1
|
van der Werf J, Fleming NI. Are single nucleotide polymorphisms underutilized for guiding treatment of inflammatory bowel disease? Immunol Cell Biol 2025. [PMID: 40313162 DOI: 10.1111/imcb.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 05/03/2025]
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease (CD), ulcerative colitis (UC) and IBD unclassified (IBDU), significantly impacts quality of life. Despite significant advances in the management of the conditions, responses to treatments vary greatly, and this is due partly to our natural genetic variation. Here we will review the evidence for whether single nucleotide polymorphisms (SNPs) have the potential to guide treatment decisions for people with IBD. We will first consider SNPs that exhibit strong associations with IBD pathogenesis and their relevance to epithelial barrier integrity, cytokine production, and immune system function. Then, we will cover those SNPs implicated in altering response to our various current IBD therapeutics, including the recently implemented drugs ustekinumab and tofacitinib. Finally, we will explore lesser-known SNPs that exhibit complex relationships with the disease and which may be undervalued as pharmacogenetic tools. Overall, it will be demonstrated that SNPs associated with IBD pathology are largely distinct from those predicting response to treatments and that new discoveries of clinically useful tools can be expected from therapy-focused investigations. Given the growing list of treatments available, we argue that beneficial personalization of treatments based on SNPs is still underutilized.
Collapse
Affiliation(s)
| | - Nicholas Ian Fleming
- Department of Pathology, University of Otago, Dunedin, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Hameg Y, Vildy S, Mahé E. Anti-interleukin-23-associated alopecia areata in patients with psoriasis: two cases and a literature review. Ann Dermatol Venereol 2025; 152:103374. [PMID: 40267540 DOI: 10.1016/j.annder.2025.103374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/20/2024] [Accepted: 01/22/2025] [Indexed: 04/25/2025]
Affiliation(s)
- Y Hameg
- Service de dermatologie et médecine vasculaire, Hôpital Victor-Dupouy, 69 rue du Lieutenant-Colonel-Prud'hon, 95107 Argenteuil, France
| | - S Vildy
- Hôpital Privé du Confluent, 2-4 rue Eric Tabarly, 44200 Nantes, France
| | - E Mahé
- Service de dermatologie et médecine vasculaire, Hôpital Victor-Dupouy, 69 rue du Lieutenant-Colonel-Prud'hon, 95107 Argenteuil, France.
| |
Collapse
|
3
|
García-Domínguez M. The Role of IL-23 in the Development of Inflammatory Diseases. BIOLOGY 2025; 14:347. [PMID: 40282212 PMCID: PMC12025033 DOI: 10.3390/biology14040347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
Interleukin-23 is crucial in the initiation and progression of certain inflammatory disorders. As a key cytokine, IL-23 is involved in the differentiation and activation of Th17 cells, which play a role in a broad spectrum of inflammatory diseases. This review examines the molecular mechanisms through which IL-23 contributes to the pathogenesis of conditions including psoriasis, rheumatoid arthritis, inflammatory bowel disease, and multiple sclerosis. By elucidating the significant role of IL-23 in inflammation, this review underscores its importance as a therapeutic target for managing inflammatory conditions, with particular emphasis on current and emerging biologic treatments.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Program of Immunology and Immunotherapy, CIMA-Universidad de Navarra, 31008 Pamplona, Spain;
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
4
|
Sachen KL, Hammaker D, Sarabia I, Stoveken B, Hartman J, Leppard KL, Manieri NA, Bao P, Greving C, Lacy ER, DuPrie M, Wertheimer J, Deming JD, Brown J, Hart A, Li H(H, Freeman TC, Keyes B, Kohler K, White I, Karpowich N, Steele R, Elloso MM, Fakharzadeh S, Goyal K, Lavie F, Abreu MT, Allez M, Atreya R, Bissonnette R, Eyerich K, Krueger JG, McGonagle D, McInnes IB, Ritchlin C, Fourie AM. Guselkumab binding to CD64 + IL-23-producing myeloid cells enhances potency for neutralizing IL-23 signaling. Front Immunol 2025; 16:1532852. [PMID: 40145093 PMCID: PMC11937023 DOI: 10.3389/fimmu.2025.1532852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/10/2025] [Indexed: 03/28/2025] Open
Abstract
IL-23 is implicated in the pathogenesis of immune-mediated inflammatory diseases, and myeloid cells that express Fc gamma receptor 1 (FcγRI or CD64) on their surface have been recently identified as a primary source of IL-23 in inflamed tissue. Our complementary analyses of transcriptomic datasets from psoriasis and IBD showed increased expression of CD64 and IL-23 transcripts in inflamed tissue, and greater abundance of cell types with co-expression of CD64 and IL-23. These findings led us to explore potential implications of CD64 binding on the function of IL-23-targeting monoclonal antibodies (mAbs). Guselkumab and risankizumab are mAbs that target the IL-23p19 subunit. Guselkumab has a native Fc domain while risankizumab contains mutations that diminish binding to FcγRs. In flow cytometry assays, guselkumab, but not risankizumab, showed Fc-mediated binding to CD64 on IFNγ-primed monocytes. Guselkumab bound CD64 on IL-23-producing inflammatory monocytes and simultaneously captured IL-23 secreted from these cells. Guselkumab binding to CD64 did not induce cytokine production. In live-cell confocal imaging of CD64+ macrophages, guselkumab, but not risankizumab, mediated IL-23 internalization to low-pH intracellular compartments. Guselkumab and risankizumab demonstrated similar potency for inhibition of IL-23 signaling in cellular assays with exogenous addition of IL-23. However, in a co-culture of IL-23-producing CD64+ THP-1 cells with an IL-23-responsive reporter cell line, guselkumab demonstrated Fc-dependent enhanced potency compared to risankizumab for inhibiting IL-23 signaling. These in vitro data highlight the potential for guselkumab binding to CD64 in inflamed tissue to contribute to the potent neutralization of IL-23 at its cellular source.
