1
|
Sutton MN, Glazer SE, Muzzioli R, Yang P, Gammon ST, Piwnica-Worms D. Dimerization of the 4Ig isoform of B7-H3 in tumor cells mediates enhanced proliferation and tumorigenic signaling. Commun Biol 2024; 7:21. [PMID: 38182652 PMCID: PMC10770396 DOI: 10.1038/s42003-023-05736-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024] Open
Abstract
B7-H3 (CD276) has two isoforms (2Ig and 4Ig), no confirmed cognate receptor, and physiological functions that remain elusive. While differentially expressed on many solid tumors correlating with poor survival, mechanisms of how B7-H3 signals in cis (tumor cell) versus in trans (immune cell co-regulator) to elicit pro-tumorigenic phenotypes remain poorly defined. Herein, we characterized a tumorigenic and signaling role for tumor cell-expressed 4Ig-B7-H3, the dominant human isoform, in gynecological cancers that could be abrogated upon CRISPR/Cas9 knockout of B7-H3; tumorigenesis was rescued upon re-expression of 4Ig-B7-H3. Size exclusion chromatography revealed dimerization states for the extracellular domains of both human 4Ig- and murine 2Ig-B7-H3. mEGFP lifetimes of expressed 4Ig-B7-H3-mEGFP fusions determined by FRET-FLIM assays confirmed close-proximity interactions of 4Ig-B7-H3 and identified two distinct homo-FRET lifetime populations, consistent with monomeric and homo-dimer interactions. In live cells, bioluminescence imaging of 4Ig-B7-H3-mediated split luciferase complementation showed dimerization of 4Ig-B7-H3. To separate basal from dimer state activities in the absence of a known receptor, C-terminus (cytosolic) chemically-induced dimerization of 4Ig-B7-H3 increased tumor cell proliferation and cell activation signaling pathways (AKT, Jak/STAT, HIF1α, NF-κβ) significantly above basal expression of 4Ig-B7-H3 alone. These results revealed a new, dimerization-dependent intrinsic tumorigenic signaling role for 4Ig-B7-H3, likely acting in cis, and provide a therapeutically-actionable target for intervention of B7-H3-dependent tumorigenesis.
Collapse
Affiliation(s)
- Margie N Sutton
- Department of Cancer Systems Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sarah E Glazer
- Department of Cancer Systems Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Riccardo Muzzioli
- Department of Cancer Systems Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ping Yang
- Department of Cancer Systems Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Seth T Gammon
- Department of Cancer Systems Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Zhang L, Park JJ, Dong MB, Arsala D, Xia S, Chen J, Sosa D, Atlas JE, Long M, Chen S. Human gene age dating reveals an early and rapid evolutionary construction of the adaptive immune system. Genome Biol Evol 2023; 15:evad081. [PMID: 37170918 PMCID: PMC10210621 DOI: 10.1093/gbe/evad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023] Open
Abstract
T cells are a type of white blood cell that play a critical role in the immune response against foreign pathogens through a process called T Cell Adaptive Immunity (TCAI). However, the evolution of the genes and nucleotide sequences involved in TCAI is not well understood. To investigate this, we performed comparative studies of gene annotations and genome assemblies of 28 vertebrate species and identified sets of human genes that are involved in TCAI, carcinogenesis, and ageing. We found that these gene sets share interaction pathways which may have contributed to the evolution of longevity in the vertebrate lineage leading to humans. Our human gene age dating analyses revealed that there was rapid origination of genes with TCAI-related functions prior to the Cretaceous eutherian radiation and these new genes mainly encode negative regulators. We identified no new TCAI-related genes after the divergence of placental mammals, but we did detect an extensive number of amino acid substitutions under strong positive selection in recently evolved human immunity genes suggesting they are co-evolving with adaptive immunity. More specifically, we observed that antigen processing and presentation and checkpoint genes are significantly enriched among new genes evolving under positive selection. These observations reveal an evolutionary process of T Cell Adaptive Immunity that were associated with rapid gene duplication in the early stages of vertebrates and subsequent sequence changes in TCAI-related genes. These processes together suggest an early genetic construction of the vertebrate immune system and subsequent molecular adaptation to diverse antigens.
Collapse
Affiliation(s)
- Li Zhang
- System Biology Institute, Integrated Science & Technology Center, West Haven, Connecticut, USA
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, Connecticut, USA
- Yale M.D.-Ph.D. Program, New Haven, Connecticut, USA
| | - Jonathan J Park
- System Biology Institute, Integrated Science & Technology Center, West Haven, Connecticut, USA
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, Connecticut, USA
- Yale M.D.-Ph.D. Program, New Haven, Connecticut, USA
| | - Matthew B Dong
- System Biology Institute, Integrated Science & Technology Center, West Haven, Connecticut, USA
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, Connecticut, USA
- Yale M.D.-Ph.D. Program, New Haven, Connecticut, USA
- Immunobiology Program, The Anlyan Center, New Haven, Connecticut, USA
- Department of Immunobiology, The Anlyan Center, New Haven, Connecticut, USA
| | - Deanna Arsala
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Jianhai Chen
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Dylan Sosa
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Jared E Atlas
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, USA
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Sidi Chen
- System Biology Institute, Integrated Science & Technology Center, West Haven, Connecticut, USA
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, Connecticut, USA
- Yale M.D.-Ph.D. Program, New Haven, Connecticut, USA
- Immunobiology Program, The Anlyan Center, New Haven, Connecticut, USA
- Yale Comprehensive Cancer Center, New Haven, Connecticut, USA
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Forni D, Sironi M, Cagliani R. Evolutionary history of type II transmembrane serine proteases involved in viral priming. Hum Genet 2022; 141:1705-1722. [PMID: 35122525 PMCID: PMC8817155 DOI: 10.1007/s00439-022-02435-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/15/2022] [Indexed: 11/24/2022]
Abstract
Type II transmembrane serine proteases (TTSPs) are a family of trypsin-like membrane-anchored serine proteases that play key roles in the regulation of some crucial processes in physiological conditions, including cardiac function, digestion, cellular iron homeostasis, epidermal differentiation, and immune responses. However, some of them, in particular TTSPs expressed in the human airways, were identified as host factors that promote the proteolytic activation and spread of respiratory viruses such as influenza virus, human metapneumovirus, and coronaviruses, including SARS-CoV-2. Given their involvement in viral priming, we hypothesized that members of the TTSP family may represent targets of positive selection, possibly as the result of virus-driven pressure. Thus, we investigated the evolutionary history of sixteen TTSP genes in mammals. Evolutionary analyses indicate that most of the TTSP genes that have a verified role in viral proteolytic activation present signals of pervasive positive selection, suggesting that viral infections represent a selective pressure driving the evolution of these proteases. We also evaluated genetic diversity in human populations and we identified targets of balancing selection in TMPRSS2 and TMPRSS4. This scenario may be the result of an ancestral and still ongoing host–pathogen arms race. Overall, our results provide evolutionary information about candidate functional sites and polymorphic positions in TTSP genes.
