cancer Institute, Rio de Janeiro, Brazil
| | - Flávia R G Carneiro
- FIOCRUZ, Center of Technological Development in Health (CDTS), Rio de Janeiro, Brazil.,FIOCRUZ, Laboratório Interdisciplinar de Pesquisas Médicas-Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Dewi R, Hamid ZA, Rajab NF, Shuib S, Razak SA. Genetic, epigenetic, and lineage-directed mechanisms in benzene-induced malignancies and hematotoxicity targeting hematopoietic stem cells niche. Hum Exp Toxicol 2019; 39:577-595. [PMID: 31884827 DOI: 10.1177/0960327119895570] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Benzene is a known hematotoxic and leukemogenic agent with hematopoietic stem cells (HSCs) niche being the potential target. Occupational and environmental exposure to benzene has been linked to the incidences of hematological disorders and malignancies. Previous studies have shown that benzene may act via multiple modes of action targeting HSCs niche, which include induction of chromosomal and micro RNA aberrations, leading to genetic and epigenetic modification of stem cells and probable carcinogenesis. However, understanding the mechanism linking benzene to the HSCs niche dysregulation is challenging due to complexity of its microenvironment. The niche is known to comprise of cell populations accounted for HSCs and their committed progenitors of lymphoid, erythroid, and myeloid lineages. Thus, it is fundamental to address novel approaches via lineage-directed strategy to elucidate precise mechanism involved in benzene-induced toxicity targeting HSCs and progenitors of different lineages. Here, we review the key genetic and epigenetic factors that mediate hematotoxicological effects by benzene and its metabolites in targeting HSCs niche. Overall, the use of combined genetic, epigenetic, and lineage-directed strategies targeting the HSCs niche is fundamental to uncover the key mechanisms in benzene-induced hematological disorders and malignancies.
Collapse
Affiliation(s)
- R Dewi
- Biomedical Science Programme and Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Z Abdul Hamid
- Biomedical Science Programme and Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - N F Rajab
- Biomedical Science Programme and Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - S Shuib
- Department of Pathology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur, Malaysia
| | - Sr Abdul Razak
- Oncological and Radiological Sciences Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| |
Collapse
|
7
|
Bigas A, Guillén Y, Schoch L, Arambilet D. Revisiting β-Catenin Signaling in T-Cell Development and T-Cell Acute Lymphoblastic Leukemia. Bioessays 2019; 42:e1900099. [PMID: 31854474 DOI: 10.1002/bies.201900099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/28/2019] [Indexed: 12/25/2022]
Abstract
β-Catenin/CTNNB1 is critical for leukemia initiation or the stem cell capacity of several hematological malignancies. This review focuses on a general evaluation of β-catenin function in normal T-cell development and T-cell acute lymphoblastic leukemia (T-ALL). The integration of the existing literature offers a state-of-the-art dissection of the complexity of β-catenin function in leukemia initiation and maintenance in both Notch-dependent and independent contexts. In addition, β-catenin mutations are screened for in T-ALL primary samples, and it is found that they are rare and with little clinical relevance. Transcriptional analysis of Wnt family members (Ctnnb1, Axin2, Tcf7, and Lef1) and Myc in different publicly available T-ALL cohorts indicates that the expression of these genes may correlate with T-ALL subtypes and/or therapy outcomes.
Collapse
Affiliation(s)
- Anna Bigas
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Yolanda Guillén
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Leonie Schoch
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - David Arambilet
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
| |
Collapse
|
8
|
Osugui L, de Roo JJ, de Oliveira VC, Sodré ACP, Staal FJT, Popi AF. B-1 cells and B-1 cell precursors prompt different responses to Wnt signaling. PLoS One 2018; 13:e0199332. [PMID: 29928002 PMCID: PMC6013157 DOI: 10.1371/journal.pone.0199332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/05/2018] [Indexed: 11/17/2022] Open
Abstract
Recently several studies demonstrated a role for the Wnt pathway in lymphocyte development and self-renewal of hematopoietic stem cells (HSCs). B-1 cells constitute a separate lineage of B lymphocytes, originating during fetal hematopoiesis, expressing lymphoid and myeloid markers and possessing self-renewal ability, similar to early hematopoietic progenitors and HSCs. A plethora of studies have shown an important role for the evolutionary conserved Wnt pathway in the biology of HSCs and T lymphocyte development. Our previous data demonstrated abundant expression of Wnt pathway components by B-1 cells, including Wnt ligands and receptors. Here we report that the canonical Wnt pathway is activated in B-1 cell precursors, but not in mature B-1 cells. However, both B-1 precursors and B-1 cells are able to respond to Wnt ligands in vitro. Canonical Wnt activity promotes proliferation of B-1 cells, while non-canonical Wnt signals induce the expansion of B-1 precursors. Interestingly, using a co-culture system with OP9 cells, Wnt3a stimulus supported the generation of B-1a cells. Taking together, these results indicate that B-1 cells and their progenitors are differentially responsive to Wnt ligands, and that the balance of activation of canonical and non-canonical Wnt signaling may regulate the maintenance and differentiation of different B-1 cell subsets.
Collapse
Affiliation(s)
- Lika Osugui
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jolanda J de Roo
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Vivian Cristina de Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Clara Pires Sodré
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Frank J T Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Ana Flavia Popi
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Behzad MM, Shahrabi S, Jaseb K, Bertacchini J, Ketabchi N, Saki N. Aberrant DNA Methylation in Chronic Myeloid Leukemia: Cell Fate Control, Prognosis, and Therapeutic Response. Biochem Genet 2018; 56:149-175. [DOI: 10.1007/s10528-018-9841-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/18/2018] [Indexed: 01/24/2023]
|
10
|
Wnt9a Is Required for the Aortic Amplification of Nascent Hematopoietic Stem Cells. Cell Rep 2017; 17:1595-1606. [PMID: 27806298 PMCID: PMC6309681 DOI: 10.1016/j.celrep.2016.10.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/07/2016] [Accepted: 10/10/2016] [Indexed: 01/08/2023] Open
Abstract
All mature blood cell types in the adult animal arise from hematopoietic stem and progenitor cells (HSPCs). However, the developmental cues regulating HSPC ontogeny are incompletely understood. In particular, the details surrounding a requirement for Wnt/β-catenin signaling in the development of mature HSPCs are controversial and difficult to consolidate. Using zebrafish, we demonstrate that Wnt signaling is required to direct an amplification of HSPCs in the aorta. Wnt9a is specifically required for this process and cannot be replaced by Wnt9b or Wnt3a. This proliferative event occurs independently of initial HSPC fate specification, and the Wnt9a input is required prior to aorta formation. HSPC arterial amplification occurs prior to seeding of secondary hematopoietic tissues and proceeds, in part, through the cell cycle regulator myca (c-myc). Our results support a general paradigm, in which early signaling events, including Wnt, direct later HSPC developmental processes. Hematopoietic stem and progenitor cells (HSPCs) give rise to all of the blood cells of the adult organism; however, how these cells are derived in vivo is still incompletely understood. Using zebrafish, Grainger et al. find that Wnt9a mediates amplification of HSPCs prior to their migration to secondary hematopoietic sites.
Collapse
|
11
|
Wnt Signaling as Master Regulator of T-Lymphocyte Responses: Implications for Transplant Therapy. Transplantation 2017; 100:2584-2592. [PMID: 27861287 DOI: 10.1097/tp.0000000000001393] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
T cell-mediated immune responses to the grafted tissues are the major reason for failed organ transplantation. The regulation of T cell responses is complex and involves major histocompatibility complex molecules on transplanted organs, cytokines, regulatory cells, and antigen-presenting cells. The evolutionary conserved Wnt signal transduction pathway has long been known for its importance in development of stem cells and immature T cells in the thymus. Recent evidence indicates the Wnt pathway as a master regulator of T cell immune responses via governing the balance between T helper 17/regulatory T cells and by regulating the formation of effector and memory cytotoxic CD8 T cell responses. In doing so, Wnt signals influence the outcome of immune responses in transplantation settings.