Collapse
Affiliation(s)
| | | | | | | | - John Hartman
- Johnson & Johnson, Spring House, PA, United States
| | | | | | - Phuc Bao
- Johnson & Johnson, San Diego, CA, United States
| | | | | | | | | | | | | | - Amy Hart
- Johnson & Johnson, Spring House, PA, United States
| | | | | | - Brice Keyes
- Johnson & Johnson, San Diego, CA, United States
| | | | - Ian White
- Johnson & Johnson, Spring House, PA, United States
| | | | - Ruth Steele
- Johnson & Johnson, Spring House, PA, United States
| | | | | | | | | | - Maria T. Abreu
- University of Miami, Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Matthieu Allez
- Hôpital Saint-Louis, Université Paris Cité, Paris, France
| | - Raja Atreya
- Department of Medicine 1, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Kilian Eyerich
- Medical Center, University of Freiburg, Freiburg, Germany
- Department of Medicine – Division of Dermatology and Venereology, Karolinska Institute, Stockholm, Sweden
| | - James G. Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - Dennis McGonagle
- Leeds Biomedical Research Centre, University of Leeds, Leeds, United Kingdom
| | - Iain B. McInnes
- College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christopher Ritchlin
- Center for Musculoskeletal Research, Allergy, Immunology, and Rheumatology Division, University of Rochester, Rochester, NY, United States
| | | |
Collapse
|
5
|
Audia S, Brescia C, Dattilo V, Torchia N, Trapasso F, Amato R. The IL-23R and Its Genetic Variants: A Hitherto Unforeseen Bridge Between the Immune System and Cancer Development. Cancers (Basel) 2024; 17:55. [PMID: 39796684 PMCID: PMC11718844 DOI: 10.3390/cancers17010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
IL-23R (interleukin-23 receptor), found on the surface of several immune cells, plays a key role in the immune system. Indeed, this process is not limited to the inflammatory response but also plays a role in the adaptive immune response. The binding between IL-23R and its specific ligand, the interleukin 23, initiates a number of specific signals by modulating both properties and behavior of immune cells. In particular, it is critical for the regulation of T helper 17 cells (Th17). Th17s are a subset of T cells involved in autoimmune and inflammatory diseases, as well as in cancer. The clinical relevance of IL-23R is underscored by its association with an elevated susceptibility or diminished vulnerability to a spectrum of diseases, including psoriasis, ankylosing spondylitis, and inflammatory bowel disease (IBD). Evidence has emerged that suggests it may also serve to predict both tumor progression and therapeutic responsiveness. It is noteworthy that the IL-23/IL-23R pathway is emerging as a promising therapeutic target. A number of biologic drugs, such as monoclonal antibodies, are currently developing with the aim of blocking this interaction, thus reducing inflammation. This represents a significant advancement in the field of medicine, offering new hope for pursuing more effective and personalized treatments. Recent studies have also investigated the role of such a pathway in autoimmune diseases, and its potential impact on infections as well as in carcinogenesis. The aim of this review is to focus on the role of IL-23R in immune genetics and its potential for modulating the natural history of neoplastic disease.
Collapse
Affiliation(s)
- Salvatore Audia
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (C.B.); (N.T.)
| | - Carolina Brescia
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (C.B.); (N.T.)
| | - Vincenzo Dattilo
- Department of Experimental and Clinical Medicine, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Naomi Torchia
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (C.B.); (N.T.)
| | - Francesco Trapasso
- Department of Experimental and Clinical Medicine, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Rosario Amato
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (C.B.); (N.T.)
| |
Collapse
|
6
|
Hill SJ, Kilpatrick LE. Kinetic analysis of fluorescent ligand binding to cell surface receptors: Insights into conformational changes and allosterism in living cells. Br J Pharmacol 2024; 181:4091-4102. [PMID: 37386806 DOI: 10.1111/bph.16185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Equilibrium binding assays are one of the mainstays of current drug discovery efforts to evaluate the interaction of drugs with receptors in membranes and intact cells. However, in recent years, there has been increased focus on the kinetics of the drug-receptor interaction to gain insight into the lifetime of drug-receptor complexes and the rate of association of a ligand with its receptor. Furthermore, drugs that act on topically distinct sites (allosteric) from those occupied by the endogenous ligand (orthosteric site) can induce conformational changes in the orthosteric binding site leading to changes in the association and/or dissociation rate constants of orthosteric ligands. Conformational changes in the orthosteric ligand binding site can also be induced through interaction with neighbouring accessory proteins and receptor homodimerisation and heterodimerisation. In this review, we provide an overview of the use of fluorescent ligand technologies to interrogate ligand-receptor kinetics in living cells and the novel insights that they can provide into the conformational changes induced by drugs acting on a variety of cell surface receptors including G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and cytokine receptors.
Collapse
Affiliation(s)
- Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
| | - Laura E Kilpatrick
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
- Division of Bimolecular Science and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| |
Collapse
|
7
|
Chen H, Ge X, Li C, Zeng J, Wang X. Structure and assembly of the human IL-12 signaling complex. Structure 2024; 32:1640-1651.e5. [PMID: 39111304 DOI: 10.1016/j.str.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/05/2024] [Accepted: 07/11/2024] [Indexed: 10/06/2024]
Abstract
Interleukin (IL)-12 is a heterodimeric pro-inflammatory cytokine. Our cryoelectron microscopy structure determination of human IL-12 in complex with IL-12Rβ1 and IL-12Rβ2 at a resolution of 3.75 Å reveals that IL-12Rβ2 primarily interacts with the IL-12p35 subunit via its N-terminal Ig-like domain, while IL-12Rβ1 binds to the p40 subunit with its N-terminal fibronectin III domain. This binding mode of IL-12 with its receptors is similar to that of IL-23 but shows notable differences with other cytokines. Through structural information and biochemical assays, we identified Y62, Y189, and K192 as key residues in IL-12p35, which bind to IL-12Rβ2 with high affinity and mediate IL-12 signal transduction. Furthermore, structural comparisons reveal two distinctive conformational states and structural plasticity of the heterodimeric interface in IL-12. As a result, our study advances our understanding of IL-12 signal initiation and opens up new opportunities for the engineering and therapeutic targeting of IL-12.