Collapse
Affiliation(s)
- Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842, Bosisio Parini, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842, Bosisio Parini, Italy.
| |
Collapse
|
4
|
Leddon SA, Fettis MM, Abramo K, Kelly R, Oleksyn D, Miller J. The CD28 Transmembrane Domain Contains an Essential Dimerization Motif. Front Immunol 2020; 11:1519. [PMID: 32765524 PMCID: PMC7378745 DOI: 10.3389/fimmu.2020.01519] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
CD28 plays a critical role in regulating immune responses both by enhancing effector T cell activation and differentiation and controlling the development and function of regulatory T cells. CD28 is expressed at the cell surface as a disulfide linked homodimer that is thought to bind ligand monovalently. How ligand binding triggers CD28 to induce intracellular signaling as well as the proximal signaling pathways that are induced are not well-understood. In addition, recent data suggest inside-out signaling initiated by the T cell antigen receptor can enhance CD28 ligand binding, possibly by inducing a rearrangement of the CD28 dimer interface to allow for bivalent binding. To understand how possible conformational changes during ligand-induced receptor triggering and inside-out signaling are mediated, we examined the CD28 transmembrane domain. We identified an evolutionarily conserved YxxxxT motif that is shared with CTLA-4 and resembles the transmembrane dimerization motif within CD3ζ. We show that the CD28 transmembrane domain can drive protein dimerization in a bacterial expression system at levels equivalent to the well-known glycophorin A transmembrane dimerization motif. In addition, ectopic expression of the CD28 transmembrane domain into monomeric human CD25 can drive dimerization in murine T cells as detected by an increase in FRET by flow cytometry. Mutation of the polar YxxxxT motif to hydrophobic leucine residues (Y145L/T150L) attenuated CD28 transmembrane mediated dimerization in both the bacterial and mammalian assays. Introduction of the Y145L/T150L mutation of the CD28 transmembrane dimerization motif into the endogenous CD28 locus by CRISPR resulted in a dramatic loss in CD28 cell surface expression. These data suggest that under physiological conditions the YxxxxT dimerization motif within the CD28 transmembrane domain plays a critical role in the assembly and/or expression of stable CD28 dimers at the cell surface.
Collapse
Affiliation(s)
- Scott A Leddon
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Margaret M Fettis
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Kristin Abramo
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Ryan Kelly
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - David Oleksyn
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Jim Miller
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
5
|
Pang T, Du L, Li F, Liu Y, Ma X, Cao Q, Shi L, Li N, Kijlstra A, Yang P. Association of apoptosis genes in PDCD1 but not PDCD1LG2, FAS, and FASLG with pediatric idiopathic uveitis in Han Chinese. Pediatr Res 2020; 87:634-638. [PMID: 31618754 DOI: 10.1038/s41390-019-0612-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/11/2019] [Accepted: 08/27/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Previous studies have shown that aberrant T lymphocyte apoptosis is involved in the pathogenesis of uveitis. Genetic variants of apoptotic pathway-related factors (including PDCD1, PDCD1LG2, FAS, and FASLG) may affect apoptosis and in turn predict susceptibility to autoimmune disease. This has not yet been studied in pediatric idiopathic uveitis (PIU) and juvenile idiopathic arthritis (JIA)-associated uveitis and was therefore the subject of the study presented here. METHODS Fourteen single-nucleotide polymorphisms (SNPs) of several apoptosis-related pathway genes were analyzed in 1238 PIU patients, 128 JIA-associated uveitis patients and 1114 healthy controls using the iPLEX Gold Assay and MassARRAY platform. RESULTS A lower frequency of the PDCD1/rs6710479 CC genotype in PIU patients was found when compared to controls (Pc = 3.42 × 10-3). A higher frequency of the PDCD1/rs7421861 A allele (Pc = 4.85 × 10-3) was observed in PIU patients as compared with controls. Stratification analysis showed a positive association of band keratopathy with the PDCD1/rs7565639 CT genotype (Pc = 1.05 × 10-2) and a negative association of this parameter with the PDCD1/rs7565639 C allele (Pc = 3.76 × 10-2). CONCLUSIONS This study revealed that rs6710479 and rs7421861 in the PDCD1 gene confer susceptibility to PIU in Han Chinese. A stratified analysis showed that PDCD1/rs7565639 is associated with band keratopathy in PIU patients.
Collapse
Affiliation(s)
- Tingting Pang
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, People's Republic of China.,The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Liping Du
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, People's Republic of China
| | - Fuzhen Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, People's Republic of China
| | - Yizong Liu
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, People's Republic of China.,The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xin Ma
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, People's Republic of China.,The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Qingfeng Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, People's Republic of China
| | - Liying Shi
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, People's Republic of China
| | - Na Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, People's Republic of China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, Limburg, The Netherlands
| | - Peizeng Yang
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, People's Republic of China. .,The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, People's Republic of China.
| |
Collapse
|
6
|
Fazeli-Nasab B, Sayyed RZ, Farsi M, Ansari S, El-Enshasy HA. Genetic assessment of the internal transcribed spacer region (ITS1.2) in Mangifera indica L. landraces. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:107-117. [PMID: 32158124 PMCID: PMC7036387 DOI: 10.1007/s12298-019-00732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/27/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Mango (Mangifera indica) is one of the most important tropical fruits in the world. Twenty-two genotypes of native mangoes from different regions of southern Iran (Hormozgan and Kerman) were collected and analyzed for the ribosomal genes. GC content was found to be 55.5%. Fu and Li's D* test statistic (0.437), Fu and Li's F* test statistic (0.500) and Tajima's D (1.801) were positive and nonsignificant. A total of 769 positions were identified (319 with insertion or deletion including 250 polymorphic and 69 monomorphic loci; 450 loci without any insertion or deletion including 35 Singletons and 22 haplotypes). Nucleotide diversity of 0.309 and a high genetic differentiation including Chi square of 79.8; P value of 0.3605 and df value of 76 was observed among mango genotypes studied. The numerical value of the ratio dN/dS (0.45) indicated a pure selection in the examined gene and the absence of any key changes. Cluster analysis differentiated the mango used in this research (M. indica L.) into two genotypes but could not differentiate their geographical locations. The results of this study indicated that a high genetic distance exists between HajiGholam (Manojan) and Arbabi (Rodan) genotypes and showed higher genetic diversity in mango of Rodan region. Results of present study suggested that for successful breeding, the genotypes of Rodan region mango especially Arbabi mango can be used as a gene donor and ITS can be a suitable tool for genetic evaluations of inter and intra species.