Collapse
|
12
|
Zhao Y, Wu K, Nguyen C, Smbatyan G, Melendez E, Higuchi Y, Chen Y, Kahn M. Small molecule p300/catenin antagonist enhances hematopoietic recovery after radiation. PLoS One 2017; 12:e0177245. [PMID: 28486541 PMCID: PMC5423697 DOI: 10.1371/journal.pone.0177245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/24/2017] [Indexed: 12/26/2022] Open
Abstract
There is currently no FDA approved therapeutic agent for ARS mitigation post radiation exposure. Here we report that the small molecule YH250, which specifically antagonizes p300/catenin interaction, stimulates hematopoiesis in lethally or sublethally irradiated mice. A single administration of YH250 24 hours post irradiation can significantly stimulate HSC proliferation, improve survival and accelerate peripheral blood count recovery. Our studies suggest that promotion of the expansion of the remaining HSC population via stimulation of symmetric non-differentiative proliferation is at least part of the mechanism of action.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California, United States of America
- Center for Molecular Pathways and Drug Discovery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - Kaijin Wu
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Research Center, Keck School of Medicine of University of Southern California, Los Angeles, California, United States of America
| | - Cu Nguyen
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Research Center, Keck School of Medicine of University of Southern California, Los Angeles, California, United States of America
| | - Goar Smbatyan
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Research Center, Keck School of Medicine of University of Southern California, Los Angeles, California, United States of America
| | - Elisabeth Melendez
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Research Center, Keck School of Medicine of University of Southern California, Los Angeles, California, United States of America
| | - Yusuke Higuchi
- Center for Molecular Pathways and Drug Discovery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Research Center, Keck School of Medicine of University of Southern California, Los Angeles, California, United States of America
- Department of Organic Fine Chemicals, The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, Japan
| | - Yibu Chen
- Bioinformatics Service Program, Norris Medical Library, University of Southern California, Los Angeles, California, United States of America
| | - Michael Kahn
- Center for Molecular Pathways and Drug Discovery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Research Center, Keck School of Medicine of University of Southern California, Los Angeles, California, United States of America
- Department of Molecular Pharmacology and Toxicology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
13
|
MicroRNA-142-3p Negatively Regulates Canonical Wnt Signaling Pathway. PLoS One 2016; 11:e0158432. [PMID: 27348426 PMCID: PMC4922628 DOI: 10.1371/journal.pone.0158432] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/15/2016] [Indexed: 12/21/2022] Open
Abstract
Wnt/β-catenin signaling pathway plays essential roles in mammalian development and tissue homeostasis. MicroRNAs (miRNAs) are a class of regulators involved in modulating this pathway. In this study, we screened miRNAs regulating Wnt/β-catenin signaling by using a TopFlash based luciferase reporter. Surprisingly, we found that miR-142 inhibited Wnt/β-catenin signaling, which was inconsistent with a recent study showing that miR-142-3p targeted Adenomatous Polyposis Coli (APC) to upregulate Wnt/β-catenin signaling. Due to the discordance, we elaborated experiments by using extensive mutagenesis, which demonstrated that the stem-loop structure was important for miR-142 to efficiently suppress Wnt/β-catenin signaling. Moreover, the inhibitory effect of miR-142 relies on miR-142-3p rather than miR-142-5p. Further, we found that miR-142-3p directly modulated translation of Ctnnb1 mRNA (encoding β-catenin) through binding to its 3’ untranslated region (3’ UTR). Finally, miR-142 was able to repress cell cycle progression by inhibiting active Wnt/β-catenin signaling. Thus, our findings highlight the inhibitory role of miR-142-3p in Wnt/β-catenin signaling, which help to understand the complex regulation of Wnt/β-catenin signaling.
Collapse
|
14
|
Staal FJT, Chhatta A, Mikkers H. Caught in a Wnt storm: Complexities of Wnt signaling in hematopoiesis. Exp Hematol 2016; 44:451-7. [PMID: 27016274 DOI: 10.1016/j.exphem.2016.03.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 01/10/2023]
Abstract
The Wnt signaling pathway is an evolutionary conserved pathway that is involved in the development of almost every organ system in the body and provides self-renewal signals for most, if not all, adult stem cell systems. In recent years, this pathway has been studied by various research groups working on hematopoietic stem cells, resulting in contradicting conclusions. Here, we discuss and interpret the results of these studies and propose that Wnt dosage, the source of hematopoietic stem cells, and interactions with other pathways explain these disparate results.
Collapse
Affiliation(s)
- Frank J T Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands; Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Amiet Chhatta
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands; Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Harald Mikkers
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands; Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
15
|
Famili F, Naber BAE, Vloemans S, de Haas EFE, Tiemessen MM, Staal FJT. Discrete roles of canonical and non-canonical Wnt signaling in hematopoiesis and lymphopoiesis. Cell Death Dis 2015; 6:e1981. [PMID: 26583322 PMCID: PMC4670932 DOI: 10.1038/cddis.2015.326] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/30/2015] [Accepted: 10/09/2015] [Indexed: 12/17/2022]
Abstract
The mechanisms that regulate proliferation, fate decisions and differentiation of hematopoietic stem cells (HSC) and thymic stem cells are highly complex. Several signaling pathways including Wnt signaling have important roles during these processes. Both canonical and non-canonical Wnt signaling are important in normal and malignant hematopoiesis and lymphoid development, yet their precise roles are controversial. In a side-by-side comparison, we investigated the roles of the canonical and non-canonical Wnt pathway in hematopoiesis and thymopoiesis. As complete loss-of-function models for non-canonical Wnt signaling are not yet available and highly complex for canonical Wnt signaling, we decided to use a gain-of-function approach. To this end, Wnt3a and Wn5a, two well-known prototypical canonical and non-canonical Wnt ligands were produced in hematopoiesis supporting stromal assays. High levels of Wnt3a signaling blocked T-cell development at early stages, whereas intermediate levels accelerated T-cell development. In contrast, Wnt5a signaling prompted apoptosis in developing thymocytes, without affecting differentiation at a particular stage. To explore the role of Wnt3a and Wnt5a in vivo, we transduced HSCs isolated from fetal liver, transduced with Wnt3a and Wnt5a vectors, and performed reconstitution assays in irradiated C57Bl/6 mice. Wnt3a overexpression led to increased lymphopoiesis, whereas Wnt5a augments myelopoiesis in the bone marrow (BM) and spleen. Thus, the canonical and non-canonical Wnt signaling have discrete roles in hematopoiesis and thymopoiesis, and understanding their right dose of action is crucial for prospective translational applications.