Collapse
Affiliation(s)
- Huiqin Chen
- The Ministry of Education Key Laboratory of Protein Science, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaofei Ge
- The Ministry of Education Key Laboratory of Protein Science, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chun Li
- The Ministry of Education Key Laboratory of Protein Science, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianwei Zeng
- The Ministry of Education Key Laboratory of Protein Science, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Salehi MRP, Reisi J, Marandi SM, Abdollahi M. Effect of Whole-Body Electrical Muscle Stimulation Training on Inflammatory and Anti-inflammatory Cytokines in Overweight Men. J Obes Metab Syndr 2024; 33:270-274. [PMID: 39317384 PMCID: PMC11443329 DOI: 10.7570/jomes23070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/29/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND The aim of this study was to investigate the effects of whole-body electrical muscle stimulation (WB-EMS) training on inflammatory and anti-inflammatory cytokines in overweight men. METHODS We divided 30 participants into EMS and control groups. The training program for the EMS group comprised 20 WB-EMS sessions (7 weeks, three sessions per week). RESULTS The results showed that EMS training caused significant increase in interferon γ (P<0.001) and interleukin 10 (IL-10; P<0.01) and significant decrease in IL-17 and IL-23 (P<0.05). Also, the lipid profile showed significant positive changes in the EMS training group. CONCLUSION EMS training, a novel exercise method that uses electric stimulation, can affect the levels of various cytokines that are involved in inflammation and immunity. EMS training can have both beneficial and harmful effects on the body depending on the type and balance of involved cytokines.
Collapse
Affiliation(s)
| | - Jalil Reisi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Sayed Mohammad Marandi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Milad Abdollahi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
9
|
Fourie AM, Cheng X, Chang L, Greving C, Li X, Knight B, Polidori D, Patrick A, Bains T, Steele R, Allen SJ, Patch RJ, Sun C, Somani S, Bhandari A, Liu D, Huie K, Li S, Rodriguez MA, Xue X, Kannan A, Kosoglou T, Sherlock JP, Towne J, Holland MC, Modi NB. JNJ-77242113, a highly potent, selective peptide targeting the IL-23 receptor, provides robust IL-23 pathway inhibition upon oral dosing in rats and humans. Sci Rep 2024; 14:17515. [PMID: 39080319 PMCID: PMC11289455 DOI: 10.1038/s41598-024-67371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
The interleukin (IL)-23 pathway is a pathogenic driver in psoriasis, psoriatic arthritis, and inflammatory bowel disease. Currently, no oral therapeutics selectively target this pathway. JNJ-77242113 is a peptide targeting the IL-23 receptor with high affinity (KD: 7.1 pM). In human cells, JNJ-77242113 potently and selectively inhibited proximal IL-23 signaling (IC50: 5.6 pM) without impacting IL-12 signaling. JNJ-77242113 inhibited IL-23-induced interferon (IFN)γ production in NK cells, and in blood from healthy donors and psoriasis patients (IC50: 18.4, 11 and 9 pM, respectively). In a rat trinitrobenzene sulfonic acid-induced colitis model, oral JNJ-77242113 attenuated disease parameters at doses ≥ 0.3 mg/kg/day. Pharmacologic activity beyond the gastrointestinal tract was also demonstrated. In blood from rats receiving oral JNJ-77242113, dose-dependent inhibition of ex vivo IL-23-stimulated IL-17A production was observed. In an IL-23-induced rat skin inflammation model, JNJ-77242113 inhibited IL-23-induced skin thickening and IL-17A, -17F and -22 gene induction. Oral dosing of JNJ-77242113 in healthy human volunteers inhibited ex vivo IL-23-stimulated IFNγ production in whole blood. Thus, JNJ-77242113 provided selective, systemic IL-23 pathway inhibition in preclinical models which translated to pharmacodynamic activity in healthy human volunteers, supporting the potential for JNJ-77242113 as a selective oral therapy for IL-23-driven immune-mediated diseases.
Collapse
Affiliation(s)
- Anne M Fourie
- Janssen Research & Development, LLC, La Jolla, CA, USA.
| | | | - Leon Chang
- Janssen Research & Development, LLC, La Jolla, CA, USA
| | | | - Xinyi Li
- Janssen Research & Development, LLC, La Jolla, CA, USA
| | | | | | - Aaron Patrick
- Janssen Research & Development, LLC, Spring House, PA, USA
| | - Trpta Bains
- Janssen Research & Development, LLC, Spring House, PA, USA
| | - Ruth Steele
- Janssen Research & Development, LLC, Spring House, PA, USA
| | | | | | - Chengzao Sun
- Janssen Research & Development, LLC, Spring House, PA, USA
| | - Sandeep Somani
- Janssen Research & Development, LLC, Spring House, PA, USA
| | | | - David Liu
- Protagonist Therapeutics, Newark, CA, USA
| | - Keith Huie
- Protagonist Therapeutics, Newark, CA, USA
| | - Shu Li
- Protagonist Therapeutics, Newark, CA, USA
| | | | - Xiaohua Xue
- Janssen Research & Development, LLC, La Jolla, CA, USA
| | - Arun Kannan
- Janssen Research & Development, LLC, La Jolla, CA, USA
| | - Teddy Kosoglou
- Janssen Research & Development, LLC, Spring House, PA, USA
| | | | | | | | | |
Collapse
|
10
|
Pan F, Liu J, Chen Y, Zhu B, Chen W, Yang Y, Zhu C, Zhao H, Liu X, Xu Y, Xu X, Huo L, Xie L, Wang R, Gu J, Huang G. Chemotherapy-induced high expression of IL23A enhances efficacy of anti-PD-1 therapy in TNBC by co-activating the PI3K-AKT signaling pathway of CTLs. Sci Rep 2024; 14:14248. [PMID: 38902343 PMCID: PMC11189934 DOI: 10.1038/s41598-024-65129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
Treatment of advanced triple-negative breast cancer (TNBC) is a great challenge in clinical practice. The immune checkpoints are a category of immunosuppressive molecules that cancer could hijack and impede anti-tumor immunity. Targeting immune checkpoints, such as anti-programmed cell death 1 (PD-1) therapy, is a promising therapeutic strategy in TNBC. The efficacy and safety of PD-1 monoclonal antibody (mAb) with chemotherapy have been validated in TNBC patients. However, the precise mechanisms underlying the synergistic effect of chemotherapy and anti-PD-1 therapy have not been elucidated, causing the TNBC patients that might benefit from this combination regimen not to be well selected. In the present work, we found that IL-23, an immunological cytokine, is significantly upregulated after chemotherapy in TNBC cells and plays a vital role in enhancing the anti-tumor immune response of cytotoxic T cells (CTLs), especially in combination with PD-1 mAb. In addition, the combination of IL-23 and PD-1 mAb could synergistically inhibit the expression of Phosphoinositide-3-Kinase Regulatory Subunit 1 (PIK3R1), which is a regulatory subunit of PI3K and inhibit p110 activity, and promote phosphorylation of AKT in TNBC-specific CTLs. Our findings might provide a molecular marker that could be used to predict the effects of combination chemotherapy therapy and PD-1 mAb in TNBC.