Collapse
Affiliation(s)
- Bahman Fazeli-Nasab
- Research Department of Agronomy and Plant Breeding, Agricultural Research Institute, University of Zabol, Zabol, 9861335856 Iran
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s Arts, Science, and Commerce College, Shahada, Maharashtra 425 409 India
| | - Mohammad Farsi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sahar Ansari
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Hesham Ali El-Enshasy
- Institute of Bioproduct Development (IBD), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Johor Malaysia
- City of Scientific Research and Technology Applications, New Burg Al Arab, Alexandria, Egypt
| |
Collapse
|
7
|
Araújo THA, Barreto FK, Menezes ADL, Lima CPSD, Oliveira RSD, Lemos PDS, Galvão-Castro B, Kashima S, Farre L, Bittencourt AL, Carvalho EMD, Santos LA, Rego FFDA, Mota-Miranda ACA, Nunes MRT, Alcântara LCJ. Complete genome sequence of human T-cell lymphotropic type 1 from patients with different clinical profiles, including infective dermatitis. INFECTION GENETICS AND EVOLUTION 2019; 79:104166. [PMID: 31883457 DOI: 10.1016/j.meegid.2019.104166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/16/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022]
Abstract
The HTLV-1 is the first human retrovirus and is associated with several clinical syndromes, however, the pathogenesis of these clinical manifestations is still not fully understood. Furthermore, there are few complete genomes publicly available, about 0.12 complete genomes per 10,000 infected individuals and the databases have a major deficiency of sequences information. This study generated and characterized 31 HTLV-1 complete genomes sequences derived from individuals with Tropical Spastic Paraparesis/HTLV-1-Associated Myelopathy (TSP/HAM), Adult T-cell leukemia/lymphoma (ATL), infective dermatitis associated to HTLV-1 (IDH) and asymptomatic patients. These sequences are associated to clinical and epidemiological information about the patients. The sequencing data generated on Ion Torrent PGM platform were assembled and mapped against the reference HTLV-1 genome. These sequences were genotyped as Cosmopolitan subtype, Transcontinental subgroup. We identified the variants in the coding regions of the genome of the different clinical profiles, however, no statistical relation was detected. This study contributed to increase of HTLV-1 complete genomes in the world. Furthermore, to better investigate the contribution of HTLV-1 mutations for the disease outcome it is necessary to evaluate the interaction of the viral genome and characteristics of the human host.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lourdes Farre
- Fundação Oswaldo Cruz, Brazil; Catalan Institute of Oncology, Bellvitge Biomedical Research Institute, Barcelona, Spain
| | | | | | - Luciane Amorim Santos
- Fundação Oswaldo Cruz, Brazil; Escola Bahiana de Medicina e Saúde Pública Salvador, Brazil
| | | | | | | | | |
Collapse
|
8
|
Paladini F, Fiorillo MT, Tedeschi V, Cauli A, Mathieu A, Sorrentino R. Ankylosing Spondylitis: A Trade Off of HLA-B27, ERAP, and Pathogen Interconnections? Focus on Sardinia. Front Immunol 2019; 10:35. [PMID: 30740100 PMCID: PMC6355666 DOI: 10.3389/fimmu.2019.00035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/08/2019] [Indexed: 01/04/2023] Open
Abstract
The frequency of HLA-B27 in patients with Ankylosing Spondylitis (AS) is over 85%. There are more than 170 recognized HLA-B27 alleles but the majority of them is not sufficiently represented for genetic association studies. So far only two alleles, the HLA-B*2706 in Asia and the HLA-B*2709 in Sardinia, have not been found to be associated with AS. The highly homogenous genetic structure of the Sardinian population has favored the search of relevant variants for disease-association studies. Moreover, malaria, once endemic in the island, has been shown to have contributed to shape the native population genome affecting the relative allele frequency of relevant genes. In Sardinia, the prevalence of HLA-B*2709, which differs from the strongly AS-associated B*2705 prototype for one amino acid (His/Asp116) in the F pocket of the peptide binding groove, is around 20% of all HLA-B27 alleles. We have previously hypothesized that malaria could have contributed to the establishment of this allele in Sardinia. Based on our recent findings, in this perspective article we speculate that the Endoplasmic Reticulum Amino Peptidases, ERAP1 and 2, associated with AS and involved in antigen presentation, underwent co-selection by malaria. These genes, besides shaping the immunopeptidome of HLA-class I molecules, have other biological functions that could also be involved in the immunosurveillance against malaria.