Collapse
Affiliation(s)
- F Famili
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center, Leiden, The Netherlands
| | - B A E Naber
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center, Leiden, The Netherlands
| | - S Vloemans
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center, Leiden, The Netherlands
| | - E F E de Haas
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center, Leiden, The Netherlands
| | - M M Tiemessen
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center, Leiden, The Netherlands
| | - F J T Staal
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
16
|
Identification of osteoblast stimulating factor 5 as a negative regulator in the B-lymphopoietic niche. Exp Hematol 2015. [DOI: 10.1016/j.exphem.2015.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Zepponi V, Michaels Lopez V, Martinez-Cingolani C, Boudil A, Pasqualetto V, Skhiri L, Gautreau L, Legrand A, Megret J, Zavala F, Ezine S. Lymphoid Gene Upregulation on Circulating Progenitors Participates in Their T-Lineage Commitment. THE JOURNAL OF IMMUNOLOGY 2015; 195:156-65. [PMID: 26026063 DOI: 10.4049/jimmunol.1403219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/04/2015] [Indexed: 11/19/2022]
Abstract
Extrathymic T cell precursors can be detected in many tissues and represent an immediately competent population for rapid T cell reconstitution in the event of immunodeficiencies. Blood T cell progenitors have been detected, but their source in the bone marrow (BM) remains unclear. Prospective purification of BM-resident and circulating progenitors, together with RT-PCR single-cell analysis, was used to evaluate and compare multipotent progenitors (MPPs) and common lymphoid progenitors (CLPs). Molecular analysis of circulating progenitors in comparison with BM-resident progenitors revealed that CCR9(+) progenitors are more abundant in the blood than CCR7(+) progenitors. Second, although Flt3(-) CLPs are less common in the BM, they are abundant in the blood and have reduced Cd25(+)-expressing cells and downregulated c-Kit and IL-7Rα intensities. Third, in contrast, stage 3 MPP (MPP3) cells, the unique circulating MPP subset, have upregulated Il7r, Gata3, and Notch1 in comparison with BM-resident counterparts. Evaluation of the populations' respective abilities to generate splenic T cell precursors (Lin(-)Thy1.2(+)CD25(+)IL7Rα(+)) after grafting recipient nude mice revealed that MPP3 cells were the most effective subset (relative to CLPs). Although several lymphoid genes are expressed by MPP3 cells and Flt3(-) CLPs, the latter only give rise to B cells in the spleen, and Notch1 expression level is not modulated in the blood, as for MPP3 cells. We conclude that CLPs have reached the point where they cannot be a Notch1 target, a limiting condition on the path to T cell engagement.
Collapse
Affiliation(s)
- Vanessa Zepponi
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Victoria Michaels Lopez
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | | | - Amine Boudil
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Valérie Pasqualetto
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Lamia Skhiri
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Laetitia Gautreau
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Agnès Legrand
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Jerome Megret
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Flora Zavala
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Sophie Ezine
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| |
Collapse
|
18
|
Ashihara E, Takada T, Maekawa T. Targeting the canonical Wnt/β-catenin pathway in hematological malignancies. Cancer Sci 2015; 106:665-671. [PMID: 25788321 PMCID: PMC4471797 DOI: 10.1111/cas.12655] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/26/2015] [Accepted: 03/04/2015] [Indexed: 12/14/2022] Open
Abstract
The canonical Wnt/β-catenin pathway plays an important role in different developmental processes through the regulation of stem cell functions. In the activation of the canonical Wnt/β-catenin pathway, β-catenin protein is imported into the nucleus and activates transcription of target genes including cyclin D1 and c-myc. Aberrant activation of the Wnt/β-catenin pathway contributes to carcinogenesis and malignant behaviors, and Wnt signaling is essential for the maintenance of cancer stem cells. The canonical Wnt/β-catenin pathway has been investigated extensively as a target in cancer treatment and several specific inhibitors of this signaling pathway have been identified through high-throughput screening. In this review, the significance of the canonical Wnt/β-catenin pathway in hematological carcinogenesis and screening methods for specific inhibitors are discussed.
Collapse
Affiliation(s)
- Eishi Ashihara
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tetsuya Takada
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Taira Maekawa
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
19
|
Ludwig J, Federico G, Prokosch S, Küblbeck G, Schmitt S, Klevenz A, Gröne HJ, Nitschke L, Arnold B. Dickkopf-3 Acts as a Modulator of B Cell Fate and Function. THE JOURNAL OF IMMUNOLOGY 2015; 194:2624-34. [DOI: 10.4049/jimmunol.1402160] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Schneider RK, Ademà V, Heckl D, Järås M, Mallo M, Lord AM, Chu LP, McConkey ME, Kramann R, Mullally A, Bejar R, Solé F, Ebert BL. Role of casein kinase 1A1 in the biology and targeted therapy of del(5q) MDS. Cancer Cell 2014; 26:509-20. [PMID: 25242043 PMCID: PMC4199102 DOI: 10.1016/j.ccr.2014.08.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/09/2014] [Accepted: 08/01/2014] [Indexed: 01/16/2023]
Abstract
The casein kinase 1A1 gene (CSNK1A1) is a putative tumor suppressor gene located in the common deleted region for del(5q) myelodysplastic syndrome (MDS). We generated a murine model with conditional inactivation of Csnk1a1 and found that Csnk1a1 haploinsufficiency induces hematopoietic stem cell expansion and a competitive repopulation advantage, whereas homozygous deletion induces hematopoietic stem cell failure. Based on this finding, we found that heterozygous inactivation of Csnk1a1 sensitizes cells to a CSNK1 inhibitor relative to cells with two intact alleles. In addition, we identified recurrent somatic mutations in CSNK1A1 on the nondeleted allele of patients with del(5q) MDS. These studies demonstrate that CSNK1A1 plays a central role in the biology of del(5q) MDS and is a promising therapeutic target.
Collapse
Affiliation(s)
- Rebekka K Schneider
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vera Ademà
- Josep Carreras Leukaemia Research Institute (IJC), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; Laboratori de Citogenètica Molecular, Servei de Patologia, Hospital del Mar, GRETNHE, IMIM (Hospital del Mar Research Institute), 08003 Barcelona, Spain; Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autonoma de Barcelona, 08193 Barcelona, Spain
| | - Dirk Heckl
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marcus Järås
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mar Mallo
- Josep Carreras Leukaemia Research Institute (IJC), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; Laboratori de Citogenètica Molecular, Servei de Patologia, Hospital del Mar, GRETNHE, IMIM (Hospital del Mar Research Institute), 08003 Barcelona, Spain
| | - Allegra M Lord
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lisa P Chu
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marie E McConkey
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rafael Kramann
- Renal Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rafael Bejar
- Division of Hematology and Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
| | - Francesc Solé
- Josep Carreras Leukaemia Research Institute (IJC), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; Laboratori de Citogenètica Molecular, Servei de Patologia, Hospital del Mar, GRETNHE, IMIM (Hospital del Mar Research Institute), 08003 Barcelona, Spain
| | - Benjamin L Ebert
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
21
|
Chiou SS, Wang LT, Huang SB, Chai CY, Wang SN, Liao YM, Lin PC, Liu KY, Hsu SH. Wntless (GPR177) expression correlates with poor prognosis in B-cell precursor acute lymphoblastic leukemia via Wnt signaling. Carcinogenesis 2014; 35:2357-2364. [DOI: 10.1093/carcin/bgu166] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
22
|
Sadras T, Perugini M, Kok CH, Iarossi DG, Heatley SL, Brumatti G, Samuel MS, To LB, Lewis ID, Lopez AF, Ekert PG, Ramshaw HS, D'Andrea RJ. Interleukin-3-mediated regulation of β-catenin in myeloid transformation and acute myeloid leukemia. J Leukoc Biol 2014; 96:83-91. [PMID: 24598054 DOI: 10.1189/jlb.2ab1013-559r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aberrant activation of β-catenin is a common event in AML and is an independent predictor of poor prognosis. Although increased β-catenin signaling in AML has been associated with oncogenic translocation products and activating mutations in the FLT3R, the mechanisms that activate β-catenin in AML more broadly are still unclear. Here, we describe a novel link between IL-3 signaling and the regulation of β-catenin in myeloid transformation and AML. In a murine model of HoxB8 and IL-3 cooperation, we show that β-catenin protein levels are modulated by IL-3 and that Cre-induced deletion of β-catenin abolishes IL-3-dependent growth and colony formation. In IL-3-dependent leukemic TF-1.8 cells, we observed increased β-catenin protein levels and nuclear localization in response to IL-3, and this correlated with transcriptional induction of β-catenin target genes. Furthermore, IL-3 promoted β-catenin accumulation in a subset of AML patient samples, and gene-expression profiling of these cells revealed induction of WNT/β-catenin and TCF4 gene signatures in an IL-3-dependent manner. This study is the first to link β-catenin activation to IL-3 and suggests that targeting IL-3 signaling may be an effective approach for the inhibition of β-catenin activity in some patients with AML.