Collapse
Affiliation(s)
- Fan Pan
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China
| | - Jiajing Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Ningbo University, Liuting Road 59#, Ningbo, 315010, China
| | - Ying Chen
- Medical School of Nanjing University, Nanjing University, Hankou Road 22#, Nanjing, 210093, China
| | - Binghan Zhu
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing University Medical School, Zhongshan Road 321#, Nanjing, 210008, China
| | - Weiwei Chen
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China
| | - Yuchen Yang
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China
| | - Chunyan Zhu
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China
| | - Hua Zhao
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China
| | - Xiaobei Liu
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China
| | - Yichen Xu
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China
| | - Xiaofan Xu
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China
| | - Liqun Huo
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China
| | - Li Xie
- Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321#, Nanjing, 210008, China.
| | - Rui Wang
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China.
| | - Jun Gu
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China.
| | - Guichun Huang
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China.
| |
Collapse
|
11
|
Zou Z, Shen J, Xue D, Li H, Xu L, Cao W, Wang W, Fu YX, Peng H. Anti-PD-1 cis-delivery of low-affinity IL-12 activates intratumoral CD8 +T cells for systemic antitumor responses. Nat Commun 2024; 15:4701. [PMID: 38830882 PMCID: PMC11148143 DOI: 10.1038/s41467-024-49034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 05/17/2024] [Indexed: 06/05/2024] Open
Abstract
Immune checkpoint blockade (ICB) therapies function by alleviating immunosuppression on tumor-infiltrating lymphocytes (TILs) but are often insufficient to fully reactivate these dysfunctional TILs. Although interleukin 12 (IL-12) has been used in combination with ICB to improve efficacy, this remains limited by severe toxicity associated with systemic administration of this cytokine. Here, we engineer a fusion protein composed of an anti-PD-1 antibody and a mouse low-affinity IL-12 mutant-2 (αPD1-mIL12mut2). Systemic administration of αPD1-mIL12mut2 displays robust antitumor activities with undetectable toxicity. Mechanistically, αPD1-mIL12mut2 preferentially activates tumor-infiltrating PD-1+CD8+T cells via high-affinity αPD-1 mediated cis-binding of low-affinity IL-12. Additionally, αPD1-mIL12mut2 treatment exerts an abscopal effect to suppress distal tumors, as well as metastasis. Collectively, αPD1-mIL12mut2 treatment induces robust systemic antitumor responses with reduced side effects.
Collapse
Affiliation(s)
- Zhuangzhi Zou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jiao Shen
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Diyuan Xue
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Hongjia Li
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Longxin Xu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Weian Cao
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Wenyan Wang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Yang-Xin Fu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China.
| | - Hua Peng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- Guangzhou Laboratory, Guangzhou, 510320, Guangdong, China.
| |
Collapse
|
12
|
Krueger JG, Eyerich K, Kuchroo VK, Ritchlin CT, Abreu MT, Elloso MM, Fourie A, Fakharzadeh S, Sherlock JP, Yang YW, Cua DJ, McInnes IB. IL-23 past, present, and future: a roadmap to advancing IL-23 science and therapy. Front Immunol 2024; 15:1331217. [PMID: 38686385 PMCID: PMC11056518 DOI: 10.3389/fimmu.2024.1331217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Interleukin (IL)-23, an IL-12 cytokine family member, is a hierarchically dominant regulatory cytokine in a cluster of immune-mediated inflammatory diseases (IMIDs), including psoriasis, psoriatic arthritis, and inflammatory bowel disease. We review IL-23 biology, IL-23 signaling in IMIDs, and the effect of IL-23 inhibition in treating these diseases. We propose studies to advance IL-23 biology and unravel differences in response to anti-IL-23 therapy. Experimental evidence generated from these investigations could establish a novel molecular ontology centered around IL-23-driven diseases, improve upon current approaches to treating IMIDs with IL-23 inhibition, and ultimately facilitate optimal identification of patients and, thereby, outcomes.