Collapse
Affiliation(s)
- Fabiana Paladini
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - Alberto Cauli
- Department of Medical Sciences and Public Health, Chair of Rheumatology and Rheumatology Unit, University and AOU of Cagliari, Cagliari, Italy
| | - Alessandro Mathieu
- Department of Medical Sciences and Public Health, Chair of Rheumatology and Rheumatology Unit, University and AOU of Cagliari, Cagliari, Italy
| | - Rosa Sorrentino
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| |
Collapse
|
9
|
Chaudhri A, Xiao Y, Klee AN, Wang X, Zhu B, Freeman GJ. PD-L1 Binds to B7-1 Only In Cis on the Same Cell Surface. Cancer Immunol Res 2018; 6:921-929. [PMID: 29871885 DOI: 10.1158/2326-6066.cir-17-0316] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 02/19/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022]
Abstract
Programmed death ligand 1 (PD-L1)-mediated immunosuppression regulates peripheral tolerance and is often co-opted by tumors to evade immune attack. PD-L1 binds to PD-1 but also binds to B7-1 (CD80) to regulate T-cell function. The binding interaction of PD-L1 with B7-1 and its functional role need further investigation to understand differences between PD-1 and PD-L1 tumor immunotherapy. We examined the molecular orientation of PD-L1 binding to B7-1 using cell-to-cell binding assays, ELISA, and flow cytometry. As expected, PD-L1-transfected cells bound to PD-1-transfected cells, and B7-1 cells bound to CD28 or CTLA-4-transfected cells; however, PD-L1 cells did not bind to B7-1 cells. By ELISA and flow cytometry with purified proteins, we found PD-L1 and B7-1 had a strong binding interaction only when PD-L1 was flexible. Soluble PD-1 and B7-1 competed for binding to PD-L1. Binding of native PD-L1 and B7-1 in cis on the same cell surface was demonstrated with NanoBiT proximity assays. Thus, PD-L1-B7-1 interaction can occur in cis on the same cell but not in trans between two cells, which suggests a model in which PD-L1 can bend via its 11-amino acid, flexible stalk to bind to B7-1 in cis, in a manner that can competitively block the binding of PD-L1 to PD-1 or of B7-1 to CD28. This binding orientation emphasizes the functional importance of coexpression of PD-L1 and B7-1 on the same cell. We found such coexpression on tumor-infiltrating myeloid cells. Our findings may help better utilize these pathways in cancer immunotherapy. Cancer Immunol Res; 6(8); 921-9. ©2018 AACR.
Collapse
Affiliation(s)
- Apoorvi Chaudhri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yanping Xiao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Alyssa N Klee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Xiaoxu Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Baogong Zhu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
10
|
Schildberg FA, Klein SR, Freeman GJ, Sharpe AH. Coinhibitory Pathways in the B7-CD28 Ligand-Receptor Family. Immunity 2017; 44:955-72. [PMID: 27192563 DOI: 10.1016/j.immuni.2016.05.002] [Citation(s) in RCA: 443] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Indexed: 01/10/2023]
Abstract
Immune responses need to be controlled for optimal protective immunity and tolerance. Coinhibitory pathways in the B7-CD28 family provide critical inhibitory signals that regulate immune homeostasis and defense and protect tissue integrity. These coinhibitory signals limit the strength and duration of immune responses, thereby curbing immune-mediated tissue damage, regulating resolution of inflammation, and maintaining tolerance to prevent autoimmunity. Tumors and microbes that cause chronic infections can exploit these coinhibitory pathways to establish an immunosuppressive microenvironment, hindering their eradication. Advances in understanding T cell coinhibitory pathways have stimulated a new era of immunotherapy with effective drugs to treat cancer, autoimmune and infectious diseases, and transplant rejection. In this review we discuss the current knowledge of the mechanisms underlying the coinhibitory functions of pathways in the B7-CD28 family, the diverse functional consequences of these inhibitory signals on immune responses, and the overlapping and unique functions of these key immunoregulatory pathways.
Collapse
Affiliation(s)
- Frank A Schildberg
- Department of Microbiology and Immunobiology, and Evergrande Center for Immunologic Diseases, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah R Klein
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, and Evergrande Center for Immunologic Diseases, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Forni D, Mozzi A, Pontremoli C, Vertemara J, Pozzoli U, Biasin M, Bresolin N, Clerici M, Cagliani R, Sironi M. Diverse selective regimes shape genetic diversity at ADAR genes and at their coding targets. RNA Biol 2015; 12:149-61. [PMID: 25826567 DOI: 10.1080/15476286.2015.1017215] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
A-to-I RNA editing operated by ADAR enzymes is extremely common in mammals. Several editing events in coding regions have pivotal physiological roles and affect protein sequence (recoding events) or function. We analyzed the evolutionary history of the 3 ADAR family genes and of their coding targets. Evolutionary analysis indicated that ADAR evolved adaptively in primates, with the strongest selection in the unique N-terminal domain of the interferon-inducible isoform. Positively selected residues in the human lineage were also detected in the ADAR deaminase domain and in the RNA binding domains of ADARB1 and ADARB2. During the recent history of human populations distinct variants in the 3 genes increased in frequency as a result of local selective pressures. Most selected variants are located within regulatory regions and some are in linkage disequilibrium with eQTLs in monocytes. Finally, analysis of conservation scores of coding editing sites indicated that editing events are counter-selected within regions that are poorly tolerant to change. Nevertheless, a minority of recoding events occurs at highly conserved positions and possibly represents the functional fraction. These events are enriched in pathways related to HIV-1 infection and to epidermis/hair development. Thus, both ADAR genes and their targets evolved under variable selective regimes, including purifying and positive selection. Pressures related to immune response likely represented major drivers of evolution for ADAR genes. As for their coding targets, we suggest that most editing events are slightly deleterious, although a minority may be beneficial and contribute to antiviral response and skin homeostasis.