Collapse
Affiliation(s)
- Teresa Sadras
- Centre for Cancer Biology and School of Molecular and Biomedical Science and Centre for Stem Cell Research and Departments of Haematology and Department of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, South Australia, Australia
| | - Michelle Perugini
- Centre for Cancer Biology and Departments of Haematology and School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Chung H Kok
- Centre for Cancer Biology and Departments of Haematology and School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Diana G Iarossi
- Centre for Cancer Biology and Departments of Haematology and Department of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, South Australia, Australia
| | - Susan L Heatley
- Centre for Cancer Biology and Immunology, SA Pathology, Adelaide, South Australia, Australia
| | - Gabriela Brumatti
- Division of Cell Signalling and Cell Death, Walter and Eliza Hall Institute, Parkville, Victoria, Australia; and
| | - Michael S Samuel
- Centre for Cancer Biology and School of Molecular and Biomedical Science and Centre for Stem Cell Research and Immunology, SA Pathology, Adelaide, South Australia, Australia
| | - Luen B To
- Departments of Haematology and School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ian D Lewis
- Centre for Cancer Biology and Departments of Haematology and School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Angel F Lopez
- Centre for Cancer Biology and School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia; Immunology, SA Pathology, Adelaide, South Australia, Australia
| | - Paul G Ekert
- Division of Cell Signalling and Cell Death, Walter and Eliza Hall Institute, Parkville, Victoria, Australia; and
| | - Hayley S Ramshaw
- Centre for Cancer Biology and Immunology, SA Pathology, Adelaide, South Australia, Australia
| | - Richard J D'Andrea
- Centre for Cancer Biology and School of Molecular and Biomedical Science and Centre for Stem Cell Research and Departments of Haematology and Department of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, South Australia, Australia School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia;
| |
Collapse
|
23
|
Bigas A, Guiu J, Gama-Norton L. Notch and Wnt signaling in the emergence of hematopoietic stem cells. Blood Cells Mol Dis 2013; 51:264-70. [DOI: 10.1016/j.bcmd.2013.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 04/28/2013] [Indexed: 10/26/2022]
|
24
|
Tarafdar A, Dobbin E, Corrigan P, Freeburn R, Wheadon H. Canonical Wnt signaling promotes early hematopoietic progenitor formation and erythroid specification during embryonic stem cell differentiation. PLoS One 2013; 8:e81030. [PMID: 24324557 PMCID: PMC3850021 DOI: 10.1371/journal.pone.0081030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/11/2013] [Indexed: 01/08/2023] Open
Abstract
The generation of hematopoietic stem cells (HSCs) during development is a complex process linked to morphogenic signals. Understanding this process is important for regenerative medicine applications that require in vitro production of HSC. In this study we investigated the effects of canonical Wnt/β-catenin signaling during early embryonic differentiation and hematopoietic specification using an embryonic stem cell system. Our data clearly demonstrates that following early differentiation induction, canonical Wnt signaling induces a strong mesodermal program whilst maintaining a degree of stemness potential. This involved a complex interplay between β-catenin/TCF/LEF/Brachyury/Nanog. β-catenin mediated up-regulation of TCF/LEF resulted in enhanced brachyury levels, which in-turn lead to Nanog up-regulation. During differentiation, active canonical Wnt signaling also up-regulated key transcription factors and cell specific markers essential for hematopoietic specification, in particular genes involved in establishing primitive erythropoiesis. This led to a significant increase in primitive erythroid colony formation. β-catenin signaling also augmented early hematopoietic and multipotent progenitor (MPP) formation. Following culture in a MPP specific cytokine cocktail, activation of β-catenin suppressed differentiation of the early hematopoietic progenitor population, with cells displaying a higher replating capacity and a propensity to form megakaryocytic erythroid progenitors. This bias towards erythroid lineage commitment was also observed when hematopoietic progenitors were directed to undergo myeloid colony formation. Overall this study underscores the importance of canonical Wnt/β-catenin signaling in mesodermal specification, primitive erythropoiesis and early hematopietic progenitor formation during hematopoietic induction.
Collapse
Affiliation(s)
- Anuradha Tarafdar
- Paul O’Gorman Leukaemia Research Centre, University of Glasgow, United
Kingdom
- Biomedical Science Institute, University of Ulster, Northern Ireland,
United Kingdom
| | - Edwina Dobbin
- Department of Haematology, Western General Hospital, Edinburgh, United
Kingdom
| | - Pamela Corrigan
- Biomedical Science Institute, University of Ulster, Northern Ireland,
United Kingdom
| | - Robin Freeburn
- School of Science, University of the West of Scotland, Paisley, United
Kingdom
| | - Helen Wheadon
- Paul O’Gorman Leukaemia Research Centre, University of Glasgow, United
Kingdom
| |
Collapse
|
25
|
Scheller M, Schönheit J, Zimmermann K, Leser U, Rosenbauer F, Leutz A. Cross talk between Wnt/β-catenin and Irf8 in leukemia progression and drug resistance. ACTA ACUST UNITED AC 2013; 210:2239-56. [PMID: 24101380 PMCID: PMC3804946 DOI: 10.1084/jem.20130706] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cross talk between Wnt and IFN signaling determines the development of CML-leukemia–initiating cells and represents a mechanism for the acquisition of resistance to Imatinib at later stages of CML. Progression and disease relapse of chronic myeloid leukemia (CML) depends on leukemia-initiating cells (LIC) that resist treatment. Using mouse genetics and a BCR-ABL model of CML, we observed cross talk between Wnt/β-catenin signaling and the interferon-regulatory factor 8 (Irf8). In normal hematopoiesis, activation of β-catenin results in up-regulation of Irf8, which in turn limits oncogenic β-catenin functions. Self-renewal and myeloproliferation become dependent on β-catenin in Irf8-deficient animals that develop a CML-like disease. Combined Irf8 deletion and constitutive β-catenin activation result in progression of CML into fatal blast crisis, elevated leukemic potential of BCR-ABL–induced LICs, and Imatinib resistance. Interestingly, activated β-catenin enhances a preexisting Irf8-deficient gene signature, identifying β-catenin as an amplifier of progression-specific gene regulation in the shift of CML to blast crisis. Collectively, our data uncover Irf8 as a roadblock for β-catenin–driven leukemia and imply both factors as targets in combinatorial therapy.
Collapse
Affiliation(s)
- Marina Scheller
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Lento W, Congdon K, Voermans C, Kritzik M, Reya T. Wnt signaling in normal and malignant hematopoiesis. Cold Spring Harb Perspect Biol 2013; 5:a008011. [PMID: 23378582 PMCID: PMC3552513 DOI: 10.1101/cshperspect.a008011] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One of the most remarkable characteristics of stem cells is their ability to perpetuate themselves through self-renewal while concomitantly generating differentiated cells. In the hematopoietic system, stem cells balance these mechanisms to maintain steady-state hematopoiesis for the lifetime of the organism, and to effectively regenerate the system following injury. Defects in the proper control of self-renewal and differentiation can be potentially devastating and contribute to the development of malignancies. In this review, we trace the emerging role of Wnt signaling as a critical regulator of distinct aspects of self-renewal and differentiation, its contribution to the maintenance of homeostasis and regeneration, and how the pathway can be hijacked to promote leukemia development. A better understanding of these processes could pave the way to enhancing recovery after injury and to developing better therapeutic approaches for hematologic malignancies.