Collapse
Affiliation(s)
- James G. Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - Kilian Eyerich
- Department of Medicine, Division of Dermatology and Venereology, Karolinska Institute, Stockholm, Sweden
- Department of Dermatology and Venereology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Vijay K. Kuchroo
- Evergrande Center for Immunologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Christopher T. Ritchlin
- Allergy, Immunology & Rheumatology Division, Center for Musculoskeletal Research, University of Rochester Medical School, Rochester, NY, United States
| | - Maria T. Abreu
- Division of Gastroenterology, Department of Medicine, University of Miami Leonard Miller School of Medicine, Miami, FL, United States
| | | | - Anne Fourie
- Janssen Research & Development, LLC, San Diego, CA, United States
| | - Steven Fakharzadeh
- Immunology Global Medical Affairs, Janssen Pharmaceutical Companies of Johnson & Johnson, Horsham, PA, United States
| | - Jonathan P. Sherlock
- Janssen Research & Development, LLC, Spring House, PA, United States
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Ya-Wen Yang
- Immunology Global Medical Affairs, Janssen Pharmaceutical Companies of Johnson & Johnson, Horsham, PA, United States
| | - Daniel J. Cua
- Janssen Research & Development, LLC, Spring House, PA, United States
| | - Iain B. McInnes
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
13
|
Han P, Tang J, Xu X, Meng P, Wu K, Sun B, Song X. Identification of the grass carp interleukin-23 receptor and its proinflammatory role in intestinal inflammation. Int J Biol Macromol 2024; 265:130946. [PMID: 38521334 DOI: 10.1016/j.ijbiomac.2024.130946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
The interleukin 23 receptor (IL-23R) is associated with a variety of inflammatory diseases in humans and other mammals. However, whether IL-23R is involved in inflammatory diseases in teleost fish is less understood. Thus, to investigate the potential involvement of IL-23R in fish inflammatory diseases, the full-length cDNA of IL-23R from grass carp Ctenopharyngodon idella was cloned and used to generate a recombinant protein (rgcIL-23R) containing the extracellular domain of IL-23R, against which a polyclonal antibody (rgcIL-23R pAb) was then developed. qPCR analysis revealed that IL-23R mRNA was significantly upregulated in most grass carp tissues in response to infection with Gram-negative Aeromonas hydrophila. Treatment with rgcIL-23R significantly induced IL-17A/F1 expression in C. idella kidney (CIK) cells. By contrast, knockdown of IL-23R caused significant decreases in IL-23R, STAT3, and IL-17N expression in CIK cells after lipopolysaccharide (LPS) stimulation. Similarly, rgcIL-23R pAb treatment effectively inhibited the LPS-induced increase in the expression of IL-23 subunit genes and those of the IL-23/IL-17 pathway in CIK cells. Furthermore, intestinal symptoms identical to those caused by A. hydrophila were induced by anal intubation with rgcIL-23R, but suppressed by rgcIL-23R pAb. Therefore, these results suggest that IL-23R has a crucial role in the regulation of intestinal inflammation and, thus, is a promising target for controlling inflammatory diseases in farmed fish.
Collapse
Affiliation(s)
- Panpan Han
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Jian Tang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Xufang Xu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Pengkun Meng
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Kang Wu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Bingyao Sun
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China.
| | - Xuehong Song
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China.
| |
Collapse
|
14
|
Bloch Y, Felix J, Merceron R, Provost M, Symakani RA, De Backer R, Lambert E, Mehdipour AR, Savvides SN. Structures of complete extracellular receptor assemblies mediated by IL-12 and IL-23. Nat Struct Mol Biol 2024; 31:591-597. [PMID: 38287195 DOI: 10.1038/s41594-023-01190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/22/2023] [Indexed: 01/31/2024]
Abstract
Cell-surface receptor complexes mediated by pro-inflammatory interleukin (IL)-12 and IL-23, both validated therapeutic targets, are incompletely understood due to the lack of structural insights into their complete extracellular assemblies. Furthermore, there is a paucity of structural details describing the IL-12-receptor interaction interfaces, in contrast to IL-23-receptor complexes. Here we report structures of fully assembled mouse IL-12/human IL-23-receptor complexes comprising the complete extracellular segments of the cognate receptors determined by electron cryo-microscopy. The structures reveal key commonalities but also surprisingly diverse features. Most notably, whereas IL-12 and IL-23 both utilize a conspicuously presented aromatic residue on their α-subunit as a hotspot to interact with the N-terminal Ig domain of their high-affinity receptors, only IL-12 juxtaposes receptor domains proximal to the cell membrane. Collectively, our findings will help to complete our understanding of cytokine-mediated assemblies of tall cytokine receptors and will enable a cytokine-specific interrogation of IL-12/IL-23 signaling in physiology and disease.
Collapse
Affiliation(s)
- Yehudi Bloch
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Hamburg, Germany
| | - Jan Felix
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.
| | - Romain Merceron
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Eurofins DiscoverX Products France, Celle-Lévescault, France
| | - Mathias Provost
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Argenx, Ghent, Belgium
| | - Royan Alipour Symakani
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Robin De Backer
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Elisabeth Lambert
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Solvias, Basel, Switzerland
| | | | - Savvas N Savvides
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.
| |
Collapse
|
15
|
Mezghiche I, Yahia-Cherbal H, Rogge L, Bianchi E. Interleukin 23 receptor: Expression and regulation in immune cells. Eur J Immunol 2024; 54:e2250348. [PMID: 37837262 DOI: 10.1002/eji.202250348] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023]
Abstract
The importance of IL-23 and its specific receptor, IL-23R, in the pathogenesis of several chronic inflammatory diseases has been established, but the underlying pathological mechanisms are not fully understood. This review focuses on IL-23R expression and regulation in immune cells.
Collapse
Affiliation(s)
| | | | - Lars Rogge
- Institut Pasteur, Université Paris Cité, Paris, France
| | | |
Collapse
|
16
|
Aschenbrenner I, Siebenmorgen T, Lopez A, Parr M, Ruckgaber P, Kerle A, Rührnößl F, Catici D, Haslbeck M, Frishman D, Sattler M, Zacharias M, Feige MJ. Assembly-dependent Structure Formation Shapes Human Interleukin-23 versus Interleukin-12 Secretion. J Mol Biol 2023; 435:168300. [PMID: 37805067 DOI: 10.1016/j.jmb.2023.168300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Interleukin 12 (IL-12) family cytokines connect the innate and adaptive branches of the immune system and regulate immune responses. A unique characteristic of this family is that each member is anα:βheterodimer. For human αsubunits it has been shown that they depend on theirβsubunit for structure formation and secretion from cells. Since subunits are shared within the family and IL-12 as well as IL-23 use the same βsubunit, subunit competition may influence cytokine secretion and thus downstream immunological functions. Here, we rationally design a folding-competent human IL-23α subunit that does not depend on itsβsubunit for structure formation. This engineered variant still forms a functional heterodimeric cytokine but shows less chaperone dependency and stronger affinity in assembly with its βsubunit. It forms IL-23 more efficiently than its natural counterpart, skewing the balance of IL-12 and IL-23 towards more IL-23 formation. Together, our study shows that folding-competent human IL-12 familyαsubunits are obtainable by only few mutations and compatible with assembly and function of the cytokine. These findings might suggest that human α subunits have evolved for assembly-dependent folding to maintain and regulate correct IL-12 family member ratios in the light of subunit competition.