Collapse
Key Words
- 1000G,1000 Genomes Pilot Project
- A to I, adenosine to inosine
- A-to-I editing
- ADAR
- ADAR editing sites
- AGS, Aicardi-Goutières Syndrome
- BEB, Bayes Empirical Bayes
- BS-REL, branch site-random effects likelihood
- CEU, Europeans
- CHBJPT, Chinese plus Japanese
- DAF, derived allele frequency
- DIND, Derived Intra-allelic Nucleotide Diversity
- DSH, dyschromatosis symmetrica hereditaria
- FDR, false discovery rate
- GARD, Genetic Algorithm Recombination Detection
- GERP Genomic Evolutionary Rate Profiling
- IFN, Interferon
- LD, linkage disequilibrium
- LRT, likelihood ratio test
- MAF, minor allele frequency
- MEME, Mixed Effects Model of Evolution
- RBD, dsRNA binding domain
- SLAC, single-likelihood ancestor counting
- YRI, Yoruba
- eQTL, Expression quantitative trait loci
- evolutionary analysis
- iHS, Integrated Haplotype Score
- positive selection
Collapse
Affiliation(s)
- Diego Forni
- a Bioinformatics ; Scientific Institute IRCCS E. MEDEA ; Bosisio Parini , Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Forni D, Pozzoli U, Cagliani R, Tresoldi C, Menozzi G, Riva S, Guerini FR, Comi GP, Bolognesi E, Bresolin N, Clerici M, Sironi M. Genetic adaptation of the human circadian clock to day-length latitudinal variations and relevance for affective disorders. Genome Biol 2015; 15:499. [PMID: 25358694 PMCID: PMC4237747 DOI: 10.1186/s13059-014-0499-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Indexed: 01/18/2023] Open
Abstract
Background The temporal coordination of biological processes into daily cycles is a common feature of most living organisms. In humans, disruption of circadian rhythms is commonly observed in psychiatric diseases, including schizophrenia, bipolar disorder, depression and autism. Light therapy is the most effective treatment for seasonal affective disorder and circadian-related treatments sustain antidepressant response in bipolar disorder patients. Day/night cycles represent a major circadian synchronizing signal and vary widely with latitude. Results We apply a geographically explicit model to show that out-of-Africa migration, which led humans to occupy a wide latitudinal area, affected the evolutionary history of circadian regulatory genes. The SNPs we identify using this model display consistent signals of natural selection using tests based on population genetic differentiation and haplotype homozygosity. Signals of natural selection driven by annual photoperiod variation are detected for schizophrenia, bipolar disorder, and restless leg syndrome risk variants, in line with the circadian component of these conditions. Conclusions Our results suggest that human populations adapted to life at different latitudes by tuning their circadian clock systems. This process also involves risk variants for neuropsychiatric conditions, suggesting possible genetic modulators for chronotherapies and candidates for interaction analysis with photoperiod-related environmental variables, such as season of birth, country of residence, shift-work or lifestyle habits. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0499-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diego Forni
- Scientific Institute IRCCS E. Medea, 23842 Bosisio Parini, LC, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Crespi BJ, Go MC. Diametrical diseases reflect evolutionary-genetic tradeoffs: Evidence from psychiatry, neurology, rheumatology, oncology and immunology. Evol Med Public Health 2015; 2015:216-53. [PMID: 26354001 PMCID: PMC4600345 DOI: 10.1093/emph/eov021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022] Open
Abstract
Tradeoffs centrally mediate the expression of human adaptations. We propose that tradeoffs also influence the prevalence and forms of human maladaptation manifest in disease. By this logic, increased risk for one set of diseases commonly engenders decreased risk for another, diametric, set of diseases. We describe evidence for such diametric sets of diseases from epidemiological, genetic and molecular studies in four clinical domains: (i) psychiatry (autism vs psychotic-affective conditions), (ii) rheumatology (osteoarthritis vs osteoporosis), (iii) oncology and neurology (cancer vs neurodegenerative disorders) and (iv) immunology (autoimmunity vs infectious disease). Diametric disorders are important to recognize because genotypes or environmental factors that increase risk for one set of disorders protect from opposite disorders, thereby providing novel and direct insights into disease causes, prevention and therapy. Ascertaining the mechanisms that underlie disease-related tradeoffs should also indicate means of circumventing or alleviating them, and thus reducing the incidence and impacts of human disease in a more general way.
Collapse
Affiliation(s)
| | - Matthew C Go
- Department of Biological Sciences; Department of Archaeology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6 Present address: Department of Anthropology, University of Illinois at Urbana-Champaign, 109 Davenport Hall, 607 S Mathews Avenue, Urbana, IL 61801, USA
| |
Collapse
|
14
|
Sironi M, Cagliani R, Forni D, Clerici M. Evolutionary insights into host-pathogen interactions from mammalian sequence data. Nat Rev Genet 2015; 16:224-36. [PMID: 25783448 PMCID: PMC7096838 DOI: 10.1038/nrg3905] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Infections are one of the major selective pressures acting on humans, and host-pathogen interactions contribute to shaping the genetic diversity of both organisms. Evolutionary genomic studies take advantage of experiments that natural selection has been performing over millennia. In particular, inter-species comparative genomic analyses can highlight the genetic determinants of infection susceptibility or severity. Recent examples show how evolution-guided approaches can provide new insights into host-pathogen interactions, ultimately clarifying the basis of host range and explaining the emergence of different diseases. We describe the latest developments in comparative immunology and evolutionary genetics, showing their relevance for understanding the molecular determinants of infection susceptibility in mammals.
Collapse
Affiliation(s)
- Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. Medea, 23842 Bosisio Parini, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. Medea, 23842 Bosisio Parini, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. Medea, 23842 Bosisio Parini, Italy
| | - Mario Clerici
- 1] Department of Physiopathology and Transplantation, University of Milan, 20090 Milan, Italy. [2] Don C. Gnocchi Foundation ONLUS, IRCCS, 20148 Milan, Italy
| |
Collapse
|
15
|