Collapse
Affiliation(s)
- William Lento
- Division of Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
27
|
Roozen PPC, Brugman MH, Staal FJT. Differential requirements for Wnt and Notch signaling in hematopoietic versus thymic niches. Ann N Y Acad Sci 2012; 1266:78-93. [PMID: 22901260 DOI: 10.1111/j.1749-6632.2012.06626.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
All blood cells are derived from multipotent stem cells, the so-called hematopoietic stem cells (HSCs), that in adults reside in the bone marrow. Most types of blood cells also develop there, with the notable exception of T lymphocytes that develop in the thymus. For both HSCs and developing T cells, interactions with the surrounding microenvironment are critical in regulating maintenance, differentiation, apoptosis, and proliferation. Such specialized regulatory microenvironments are referred to as niches and provide both soluble factors as well as cell-cell interactions between niche component cells and blood cells. Two pathways that are critical for early T cell development in the thymic niche are Wnt and Notch signaling. These signals also play important but controversial roles in the HSC niche. Here, we review the differences and similarities between the thymic and hematopoietic niches, with particular focus on Wnt and Notch signals, as well as the latest insights into regulation of these developmentally important pathways.
Collapse
Affiliation(s)
- Paul P C Roozen
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center, Leiden, the Netherlands
| | | | | |
Collapse
|
28
|
Tijchon E, Havinga J, van Leeuwen FN, Scheijen B. B-lineage transcription factors and cooperating gene lesions required for leukemia development. Leukemia 2012; 27:541-52. [PMID: 23047478 DOI: 10.1038/leu.2012.293] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Differentiation of hematopoietic stem cells into B lymphocytes requires the concerted action of specific transcription factors, such as RUNX1, IKZF1, E2A, EBF1 and PAX5. As key determinants of normal B-cell development, B-lineage transcription factors are frequently deregulated in hematological malignancies, such as B-cell precursor acute lymphoblastic leukemia (BCP-ALL), and affected by either chromosomal translocations, gene deletions or point mutations. However, genetic aberrations in this developmental pathway are generally insufficient to induce BCP-ALL, and often complemented by genetic defects in cytokine receptors and tyrosine kinases (IL-7Rα, CRLF2, JAK2 and c-ABL1), transcriptional cofactors (TBL1XR1, CBP and BTG1), as well as the regulatory pathways that mediate cell-cycle control (pRB and INK4A/B). Here we provide a detailed overview of the genetic pathways that interact with these B-lineage specification factors, and describe how mutations affecting these master regulators together with cooperating lesions drive leukemia development.
Collapse
Affiliation(s)
- E Tijchon
- Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
29
|
Ming M, Wang S, Wu W, Senyuk V, Le Beau MM, Nucifora G, Qian Z. Activation of Wnt/β-catenin protein signaling induces mitochondria-mediated apoptosis in hematopoietic progenitor cells. J Biol Chem 2012; 287:22683-90. [PMID: 22589536 DOI: 10.1074/jbc.m112.342089] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The canonical Wnt/β-catenin signaling is activated during development, tumorigenesis, and in adult homeostasis, yet its role in maintenance of hematopoietic stem/progenitor cells is not firmly established. Here, we demonstrate that conditional expression of an active form of β-catenin in vivo induces a marked increase in the frequency of apoptosis in hematopoietic stem/progenitor cells (HSCs/HPCs). Activation of Wnt/β-catenin signaling in HPCs in vitro elevates the activity of caspases 3 and 9 and leads to a loss of mitochondrial membrane potential (ΔΨ(m)), indicating that it induces the intrinsic mitochondrial apoptotic pathway. In vivo, expression of activated β-catenin in HPCs is associated with down-regulation of Bcl2 and expression of Casp3. Bone marrow transplantation assays reveal that enhanced cell survival by a Bcl2 transgene re-establishes the reconstitution capacity of HSCs/HPCs that express activated β-catenin. In addition, a Bcl2 transgene prevents exhaustion of these HSCs/HPCs in vivo. Our data suggest that activation of the Wnt/β-catenin pathway contributes to the defective function of HPCs in part by deregulating their survival.
Collapse
Affiliation(s)
- Ming Ming
- Department of Medicine, University of Illinois, Chicago, Illinois 60621, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Canonical wnt signaling regulates hematopoiesis in a dosage-dependent fashion. Cell Stem Cell 2012; 9:345-56. [PMID: 21982234 DOI: 10.1016/j.stem.2011.07.017] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 06/06/2011] [Accepted: 07/29/2011] [Indexed: 02/04/2023]
Abstract
Canonical Wnt signaling has been implicated in the regulation of hematopoiesis. By employing a Wnt-reporter mouse, we observed that Wnt signaling is differentially activated during hematopoiesis, suggesting an important regulatory role for specific Wnt signaling levels. To investigate whether canonical Wnt signaling regulates hematopoiesis in a dosage-dependent fashion, we analyzed the effect of different mutations in the Adenomatous polyposis coli gene (Apc), a negative modulator of the canonical Wnt pathway. By combining different targeted hypomorphic alleles and a conditional deletion allele of Apc, a gradient of five different Wnt signaling levels was obtained in vivo. We here show that different, lineage-specific Wnt dosages regulate hematopoietic stem cells (HSCs), myeloid precursors, and T lymphoid precursors during hematopoiesis. Differential, lineage-specific optimal Wnt dosages provide a unifying concept that explains the differences reported among inducible gain-of-function approaches, leading to either HSC expansion or depletion of the HSC pool.
Collapse
|
31
|
Rothenberg EV. Transcriptional drivers of the T-cell lineage program. Curr Opin Immunol 2012; 24:132-8. [PMID: 22264928 DOI: 10.1016/j.coi.2011.12.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 12/31/2011] [Indexed: 11/28/2022]
Abstract
The T-cell development program is specifically triggered by Notch-Delta signaling, but most transcription factors needed to establish T-cell lineage identity also have crossover roles in other hematopoietic lineages. This factor sharing complicates full definition of the core gene regulatory circuits required for T-cell specification. But new advances illuminate the roles of three of the most T-cell specific transcription factors. Commitment to the T-cell lineage is now shown to depend on Bcl11b, while initiation of the T-cell differentiation program begins earlier with the induction of TCF-1 (Tcf7 gene product) and GATA-3. Several reports now reveal how TCF-1 and GATA-3 are mobilized in early T cells and the pathways for their T-lineage specific effects.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
32
|
Wnt signaling strength regulates normal hematopoiesis and its deregulation is involved in leukemia development. Leukemia 2011; 26:414-21. [PMID: 22173215 DOI: 10.1038/leu.2011.387] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A strict balance between self-renewal and differentiation of hematopoietic stem cells (HSCs) is required in order to maintain homeostasis, as well as to efficiently respond to injury and infections. Numbers and fate decisions made by progenitors derived from HSC must also be carefully regulated to sustain large-scale production of blood cells. The complex Wnt family of molecules generally is thought to be important to these processes, delivering critical signals to HSC and progenitors as they reside in specialized niches. Wnt proteins have also been extensively studied in connection with malignancies and are causatively involved in the development of several types of leukemias. However, studies with experimental animal models have produced contradictory findings regarding the importance of Wnt signals for normal hematopoiesis and lymphopoiesis. Here, we will argue that dose dependency of signaling via particular Wnt pathways accounts for much, if not all of this controversy. We conclude that there seems little doubt that Wnt proteins are required to sustain normal hematopoiesis, but are likely to be presented in carefully controlled gradients in a tissue-specific manner.