Collapse
Affiliation(s)
- Isabel Aschenbrenner
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Till Siebenmorgen
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany; Helmholtz Munich, Molecular Targets & Therapeutics Center, Institute of Structural Biology, Neuherberg, Germany
| | - Abraham Lopez
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Garching, Germany; Helmholtz Munich, Molecular Targets & Therapeutics Center, Institute of Structural Biology, Neuherberg, Germany
| | - Marina Parr
- Technical University of Munich, TUM School of Life Sciences, Department of Bioinformatics, Freising, Germany
| | - Philipp Ruckgaber
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Anna Kerle
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Florian Rührnößl
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Dragana Catici
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Martin Haslbeck
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Dmitrij Frishman
- Technical University of Munich, TUM School of Life Sciences, Department of Bioinformatics, Freising, Germany
| | - Michael Sattler
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Garching, Germany; Helmholtz Munich, Molecular Targets & Therapeutics Center, Institute of Structural Biology, Neuherberg, Germany
| | - Martin Zacharias
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Matthias J Feige
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany.
| |
Collapse
|
17
|
Hildenbrand K, Bohnacker S, Menon PR, Kerle A, Prodjinotho UF, Hartung F, Strasser PC, Catici DA, Rührnößl F, Haslbeck M, Schumann K, Müller SI, da Costa CP, Esser-von Bieren J, Feige MJ. Human interleukin-12α and EBI3 are cytokines with anti-inflammatory functions. SCIENCE ADVANCES 2023; 9:eadg6874. [PMID: 37878703 PMCID: PMC10599630 DOI: 10.1126/sciadv.adg6874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023]
Abstract
Interleukins are secreted proteins that regulate immune responses. Among these, the interleukin 12 (IL-12) family holds a central position in inflammatory and infectious diseases. Each family member consists of an α and a β subunit that together form a composite cytokine. Within the IL-12 family, IL-35 remains particularly ill-characterized on a molecular level despite its key role in autoimmune diseases and cancer. Here we show that both IL-35 subunits, IL-12α and EBI3, mutually promote their secretion from cells but are not necessarily secreted as a heterodimer. Our data demonstrate that IL-12α and EBI3 are stable proteins in isolation that act as anti-inflammatory molecules. Both reduce secretion of proinflammatory cytokines and induce the development of regulatory T cells. Together, our study reveals IL-12α and EBI3, the subunits of IL-35, to be functionally active anti-inflammatory immune molecules on their own. This extends our understanding of the human cytokine repertoire as a basis for immunotherapeutic approaches.
Collapse
Affiliation(s)
- Karen Hildenbrand
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Sina Bohnacker
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Zentrum München, 80802 Munich, Germany
| | - Priyanka Rajeev Menon
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Anna Kerle
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Ulrich F. Prodjinotho
- Institute for Microbiology, Immunology and Hygiene, Technical University of Munich, 81675 Munich, Germany
- Center for Global Health, Technical University of Munich, 81675 Munich, Germany
| | - Franziska Hartung
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Zentrum München, 80802 Munich, Germany
| | - Patrick C. Strasser
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Dragana A. M. Catici
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Florian Rührnößl
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Martin Haslbeck
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Kathrin Schumann
- Institute for Microbiology, Immunology and Hygiene, Technical University of Munich, 81675 Munich, Germany
| | - Stephanie I. Müller
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Clarissa Prazeres da Costa
- Institute for Microbiology, Immunology and Hygiene, Technical University of Munich, 81675 Munich, Germany
- Center for Global Health, Technical University of Munich, 81675 Munich, Germany
- German Center for Infection and Research (DZIF), partner site Munich, Germany
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Zentrum München, 80802 Munich, Germany
- Department of Immunobiology, Université de Lausanne, 1066 Epalinges, Switzerland
| | - Matthias J. Feige
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
18
|
Liebl K, Aschenbrenner I, Schiller L, Kerle A, Protzer U, Feige MJ. Modeling of the human interleukin 12:receptor complex allows to engineer attenuated cytokine variants. Mol Immunol 2023; 162:38-44. [PMID: 37639747 DOI: 10.1016/j.molimm.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/04/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Interleukin 12 (IL-12) plays major roles in immune defense against intracellular pathogens. By activating T cells and increasing antigen presentation, it is also a very potent anti-tumor molecule. Strong immune activation and systemic toxicity, however, so far limit its potential therapeutic use. Building on recent experimental structures of IL-12 related cytokine:receptor complexes, we here provide a high-resolution computational model of the human IL-12:receptor complex. We design attenuated IL-12 variants with lower receptor binding affinities based on molecular dynamics simulations, and subsequently validate them experimentally. These variants show reduced activation of natural killer cells while maintaining T cell activation. This immunological signature is important to develop IL-12 for cancer treatment, where natural killer cells contribute to severe side-effects. Taken together, our study provides detailed insights into structure and dynamics of the human IL-12:receptor complex and leverages them for engineering attenuated variants to elicit fewer side-effects while maintaining relevant biological activity.
Collapse
Affiliation(s)
- Korbinian Liebl
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Isabel Aschenbrenner
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Lisa Schiller
- Institute of Virology, TUM School of Medicine, Technical University of Munich/Helmholtz Munich, 81675 Munich, Germany
| | - Anna Kerle
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Ulrike Protzer
- Institute of Virology, TUM School of Medicine, Technical University of Munich/Helmholtz Munich, 81675 Munich, Germany.