Mozzi A, Pontremoli C, Forni D, Clerici M, Pozzoli U, Bresolin N, Cagliani R, Sironi M. OASes and STING: adaptive evolution in concert. Genome Biol Evol 2015; 7:1016-32. [PMID: 25752600 PMCID: PMC4419793 DOI: 10.1093/gbe/evv046] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OAS (2′–5′-oligoadenylate synthases) proteins and cyclic GMP–AMP synthase (cGAS, gene symbol: MB21D1) patrol the cytoplasm for the presence of foreign nucleic acids. Upon binding to double-stranded RNA or double-stranded DNA, OAS proteins and cGAS produce nucleotide second messengers to activate RNase L and STING (stimulator of interferon genes, gene symbol: TMEM173), respectively; this leads to the initiation of antiviral responses. We analyzed the evolutionary history of the MB21D1–TMEM173 and OAS–RNASEL axes in primates and bats and found evidence of widespread positive selection in both orders. In TMEM173, residue 230, a major determinant of response to natural ligands and to mimetic drugs (e.g., DMXAA), was positively selected in Primates and Chiroptera. In both orders, selection also targeted an α-helix/loop element in RNase L that modulates the enzyme preference for single-stranded RNA versus stem loops. Analysis of positively selected sites in OAS1, OAS2, and MB21D1 revealed parallel evolution, with the corresponding residues being selected in different genes. As this cannot result from gene conversion, these data suggest that selective pressure acting on OAS and MB21D1 genes is related to nucleic acid recognition and to the specific mechanism of enzyme activation, which requires a conformational change. Finally, a population genetics-phylogenetics analysis in humans, chimpanzees, and gorillas detected several positively selected sites in most genes. Data herein shed light into species-specific differences in infection susceptibility and in response to synthetic compounds, with relevance for the design of synthetic compounds as vaccine adjuvants.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, Bosisio Parini, Italy
| | - Chiara Pontremoli
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, Bosisio Parini, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Italy Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Uberto Pozzoli
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, Bosisio Parini, Italy
| | - Nereo Bresolin
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, Bosisio Parini, Italy Department of Physiopathology and Transplantation, Dino Ferrari Centre, University of Milan, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, Bosisio Parini, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, Bosisio Parini, Italy
| |
Collapse
|
16
|
Cohen IR. Activation of benign autoimmunity as both tumor and autoimmune disease immunotherapy: A comprehensive review. J Autoimmun 2014; 54:112-7. [DOI: 10.1016/j.jaut.2014.05.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 05/19/2014] [Indexed: 12/25/2022]
|
17
|
Mozzi A, Forni D, Cagliani R, Pozzoli U, Vertemara J, Bresolin N, Sironi M. Albuminoid genes: evolving at the interface of dispensability and selection. Genome Biol Evol 2014; 6:2983-97. [PMID: 25349266 PMCID: PMC4255767 DOI: 10.1093/gbe/evu235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The albuminoid gene family comprises vitamin D-binding protein (GC), alpha-fetoprotein (AFP), afamin (AFM), and albumin (ALB). Albumin is the most abundant human serum protein, and, as the other family members, acts as a transporter of endogenous and exogenous substances including thyroxine, fatty acids, and drugs. Instead, the major cargo of GC is 25-hydroxyvitamin D. We performed an evolutionary study of albuminoid genes and we show that ALB evolved adaptively in mammals. Most positively selected sites are located within albumin-binding sites for fatty acids and thyroxine, as well as at the contact surface with neonatal Fc receptor. Positive selection was also detected for residues forming the prostaglandin-binding pocket. Adaptation to hibernation/torpor might explain the signatures of episodic positive selection we detected for few mammalian lineages. Application of a population genetics-phylogenetics approach showed that purifying selection represented a major force acting on albuminoid genes in both humans and chimpanzees, with the strongest constraint observed for human GC. Population genetic analysis revealed that GC was also the target of locally exerted selective pressure, which drove the frequency increase of different haplotypes in distinct human populations. A search for known variants that modulate GC and 25-hydroxyvitamin D concentrations revealed linkage disequilibrium with positively selected variants, although European and Asian major GC haplotypes carry alleles with reported opposite effect on GC concentration. Data herein indicate that albumin, an extremely abundant housekeeping protein, was the target of pervasive and episodic selection in mammals, whereas GC represented a selection target during the recent evolution of human populations.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, Bosisio Parini, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, Bosisio Parini, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, Bosisio Parini, Italy
| | - Uberto Pozzoli
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, Bosisio Parini, Italy
| | - Jacopo Vertemara
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, Bosisio Parini, Italy
| | - Nereo Bresolin
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, Bosisio Parini, Italy Dino Ferrari Centre, Department of Physiopathology and Transplantation, University of Milan, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, Bosisio Parini, Italy
| |
Collapse
|
18
|
Kuehn HS, Ouyang W, Lo B, Deenick EK, Niemela JE, Avery DT, Schickel JN, Tran DQ, Stoddard J, Zhang Y, Frucht DM, Dumitriu B, Scheinberg P, Folio LR, Frein CA, Price S, Koh C, Heller T, Seroogy CM, Huttenlocher A, Rao VK, Su HC, Kleiner D, Notarangelo LD, Rampertaap Y, Olivier KN, McElwee J, Hughes J, Pittaluga S, Oliveira JB, Meffre E, Fleisher TA, Holland SM, Lenardo MJ, Tangye SG, Uzel G. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 2014; 345:1623-1627. [PMID: 25213377 PMCID: PMC4371526 DOI: 10.1126/science.1255904] [Citation(s) in RCA: 670] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cytotoxic T lymphocyte antigen-4 (CTLA-4) is an inhibitory receptor found on immune cells. The consequences of mutations in CTLA4 in humans are unknown. We identified germline heterozygous mutations in CTLA4 in subjects with severe immune dysregulation from four unrelated families. Whereas Ctla4 heterozygous mice have no obvious phenotype, human CTLA4 haploinsufficiency caused dysregulation of FoxP3(+) regulatory T (Treg) cells, hyperactivation of effector T cells, and lymphocytic infiltration of target organs. Patients also exhibited progressive loss of circulating B cells, associated with an increase of predominantly autoreactive CD21(lo) B cells and accumulation of B cells in nonlymphoid organs. Inherited human CTLA4 haploinsufficiency demonstrates a critical quantitative role for CTLA-4 in governing T and B lymphocyte homeostasis.