Collapse
|
33
|
Abstract
Considerable information has accumulated about components of BM that regulate the survival, self-renewal, and differentiation of hematopoietic cells. In the present study, we investigated Wnt signaling and assessed its influence on human and murine hematopoiesis. Hematopoietic stem/progenitor cells (HSPCs) were placed on Wnt3a-transduced OP9 stromal cells. The proliferation and production of B cells, natural killer cells, and plasmacytoid dendritic cells were blocked. In addition, some HSPC characteristics were maintained or re-acquired along with different lineage generation potentials. These responses did not result from direct effects of Wnt3a on HSPCs, but also required alterations in the OP9 cells. Microarray, PCR, and flow cytometric experiments revealed that OP9 cells acquired osteoblastic characteristics while down-regulating some features associated with mesenchymal stem cells, including the expression of angiopoietin 1, the c-Kit ligand, and VCAM-1. In contrast, the production of decorin, tenascins, and fibromodulin markedly increased. We found that at least 1 of these extracellular matrix components, decorin, is a regulator of hematopoiesis: upon addition of this proteoglycan to OP9 cocultures, decorin caused changes similar to those caused by Wnt3a. Furthermore, hematopoietic stem cell numbers in the BM and spleen were elevated in decorin-knockout mice. These findings define one mechanism through which canonical Wnt signaling could shape niches supportive of hematopoiesis.
Collapse
|
34
|
T-cell factor 1 is a gatekeeper for T-cell specification in response to Notch signaling. Proc Natl Acad Sci U S A 2011; 108:20060-5. [PMID: 22109558 DOI: 10.1073/pnas.1110230108] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although transcriptional programs associated with T-cell specification and commitment have been described, the functional hierarchy and the roles of key regulators in structuring/orchestrating these programs remain unclear. Activation of Notch signaling in uncommitted precursors by the thymic stroma initiates the T-cell differentiation program. One regulator first induced in these precursors is the DNA-binding protein T-cell factor 1 (Tcf-1), a T-cell-specific mediator of Wnt signaling. However, the specific contribution of Tcf-1 to early T-cell development and the signals inducing it in these cells remain unclear. Here we assign functional significance to Tcf-1 as a gatekeeper of T-cell fate and show that Tcf-1 is directly activated by Notch signals. Tcf-1 is required at the earliest phase of T-cell determination for progression beyond the early thymic progenitor stage. The global expression profile of Tcf-1-deficient progenitors indicates that basic processes of DNA metabolism are down-regulated in its absence, and the blocked T-cell progenitors become abortive and die by apoptosis. Our data thus add an important functional relationship to the roadmap of T-cell development.
Collapse
|
35
|
Perry JM, He XC, Sugimura R, Grindley JC, Haug JS, Ding S, Li L. Cooperation between both Wnt/{beta}-catenin and PTEN/PI3K/Akt signaling promotes primitive hematopoietic stem cell self-renewal and expansion. Genes Dev 2011; 25:1928-42. [PMID: 21890648 DOI: 10.1101/gad.17421911] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although self-renewal is the central property of stem cells, the underlying mechanism remains inadequately defined. Using a hematopoietic stem and progenitor cell (HSPC)-specific conditional induction line, we generated a compound genetic model bearing both Pten deletion and β-catenin activation. These double mutant mice exhibit a novel phenotype, including expansion of phenotypic long-term hematopoietic stem cells (LT-HSCs) without extensive differentiation. Unexpectedly, constitutive activation of β-catenin alone results in apoptosis of HSCs. However, together, the Wnt/β-catenin and PTEN/PI3k/Akt pathways interact to drive phenotypic LT-HSC expansion by inducing proliferation while simultaneously inhibiting apoptosis and blocking differentiation, demonstrating the necessity of complementary cooperation between the two pathways in promoting self-renewal. Mechanistically, β-catenin activation reduces multiple differentiation-inducing transcription factors, blocking differentiation partially through up-regulation of Inhibitor of differentiation 2 (Id2). In double mutants, loss of Pten enhances the HSC anti-apoptotic factor Mcl-1. All of these contribute in a complementary way to HSC self-renewal and expansion. While permanent, genetic alteration of both pathways in double mutant mice leads to expansion of phenotypic HSCs, these HSCs cannot function due to blocked differentiation. We developed a pharmacological approach to expand normal, functional HSCs in culture using factors that reversibly activate both Wnt/β-catenin and PI3K/Akt signaling simultaneously. We show for the first time that activation of either single pathway is insufficient to expand primitive HSCs, but in combination, both pathways drive self-renewal and expansion of HSCs with long-term functional capacity.
Collapse
Affiliation(s)
- John M Perry
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Identification of Flt3⁺CD150⁻ myeloid progenitors in adult mouse bone marrow that harbor T lymphoid developmental potential. Blood 2011; 118:2723-32. [PMID: 21791413 DOI: 10.1182/blood-2010-09-309989] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Common myeloid progenitors (CMPs) were first identified as progenitors that were restricted to myeloid and erythroid lineages. However, it was recently demonstrated that expression of both lymphoid- and myeloid-related genes could be detected in myeloid progenitors. Furthermore, these progenitors were able to give rise to T and B lymphocytes, in addition to myeloid cells. Yet, it was not known whether these progenitors were multipotent at the clonogenic level or there existed heterogeneity within these progenitors with different lineage potential. Here we report that previously defined CMPs possess T-lineage potential, and that this is exclusively found in the Flt3(+)CD150(-) subset of CMPs at the clonal level. In contrast, we did not detect B-lineage potential in CMP subsets. Therefore, these Flt3(+)CD150(-) myeloid progenitors were T/myeloid potent. Yet, Flt3(+)CD150(-) myeloid progenitors are not likely to efficiently traffic to the thymus and contribute to thymopoiesis under normal conditions because of the lack of CCR7 and CCR9 expression. Interestingly, both Flt3(+)CD150(-) and Flt3(-)CD150(-) myeloid progenitors are susceptible to Notch1-mediated T-cell acute lymphoblastic leukemia (T-ALL). Hence, gain-of-function Notch1 mutations occurring in developing myeloid progenitors, in addition to known T-lineage progenitors, could lead to T-ALL oncogenesis.
Collapse
|
37
|
Abstract
T-cell development from stem cells has provided a highly accessible and detailed view of the regulatory processes that can go into the choice of a cell fate in a postembryonic, stem cell-based system. But it has been a view from the outside. The problems in understanding the regulatory basis for this lineage choice begin with the fact that too many transcription factors are needed to provide crucial input: without any one of them, T-cell development fails. Furthermore, almost all the factors known to provide crucial functions during the climax of T-lineage commitment itself are also vital for earlier functions that establish the pool of multilineage precursors that would normally feed into the T-cell specification process. When the regulatory genes that encode them are mutated, the confounding effects on earlier stages make it difficult to dissect T-cell specification genetically. Yet both the positive and the negative regulatory events involved in the choice of a T-cell fate are actually a mosaic of distinct functions. New evidence has emerged recently that finally provides a way to separate the major components that fit together to drive this process. Here, we review insights into T-cell specification and commitment that emerge from a combination of molecular, cellular, and systems biology approaches. The results reveal the regulatory structure underlying this lineage decision.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | |
Collapse
|
38
|
Ge X, Wang X. Role of Wnt canonical pathway in hematological malignancies. J Hematol Oncol 2010; 3:33. [PMID: 20843302 PMCID: PMC2954871 DOI: 10.1186/1756-8722-3-33] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 09/15/2010] [Indexed: 12/13/2022] Open
Abstract
Wnt canonical signaling pathway plays a diverse role in embryonic development and maintenance of organs and tissues in adults. It has been observed that Wnt/β-catenin signaling pathway is involved in the pathogenesis of many carcinomas. Moreover, Wnt/β-catenin pathway has been revealed to be associated with angiogenesis. Wnt canonical pathway signaling has great potential as a therapeutic target. It has been disclosed that some hematological malignancies, such as chronic lymphocytic leukemia, mantle cell lymphoma, may occur partly due to the constitutive activation of Wnt canonical signaling pathway. This review will summarize the latest development in Wnt canonical signaling pathway and its roles in tumorigenesis and angiogenesis.