| | - Matthias J Feige
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
19
|
Ge G, Shang J, Gan T, Chen Z, Pan C, Mei Y, Long S, Wu A, Wang H. Psoriasis and Leprosy: An Arcane Relationship. J Inflamm Res 2023; 16:2521-2533. [PMID: 37337513 PMCID: PMC10277007 DOI: 10.2147/jir.s407650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/18/2023] [Indexed: 06/21/2023] Open
Abstract
Purpose Psoriasis (Ps) and leprosy are chronic inflammatory skin disorders, characterised by enhanced innate and adaptive immunity. Ps and leprosy rarely coexist. The molecular immune mechanism of the Ps and leprosy rarely coexistence is unclear. Patients and Methods RNA-sequencing (RNA-seq) was performed on 20 patients with Ps, 5 adults with lepromatous leprosy (L-lep), and 5 patients with tuberculoid leprosy (T-lep) to analyse the differentially expressed genes (DEGs) between them. Moreover, the biological mechanism of Ps and leprosy was explored by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Gene Ontology (GO) analysis, Gene Set Enrichment Analysis analysis, and protein-protein interaction (PPI) analyses. Finally, 13 DEGs of 10 skin biopsies of Ps patients, 6 samples of L-lep patients, 6 samples of T-lep patients and 5 healthy controls were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). Results The PPI network was constructed and primarily associated with immune response, IL-17 signalling, and Toll-like receptor pathway between Ps and leprosy. Th17 markers (interleukin (IL)-19, IL-20, IL-36A, IL-36G, IL-22, IL-17A, and lipocalin-2 (LCN2) had higher expression in Ps than in L-lep and T-lep, whereas macrophage biomarkers (CLEC4E and TREM2), SPP1, and dendritic cell (DC)-related hallmarks (ITGAX) and TNF-a had significantly lower expression across Ps and T-lep than in L-lep. Conclusion To put it simply, Ps patients with IL-17A, IL-19, IL-20, IL-36A, IL-36G, and IL-22 in conjunction with LCN2 with up-graduated expression might be not susceptible to L-lep. However, high levels of CLEC4E, TREM2, and SPP1 in L-lep patients indicated that they unlikely suffered from Ps.
Collapse
Affiliation(s)
- Gai Ge
- Laboratory of Mycobacteria, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People's Republic of China
| | - Jingzhe Shang
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Suzhou Institute of Systems Medicine, Suzhou, People's Republic of China
| | - Tian Gan
- Laboratory of Mycobacteria, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People's Republic of China
| | - Zhiming Chen
- Laboratory of Mycobacteria, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People's Republic of China
| | - Chun Pan
- Laboratory of Mycobacteria, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People's Republic of China
| | - Youming Mei
- Laboratory of Mycobacteria, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People's Republic of China
| | - Siyu Long
- Department of Dermatology, Beijing Chao-Yang Hospital & Capital Medical University, Beijing, People's Republic of China
| | - Aiping Wu
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Suzhou Institute of Systems Medicine, Suzhou, People's Republic of China
| | - Hongsheng Wang
- Laboratory of Mycobacteria, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People's Republic of China
- National Center for Sexually Transmitted Disease and Leprosy Control, China Centers for Disease Control and Prevention, Nanjing, People's Republic of China
- Centre for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
20
|
Lay CS, Kilpatrick LE, Craggs PD, Hill SJ. Use of NanoBiT and NanoBRET to characterise interleukin-23 receptor dimer formation in living cells. Br J Pharmacol 2023; 180:1444-1459. [PMID: 36560872 PMCID: PMC10953408 DOI: 10.1111/bph.16018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Interleukin-23 (IL-23) and its receptor are important drug targets for the treatment of auto-inflammatory diseases. IL-23 binds to a receptor complex composed of two single transmembrane spanning proteins IL23R and IL12Rβ1. In this study, we aimed to gain further understanding of how ligand binding induces signalling of IL-23 receptor complexes using the proximity-based techniques of NanoLuc Binary Technology (NanoBiT) and Bioluminescence Resonance Energy Transfer (BRET). EXPERIMENTAL APPROACH To monitor the formation of IL-23 receptor complexes, we developed a split luciferase (NanoBiT) assay whereby heteromerisation of receptor subunits can be measured through luminescence. The affinity of NanoBiT complemented complexes for IL-23 was measured using NanoBRET, and cytokine-induced signal transduction was measured using a phospho-STAT3 AlphaLISA assay. KEY RESULTS NanoBiT measurements demonstrated that IL-23 receptor complexes formed to an equal degree in the presence and absence of ligand. NanoBRET measurements confirmed that these complexes bound IL-23 with a picomolar binding affinity. Measurement of STAT3 phosphorylation demonstrated that pre-formed IL-23 receptor complexes induced signalling following ligand binding. It was also demonstrated that synthetic ligand-independent signalling could be induced by high affinity (HiBit) but not low affinity (SmBit) NanoBiT crosslinking of the receptor N-terminal domains. CONCLUSIONS AND IMPLICATIONS These results indicate that receptor complexes form prior to ligand binding and are not sufficient to induce signalling alone. Our findings indicate that IL-23 induces a conformational change in heteromeric receptor complexes, to enable signal transduction. These observations have direct implications for drug discovery efforts to target the IL-23 receptor.
Collapse
Affiliation(s)
- Charles S. Lay
- Division of Physiology, Pharmacology and Neuroscience, School of Life SciencesUniversity of NottinghamNottinghamUK
- Centre of Membrane Proteins and ReceptorsUniversity of Birmingham and NottinghamThe MidlandsUK
- Medicine Design, Medicinal Science and TechnologyGlaxoSmithKlineStevenageUK
| | - Laura E. Kilpatrick
- Centre of Membrane Proteins and ReceptorsUniversity of Birmingham and NottinghamThe MidlandsUK
- Division of Bimolecular Science and Medicinal Chemistry, School of Pharmacy, Biodiscovery InstituteUniversity of NottinghamNottinghamUK
| | - Peter D. Craggs
- Medicine Design, Medicinal Science and TechnologyGlaxoSmithKlineStevenageUK
- Crick‐GSK Biomedical LinklabsGlaxoSmithKlineStevenageUK
| | - Stephen J. Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life SciencesUniversity of NottinghamNottinghamUK
- Centre of Membrane Proteins and ReceptorsUniversity of Birmingham and NottinghamThe MidlandsUK
| |
Collapse
|
21
|
Lay CS, Isidro-Llobet A, Kilpatrick LE, Craggs PD, Hill SJ. Characterisation of IL-23 receptor antagonists and disease relevant mutants using fluorescent probes. Nat Commun 2023; 14:2882. [PMID: 37208328 PMCID: PMC10199020 DOI: 10.1038/s41467-023-38541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
Association of single nucleotide polymorphisms in the IL-23 receptor with several auto-inflammatory diseases, led to the heterodimeric receptor and its cytokine-ligand IL-23, becoming important drug targets. Successful antibody-based therapies directed against the cytokine have been licenced and a class of small peptide antagonists of the receptor have entered clinical trials. These peptide antagonists may offer therapeutic advantages over existing anti-IL-23 therapies, but little is known about their molecular pharmacology. In this study, we use a fluorescent version of IL-23 to characterise antagonists of the full-length receptor expressed by living cells using a NanoBRET competition assay. We then develop a cyclic peptide fluorescent probe, specific to the IL23p19:IL23R interface and use this molecule to characterise further receptor antagonists. Finally, we use the assays to study the immunocompromising C115Y IL23R mutation, demonstrating that the mechanism of action is a disruption of the binding epitope for IL23p19.