Collapse
Affiliation(s)
- Hye Sun Kuehn
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weiming Ouyang
- Laboratory of Cell Biology, Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD 20892, USA
| | - Bernice Lo
- Molecular Development of the Immune System Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
- NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Elissa K. Deenick
- Immunology and Immunodeficiency Group, Immunology Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St. Vincent's Clinical School Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Julie E. Niemela
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danielle T. Avery
- Immunology and Immunodeficiency Group, Immunology Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Jean-Nicolas Schickel
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Dat Q. Tran
- Department of Pediatrics, University of Texas Medical School, Houston, TX 77030, USA
| | - Jennifer Stoddard
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yu Zhang
- NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
- Immunological Diseases Unit, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - David M. Frucht
- Laboratory of Cell Biology, Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD 20892, USA
| | - Bogdan Dumitriu
- Hematology Branch, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Phillip Scheinberg
- Hematology Branch, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Les R. Folio
- Radiology and Imaging and Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cathleen A. Frein
- Clinical Research Directorate, Clinical Monitoring Research Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Susan Price
- Molecular Development of the Immune System Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
- NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | | | - Anna Huttenlocher
- Department of Pediatrics, University of Wisconsin, Madison, WI 53706, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA
| | - V. Koneti Rao
- Molecular Development of the Immune System Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
- NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Helen C. Su
- NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
- Immunological Diseases Unit, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - David Kleiner
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Luigi D. Notarangelo
- Division of Immunology and Manton Center for Orphan Disease Research, Children's Hospital, Harvard Medical School, Boston, MA 10217, USA
| | - Yajesh Rampertaap
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Kenneth N. Olivier
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Joshua McElwee
- Merck Research Laboratories, Merck & Co., Boston, MA 02130, USA
| | - Jason Hughes
- Merck Research Laboratories, Merck & Co., Boston, MA 02130, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Joao B. Oliveira
- Instituto de Medicina Integral Prof. Fernando Figueira–IMIP, 50070 Recife-PE, Brazil
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Thomas A. Fleisher
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven M. Holland
- NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Michael J. Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
- NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Stuart G. Tangye
- Immunology and Immunodeficiency Group, Immunology Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St. Vincent's Clinical School Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Gulbu Uzel
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Sironi M, Biasin M, Gnudi F, Cagliani R, Saulle I, Forni D, Rainone V, Trabattoni D, Garziano M, Mazzotta F, Real LM, Rivero-Juarez A, Caruz A, Caputo SL, Clerici M. A regulatory polymorphism in HAVCR2 modulates susceptibility to HIV-1 infection. PLoS One 2014; 9:e106442. [PMID: 25180498 PMCID: PMC4152274 DOI: 10.1371/journal.pone.0106442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/28/2014] [Indexed: 11/24/2022] Open
Abstract
The HAVCR2 gene encodes TIM-3, an immunoglobulin superfamily member expressed by exhausted CD8+ T cells during chronic viral infection. We investigated whether genetic variation at HAVCR2 modulates the susceptibility to HIV-1 acquisition; specifically we focused on a 3′ UTR variant (rs4704846, A/G) that represents a natural selection target. We genotyped rs4704846 in three independent cohorts of HIV-1 exposed seronegative (HESN) individuals with different geographic origin (Italy and Spain) and distinct route of exposure to HIV-1 (sexual and injection drug use). Matched HIV-1 positive subjects and healthy controls were also analyzed. In all case-control cohorts the minor G allele at rs4704846 was more common in HIV-1 infected individuals than in HESN, with healthy controls showing intermediate frequency. Results from the three association analyses were combined through a random effect meta-analysis, which revealed no heterogeneity among samples (Cochrane's Q, p value = 0.89, I2 = 0) and yielded a p value of 6.8 ×10−4. The minor G allele at rs4704846 was found to increase HAVCR2 expression after in vitro HIV-1 infection. Thus, a positively selected polymorphism in the 3′ UTR, which modulates HAVCR2 expression, is associated with the susceptibility to HIV-1 infection. These data warrant further investigation into the role of TIM-3 in the prevention and treatment of HIV-1/AIDS.
Collapse
Affiliation(s)
- Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
- * E-mail:
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Federica Gnudi
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Veronica Rainone
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Micaela Garziano
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Francesco Mazzotta
- Infectious Disease Unit, S. Maria Annunziata Hospital Florence, Florence, Italy
| | - Luis Miguel Real
- Infectious Diseases and Microbiology Clinical Unit, Valme Hospital, Seville, Spain
| | - Antonio Rivero-Juarez
- Maimonides Institut for Biomedical Research (IMIBIC)-Reina Sofia Universitary Hospital-University of Cordoba, Cordoba, Spain
| | - Antonio Caruz
- Immunogenetics Unit, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Sergio Lo Caputo
- Infectious Disease Unit, S. Maria Annunziata Hospital Florence, Florence, Italy
| | - Mario Clerici
- Chair of Immunology, Department of Physiopathology and Transplantation, University of Milan, Milan, Italy
- Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| |
Collapse
|
20
|
Sironi M, Biasin M, Cagliani R, Gnudi F, Saulle I, Ibba S, Filippi G, Yahyaei S, Tresoldi C, Riva S, Trabattoni D, De Gioia L, Lo Caputo S, Mazzotta F, Forni D, Pontremoli C, Pineda JA, Pozzoli U, Rivero-Juarez A, Caruz A, Clerici M. Evolutionary analysis identifies an MX2 haplotype associated with natural resistance to HIV-1 infection. Mol Biol Evol 2014; 31:2402-14. [PMID: 24930137 DOI: 10.1093/molbev/msu193] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The protein product of the myxovirus resistance 2 (MX2) gene restricts HIV-1 and simian retroviruses. We demonstrate that MX2 evolved adaptively in mammals with distinct sites representing selection targets in distinct branches; selection mainly involved residues in loop 4, previously shown to carry antiviral determinants. Modeling data indicated that positively selected sites form a continuous surface on loop 4, which folds into two antiparallel α-helices protruding from the stalk domain. A population genetics-phylogenetics approach indicated that the coding region of MX2 mainly evolved under negative selection in the human lineage. Nonetheless, population genetic analyses demonstrated that natural selection operated on MX2 during the recent history of human populations: distinct selective events drove the frequency increase of two haplotypes in the populations of Asian and European ancestry. The Asian haplotype carries a susceptibility allele for melanoma; the European haplotype is tagged by rs2074560, an intronic variant. Analyses performed on three independent European cohorts of HIV-1-exposed seronegative individuals with different geographic origin and distinct exposure route showed that the ancestral (G) allele of rs2074560 protects from HIV-1 infection with a recessive effect (combined P = 1.55 × 10(-4)). The same allele is associated with lower in vitro HIV-1 replication and increases MX2 expression levels in response to IFN-α. Data herein exploit evolutionary information to identify a novel host determinant of HIV-1 infection susceptibility.
Collapse
Affiliation(s)
- Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Federica Gnudi
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Salomè Ibba
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Giulia Filippi
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Sarah Yahyaei
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Claudia Tresoldi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Stefania Riva
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | | | | | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Chiara Pontremoli
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Juan Antonio Pineda
- Infectious Diseases and Microbiology Clinical Unit, Valme Hospital, Seville, Spain
| | - Uberto Pozzoli
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Antonio Rivero-Juarez
- Maimonides Institut for Biomedical Research (IMIBIC), Reina Sofia Universitary Hospital, University of Cordoba, Cordoba, Spain
| | - Antonio Caruz
- Immunogenetics Unit, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, ItalyDon C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| |
Collapse
|
21
|
Fumagalli M, Sironi M. Human genome variability, natural selection and infectious diseases. Curr Opin Immunol 2014; 30:9-16. [PMID: 24880709 DOI: 10.1016/j.coi.2014.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 04/29/2014] [Accepted: 05/02/2014] [Indexed: 01/04/2023]
Abstract
The recent availability of large-scale sequencing DNA data allowed researchers to investigate how genomic variation is distributed among populations. While demographic factors explain genome-wide population genetic diversity levels, scans for signatures of natural selection pinpointed several regions under non-neutral evolution. Recent studies found an enrichment of immune-related genes subjected to natural selection, suggesting that pathogens and infectious diseases have imposed a strong selective pressure throughout human history. Pathogen-mediated selection often targeted regulatory sites of genes belonging to the same biological pathway. Results from these studies have the potential to identify mutations that modulate infection susceptibility by integrating a population genomic approach with molecular immunology data and large-scale functional annotations.