Collapse
Affiliation(s)
- Xueling Ge
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China
| | | |
Collapse
|
39
|
Buono M, Visigalli I, Bergamasco R, Biffi A, Cosma MP. Sulfatase modifying factor 1-mediated fibroblast growth factor signaling primes hematopoietic multilineage development. ACTA ACUST UNITED AC 2010; 207:1647-60. [PMID: 20643830 PMCID: PMC2916128 DOI: 10.1084/jem.20091022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Self-renewal and differentiation of hematopoietic stem cells (HSCs) are balanced by the concerted activities of the fibroblast growth factor (FGF), Wnt, and Notch pathways, which are tuned by enzyme-mediated remodeling of heparan sulfate proteoglycans (HSPGs). Sulfatase modifying factor 1 (SUMF1) activates the Sulf1 and Sulf2 sulfatases that remodel the HSPGs, and is mutated in patients with multiple sulfatase deficiency. Here, we show that the FGF signaling pathway is constitutively activated in Sumf1(-/-) HSCs and hematopoietic stem progenitor cells (HSPCs). These cells show increased p-extracellular signal-regulated kinase levels, which in turn promote beta-catenin accumulation. Constitutive activation of FGF signaling results in a block in erythroid differentiation at the chromatophilic erythroblast stage, and of B lymphocyte differentiation at the pro-B cell stage. A reduction in mature myeloid cells and an aberrant development of T lymphocytes are also seen. These defects are rescued in vivo by blocking the FGF pathway in Sumf1(-/-) mice. Transplantation of Sumf1(-/-) HSPCs into wild-type mice reconstituted the phenotype of the donors, suggesting a cell autonomous defect. These data indicate that Sumf1 controls HSPC differentiation and hematopoietic lineage development through FGF and Wnt signaling.
Collapse
Affiliation(s)
- Mario Buono
- Telethon Institute of Genetics and Medicine, 80134 Naples, Italy
| | | | | | | | | |
Collapse
|
40
|
Staal FJT, Luis TC. Wnt signaling in hematopoiesis: crucial factors for self-renewal, proliferation, and cell fate decisions. J Cell Biochem 2010; 109:844-9. [PMID: 20069555 DOI: 10.1002/jcb.22467] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A large number of studies from many different laboratories have implicated the Wnt signaling pathway in regulation of hematopoiesis. However, different inducible gain- and loss-of-function approaches yielded controversial and some times contradictory results. In this prospect we will review the current ideas on Wnt signaling in hematopoiesis and early lymphopoiesis. Reviewing this large body of knowledge let us to hypothesize that different levels of activation of the pathway, dosages of Wnt signaling required and the interference by other signals in the context of Wnt activation collectively explain these controversies. Besides differences in dosage, differences in biological function of Wnt proteins in various blood cell types also is a major factor to take into account. Our own work has shown that while in the thymus Wnt signaling provides cytokine-like, proliferative stimuli to developing thymocytes, canonical Wnt signaling in HSC regulates cell fate decisions, in particular self-renewal versus differentiation.
Collapse
Affiliation(s)
- Frank J T Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands.
| | | |
Collapse
|
41
|
Cheng P, Zhou J, Gabrilovich D. Regulation of dendritic cell differentiation and function by Notch and Wnt pathways. Immunol Rev 2010; 234:105-19. [PMID: 20193015 DOI: 10.1111/j.0105-2896.2009.00871.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The process of dendritic cell differentiation is governed by a tightly controlled signaling network regulated by cytokines and direct interaction between progenitor cells and bone marrow stroma. Notch signaling represents one of the major pathways activated during direct interaction between hematopoietic progenitor cells and bone marrow stroma. Wnt pathway is activated by soluble proteins produced by bone marrow stroma. Until recently, the role of Notch and Wnt signaling in the development of myeloid cells and dendritic cells in particular remained unclear. In this review, we discuss recent exciting findings that shed light on the critical role of Notch and Wnt pathways, their interaction in differentiation and function of dendritic cells, and their impact on immune responses.
Collapse
Affiliation(s)
- Pingyan Cheng
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | |
Collapse
|
42
|
Vidal LJP, Perry JK, Vouyovitch CM, Pandey V, Brunet-Dunand SE, Mertani HC, Liu DX, Lobie PE. PAX5α Enhances the Epithelial Behavior of Human Mammary Carcinoma Cells. Mol Cancer Res 2010; 8:444-56. [DOI: 10.1158/1541-7786.mcr-09-0368] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Abstract
The Wnt signaling pathway has been implicated in regulation of hematopoiesis through a plethora of studies from many different laboratories. However, different inducible gain- and loss-of-function approaches retrieved controversial and sometimes contradictory results. Different levels of activation of the pathway, dosages of Wnt signaling required, and the interference by other signals in the context of Wnt activation collectively explain these controversies. Gain-of-function or in vitro exposure to WNT proteins and more specifically WNT3a was shown to enhance hematopoietic stem cell (HSC) activity, but its exact role was still not completely understood. In a recent study we analyzed the hematopoietic system of mice deficient for this specific Wnt gene. Wnt3a deficiency results in early embryonic lethality around embryonic day 12.5 (E12.5), precluding analysis in adult mice, but allowing hematopoiesis to be studied in fetal liver (FL) and in the just colonized thymic rudiment. Notably, we showed that long-term HSCs and multipotent progenitors are reduced in FL and have severely reduced long-term reconstitution capacity as observed in serial transplantation assays. Of interest, deficiency in Wnt3a leads to complete abolition of canonical Wnt signaling in FL hematopoietic stem and progenitor cells. This HSC deficiency is not explained by altered cell cycle or survival and is irreversible, since it cannot be restored by transplantation into Wnt3a-competent mice. In addition, Wnt3a deficiency differentially affects myeloid and B-lymphoid lineages, with myeloid cells being affected at the progenitor level, while B lymphopoiesis is apparently unaffected. Immature thymocytes, however, were reduced in cell numbers due to lack of Wnt3a production by the thymic microenvironment. Our results show that while in the thymus Wnt3a provides cytokine-like, proliferative stimuli to developing thymocyte Wnt3a regulates cell fate decisions of FL HSC in a nonredundant way.
Collapse
Affiliation(s)
- Tiago C Luis
- Department of Immunology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
44
|
Nteliopoulos G, Marley SB, Gordon MY. Influence of PI-3K/Akt pathway on Wnt signalling in regulating myeloid progenitor cell proliferation. Evidence for a role of autocrine/paracrine Wnt regulation. Br J Haematol 2009; 146:637-51. [DOI: 10.1111/j.1365-2141.2009.07823.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Malhotra S, Kincade PW. Wnt-related molecules and signaling pathway equilibrium in hematopoiesis. Cell Stem Cell 2009; 4:27-36. [PMID: 19128790 DOI: 10.1016/j.stem.2008.12.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is near consensus that Wnt family molecules establish important gradients within niches where hematopoietic stem cells (HSC) reside. We review recent papers suggesting that a delicate balance is required between competing Wnt ligands and corresponding signaling pathways to maintain HSC integrity. Some steps in the transitions from HSC to lymphoid progenitor seem to be partially reversible and under the influence of Wnts. In addition, it has been recently suggested that HSC can oscillate between dormant versus active or lineage-biased states. We speculate that Wnts control a reflux process that may sustain stem cell self-renewal and differentiation potential.
Collapse
Affiliation(s)
- Sachin Malhotra
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
46
|
Dysregulation of Frizzled 6 is a critical component of B-cell leukemogenesis in a mouse model of chronic lymphocytic leukemia. Blood 2009; 113:3031-9. [PMID: 19179304 DOI: 10.1182/blood-2008-06-163303] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Wnt/Fzd signaling is known to play a key role in development, tissue-specific stem-cell maintenance, and tumorigenesis, particularly through the canonical pathway involving stabilization of beta-catenin. We have previously shown that Fzd9(-/-) mice have a deficiency in pre-B cells at a stage when self-renewing division is occurring in preference to further differentiation, before light chain immunoglobulin recombination. To determine whether pathologic usurpation of this pathway plays a role in B-cell leukemogenesis, we examined the expression of Wnt/Fzd pathway genes in the Emu-TCL1 mouse model of chronic lymphocytic leukemia. We find that, in the course of leukemogenesis, the expression of Wnt16, Wnt10alpha, Fzd1, and most dramatically, Fzd6, is progressively up-regulated in the transformed CD5(+) B cells of these mice, as are beta-catenin protein levels. Elimination of Fzd6 expression by crossing into Fzd6(-/-) mice significantly delays development of chronic lymphocytic leukemia in this model. Our findings suggest that the self-renewal signals mediated by Wnt/Fzd that are enlisted during B-cell development may be pathologically reactivated in the neoplastic transformation of mature B cells.
Collapse
|
47
|
Yokota T, Oritani K, Garrett KP, Kouro T, Nishida M, Takahashi I, Ichii M, Satoh Y, Kincade PW, Kanakura Y. Soluble frizzled-related protein 1 is estrogen inducible in bone marrow stromal cells and suppresses the earliest events in lymphopoiesis. THE JOURNAL OF IMMUNOLOGY 2009; 181:6061-72. [PMID: 18941195 DOI: 10.4049/jimmunol.181.9.6061] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It has long been known that lymphopoiesis is transiently suppressed during pregnancy, which can be experimentally simulated by estrogen treatment. We now confirm with Rag1/GFP reporter mice that early lymphoid progenitors in the lineage marker(-) c-kit(high) ScaI(+), hematopoietic stem cell-enriched fraction of bone marrow are particularly depressed in these circumstances. Hematopoietic and environmental cells are both potential hormone targets and, because of this complexity, very little is known regarding mechanisms. We have now identified soluble Frizzled-related protein (sFRP)1 as an estrogen-inducible gene in stromal cells, whose expression corresponded to inability to support lymphopoiesis. Bone-lining stromal cells express sFRP1, and the transcripts were elevated by pregnancy or estrogen injection. Estrogen receptor-alpha was essential for both lymphoid suppression and induction of the sFRP family. SFRP1 has been mainly described as an antagonist for complex Wnt signals. However, we found that sFRP1, like Wnt3a, stabilized beta-catenin and blocked early lymphoid progression. Myeloerythroid progenitors were less affected by sFRP1 in culture, which was similar to estrogen with respect to lineage specificity. Hematopoietic stem cells expressed various Frizzled receptors, which markedly declined as they differentiated to lymphoid lineage. Thus, hormonal control of early lymphopoiesis in adults might partly relate to sFRP1 levels.
Collapse
Affiliation(s)
- Takafumi Yokota
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Malhotra S, Baba Y, Garrett KP, Staal FJT, Gerstein R, Kincade PW. Contrasting responses of lymphoid progenitors to canonical and noncanonical Wnt signals. THE JOURNAL OF IMMUNOLOGY 2008; 181:3955-64. [PMID: 18768850 DOI: 10.4049/jimmunol.181.6.3955] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Wnt family of secreted glycoproteins has been implicated in many aspects of development, but its contribution to blood cell formation is controversial. We overexpressed Wnt3a, Wnt5a, and Dickkopf 1 in stromal cells from osteopetrotic mice and used them in coculture experiments with highly enriched stem and progenitor cells. The objective was to learn whether and how particular stages of B lymphopoiesis are responsive to these Wnt family ligands. We found that canonical Wnt signaling, through Wnt3a, inhibited B and plasmacytoid dendritic cell, but not conventional dendritic cell development. Wnt5a, which can oppose canonical signaling or act through a different pathway, increased B lymphopoiesis. Responsiveness to both Wnt ligands diminished with time in culture and stage of development. That is, only hematopoietic stem cells and very primitive progenitors were affected. Although Wnt3a promoted retention of hematopoietic stem cell markers, cell yields and dye dilution experiments indicated it was not a growth stimulus. Other results suggest that lineage instability results from canonical Wnt signaling. Lymphoid progenitors rapidly down-regulated RAG-1, and some acquired stem cell-staining characteristics as well as myeloid and erythroid potential when exposed to Wnt3a-producing stromal cells. We conclude that at least two Wnt ligands can differentially regulate early events in B lymphopoiesis, affecting entry and progression in distinct differentiation lineages.
Collapse
Affiliation(s)
- Sachin Malhotra
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
49
|
Yu Q, Quinn WJ, Salay T, Crowley JE, Cancro MP, Sen JM. Role of beta-catenin in B cell development and function. THE JOURNAL OF IMMUNOLOGY 2008; 181:3777-83. [PMID: 18768830 DOI: 10.4049/jimmunol.181.6.3777] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
beta-Catenin is a central mediator of Wnt signaling pathway, components of which have been implicated in B cell development and function. B cell progenitors and bone marrow stromal cells express Wnt ligands, Frizzled receptors and Wnt antagonists, suggesting fine tuned regulation of this pathway in B cell development. In particular, deletion of Frizzled 9 gene results in developmental defects at the pre-B stage of development and an accumulation of plasma cells. Furthermore, Wnt signals regulate B cell proliferation through lymphocyte enhancer-binding factor-1. However, it is not known whether Wnt signaling in B cell development is mediated by beta-catenin and whether beta-catenin plays a role in mature B cell function. In this report, we show that mice bearing B cell-specific deletion of beta-catenin have normal B cell development in bone marrow and periphery. A modest defect in plasma cell generation in vitro was documented, which correlated with a defective expression of IRF-4 and Blimp-1. However, B cell response to T-dependent and T-independent Ags in vivo was found to be normal. Thus, beta-catenin expression was found to be dispensable for normal B cell development and function.
Collapse
Affiliation(s)
- Qing Yu
- Lymphocyte Development Unit, Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore MD 21224, USA
| | | | | | | | | | | |
Collapse
|
50
|
David-Fung ES, Butler R, Buzi G, Yui MA, Diamond RA, Anderson MK, Rowen L, Rothenberg EV. Transcription factor expression dynamics of early T-lymphocyte specification and commitment. Dev Biol 2008; 325:444-67. [PMID: 19013443 DOI: 10.1016/j.ydbio.2008.10.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 10/17/2008] [Indexed: 12/15/2022]
Abstract
Mammalian T lymphocytes are a prototype for development from adult pluripotent stem cells. While T-cell specification is driven by Notch signaling, T-lineage commitment is only finalized after prolonged Notch activation. However, no T-lineage specific regulatory factor has been reported that mediates commitment. We used a gene-discovery approach to identify additional candidate T-lineage transcription factors and characterized expression of >100 regulatory genes in early T-cell precursors using realtime RT-PCR. These regulatory genes were also monitored in multilineage precursors as they entered T-cell or non-T-cell pathways in vitro; in non-T cells ex vivo; and in later T-cell developmental stages after lineage commitment. At least three major expression patterns were observed. Transcription factors in the largest group are expressed at relatively stable levels throughout T-lineage specification as a legacy from prethymic precursors, with some continuing while others are downregulated after commitment. Another group is highly expressed in the earliest stages only, and is downregulated before or during commitment. Genes in a third group undergo upregulation at one of three distinct transitions, suggesting a positive regulatory cascade. However, the transcription factors induced during commitment are not T-lineage specific. Different members of the same transcription factor family can follow opposite trajectories during specification and commitment, while factors co-expressed early can be expressed in divergent patterns in later T-cell development. Some factors reveal new regulatory distinctions between alphabeta and gammadelta T-lineage differentiation. These results show that T-cell identity has an essentially complex regulatory basis and provide a detailed framework for regulatory network modeling of T-cell specification.
Collapse
|