Collapse
Affiliation(s)
- Matteo Fumagalli
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| | - Manuela Sironi
- Bioinformatics - Scientific Institute IRCCS E.MEDEA, 23842 Bosisio Parini, Italy
| |
Collapse
|
22
|
An evolutionary analysis of antigen processing and presentation across different timescales reveals pervasive selection. PLoS Genet 2014; 10:e1004189. [PMID: 24675550 PMCID: PMC3967941 DOI: 10.1371/journal.pgen.1004189] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 01/06/2014] [Indexed: 12/28/2022] Open
Abstract
The antigenic repertoire presented by MHC molecules is generated by the antigen processing and presentation (APP) pathway. We analyzed the evolutionary history of 45 genes involved in APP at the inter- and intra-species level. Results showed that 11 genes evolved adaptively in mammals. Several positively selected sites involve positions of fundamental importance to the protein function (e.g. the TAP1 peptide-binding domains, the sugar binding interface of langerin, and the CD1D trafficking signal region). In CYBB, all selected sites cluster in two loops protruding into the endosomal lumen; analysis of missense mutations responsible for chronic granulomatous disease (CGD) showed the action of different selective forces on the very same gene region, as most CGD substitutions involve aminoacid positions that are conserved in all mammals. As for ERAP2, different computational methods indicated that positive selection has driven the recurrent appearance of protein-destabilizing variants during mammalian evolution. Application of a population-genetics phylogenetics approach showed that purifying selection represented a major force acting on some APP components (e.g. immunoproteasome subunits and chaperones) and allowed identification of positive selection events in the human lineage. We also investigated the evolutionary history of APP genes in human populations by developing a new approach that uses several different tests to identify the selection target, and that integrates low-coverage whole-genome sequencing data with Sanger sequencing. This analysis revealed that 9 APP genes underwent local adaptation in human populations. Most positive selection targets are located within noncoding regions with regulatory function in myeloid cells or act as expression quantitative trait loci. Conversely, balancing selection targeted nonsynonymous variants in TAP1 and CD207 (langerin). Finally, we suggest that selected variants in PSMB10 and CD207 contribute to human phenotypes. Thus, we used evolutionary information to generate experimentally-testable hypotheses and to provide a list of sites to prioritize in follow-up analyses. Antigen-presenting cells digest intracellular and extracellular proteins and display the resulting antigenic repertoire on cell surface molecules for recognition by T cells. This process initiates cell-mediated immune responses and is essential to detect infections. The antigenic repertoire is generated by the antigen processing and presentation pathway. Because several pathogens evade immune recognition by hampering this process, genes involved in antigen processing and presentation may represent common natural selection targets. Thus, we analyzed the evolutionary history of these genes during mammalian evolution and in the more recent history of human populations. Evolutionary analyses in mammals indicated that positive selection targeted a very high proportion of genes (24%), and revealed that many selected sites affect positions of fundamental importance to the protein function. In humans, we found different signatures of natural selection acting both on regions that are expected to regulate gene expression levels or timing and on coding variants; two human selected polymorphisms may modulate the susceptibility to Crohn's disease and to HIV-1 infection. Therefore, we provide a comprehensive evolutionary analysis of antigen processing and we show that evolutionary studies can provide useful information concerning the location and nature of functional variants, ultimately helping to clarify phenotypic differences between and within species.
Collapse
|
23
|
RIG-I-Like Receptors Evolved Adaptively in Mammals, with Parallel Evolution at LGP2 and RIG-I. J Mol Biol 2014; 426:1351-65. [DOI: 10.1016/j.jmb.2013.10.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/11/2013] [Accepted: 10/30/2013] [Indexed: 01/18/2023]
|
24
|
Kato LM, Kawamoto S, Maruya M, Fagarasan S. Gut TFH and IgA: key players for regulation of bacterial communities and immune homeostasis. Immunol Cell Biol 2013; 92:49-56. [PMID: 24100385 DOI: 10.1038/icb.2013.54] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 02/07/2023]
Abstract
The main function of the immune system is to protect the host against pathogens. However, unlike the systemic immune system, the gut immune system does not eliminate, but instead nourishes complex bacterial communities and establishes advanced symbiotic relationships. Immunoglobulin A (IgA) is the most abundant antibody isotype in mammals, produced mainly in the gut. The primary function of IgA is to maintain homeostasis at mucosal surfaces, and studies in mice have demonstrated that IgA diversification has an essential role in the regulation of gut microbiota. Dynamic diversification and constant adaptation of IgA responses to local microbiota require expression of activation-induced cytidine deaminase by B cells and control from T follicular helper and Foxp3(+) T cells in germinal centers (GCs). We discuss the finely tuned regulatory mechanisms for IgA synthesis in GCs of Peyer's patches and emphasize the roles of CD4(+) T cells for IgA selection and the maintenance of appropriate gut microbial communities required for immune homeostasis.
Collapse
Affiliation(s)
- Lucia M Kato
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences IMS-RCAI, RIKEN Yokohama Institute, Yokohama, Japan
| | - Shimpei Kawamoto
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences IMS-RCAI, RIKEN Yokohama Institute, Yokohama, Japan
| | - Mikako Maruya
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences IMS-RCAI, RIKEN Yokohama Institute, Yokohama, Japan
| | - Sidonia Fagarasan
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences IMS-RCAI, RIKEN Yokohama Institute, Yokohama, Japan
| |
Collapse
|
25
|
Jones JC, Freeman GJ. Costimulatory genes: hotspots of conflict between host defense and autoimmunity. Immunity 2013; 38:1083-5. [PMID: 23809156 DOI: 10.1016/j.immuni.2013.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
To understand the adaptations of costimulatory molecules through mammalian evolution, Forni et al. (Forni et al., 2013) studied evolutionary selection in key costimulatory genes. Their results, presented in this issue of Immunity, suggest that the risk of autoimmmunity is balanced against efficacy of the anti-pathogen immune response.
Collapse
Affiliation(s)
- Jennifer C Jones
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|