Collapse
Affiliation(s)
- Charles S Lay
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
- Chemical Biology, Medicine Design, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | | | - Laura E Kilpatrick
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
- Division of Bimolecular Science and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Peter D Craggs
- Chemical Biology, Medicine Design, GlaxoSmithKline, Stevenage, SG1 2NY, UK.
- Crick-GSK Biomedical Linklabs, Medicine Design, GlaxoSmithKline, Stevenage, SG1 2NY, UK.
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK.
| |
Collapse
|
22
|
Philippot Q, Ogishi M, Bohlen J, Puchan J, Arias AA, Nguyen T, Martin-Fernandez M, Conil C, Rinchai D, Momenilandi M, Mahdaviani A, Keramatipour M, Rosain J, Yang R, Khan T, Neehus AL, Materna M, Han JE, Peel J, Mele F, Weisshaar M, Jovic S, Bastard P, Lévy R, Le Voyer T, Zhang P, Renkilaraj MRLM, Arango-Franco CA, Pelham S, Seeleuthner Y, Pochon M, Ata MMA, Ali FA, Migaud M, Soudée C, Kochetkov T, Molitor A, Carapito R, Bahram S, Boisson B, Fieschi C, Mansouri D, Marr N, Okada S, Shahrooei M, Parvaneh N, Chavoshzadeh Z, Cobat A, Bogunovic D, Abel L, Tangye S, Ma CS, Béziat V, Sallusto F, Boisson-Dupuis S, Bustamante J, Casanova JL, Puel A. Human IL-23 is essential for IFN-γ-dependent immunity to mycobacteria. Sci Immunol 2023; 8:eabq5204. [PMID: 36763636 PMCID: PMC10069949 DOI: 10.1126/sciimmunol.abq5204] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/12/2023] [Indexed: 02/12/2023]
Abstract
Patients with autosomal recessive (AR) IL-12p40 or IL-12Rβ1 deficiency display Mendelian susceptibility to mycobacterial disease (MSMD) due to impaired IFN-γ production and, less commonly, chronic mucocutaneous candidiasis (CMC) due to impaired IL-17A/F production. We report six patients from four kindreds with AR IL-23R deficiency. These patients are homozygous for one of four different loss-of-function IL23R variants. All six patients have a history of MSMD, but only two suffered from CMC. We show that IL-23 induces IL-17A only in MAIT cells, possibly contributing to the incomplete penetrance of CMC in patients unresponsive to IL-23. By contrast, IL-23 is required for both baseline and Mycobacterium-inducible IFN-γ immunity in both Vδ2+ γδ T and MAIT cells, probably contributing to the higher penetrance of MSMD in these patients. Human IL-23 appears to contribute to IL-17A/F-dependent immunity to Candida in a single lymphocyte subset but is required for IFN-γ-dependent immunity to Mycobacterium in at least two lymphocyte subsets.
Collapse
Affiliation(s)
- Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Masato Ogishi
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Julia Puchan
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Andrés Augusto Arias
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Primary Immunodeficiencies Group, University of Antioquia UdeA, Medellin, Colombia
- School of Microbiology, University of Antioquia UdeA, Medellin, Colombia
| | - Tina Nguyen
- Garvan Institute of Medical Research, Darlinghurst, Australia
- St. Vincent’s Clinical School, Faculty of Medicine & Health, UNSW Sydney, Darlinghurst, Australia
| | - Marta Martin-Fernandez
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clement Conil
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Darawan Rinchai
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Keramatipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Rui Yang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Taushif Khan
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Ji Eun Han
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jessica Peel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Federico Mele
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Marc Weisshaar
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Sandra Jovic
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Peng Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Majistor Raj Luxman Maglorius Renkilaraj
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Carlos A. Arango-Franco
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- School of Microbiology, University of Antioquia UdeA, Medellin, Colombia
| | - Simon Pelham
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Mathieu Pochon
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | | | - Fatima Al Ali
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Tatiana Kochetkov
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Anne Molitor
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
| | - Raphael Carapito
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Seiamak Bahram
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Claire Fieschi
- Clinical Immunology Department, Saint Louis Hospital, Paris, France
| | - Davood Mansouri
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nico Marr
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha Qatar
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima-Shi, Hiroshima, Japan
| | | | - Nima Parvaneh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Teheran University of Medical Sciences, Teheran, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infections Research Center, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Dusan Bogunovic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Stuart Tangye
- St. Vincent’s Clinical School, Faculty of Medicine & Health, UNSW Sydney, Darlinghurst, Australia
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cindy S. Ma
- St. Vincent’s Clinical School, Faculty of Medicine & Health, UNSW Sydney, Darlinghurst, Australia
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Federica Sallusto
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| |
Collapse
|
23
|
Bubnov R, Spivak M. Pathophysiology-Based Individualized Use of Probiotics and Prebiotics for Metabolic Syndrome: Implementing Predictive, Preventive, and Personalized Medical Approach. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2023:133-196. [DOI: 10.1007/978-3-031-19564-8_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Mideksa YG, Aschenbrenner I, Fux A, Kaylani D, Weiß CA, Nguyen TA, Bach NC, Lang K, Sieber SA, Feige MJ. A comprehensive set of ER protein disulfide isomerase family members supports the biogenesis of proinflammatory interleukin 12 family cytokines. J Biol Chem 2022; 298:102677. [PMID: 36336075 PMCID: PMC9731863 DOI: 10.1016/j.jbc.2022.102677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022] Open
Abstract
Cytokines of the interleukin 12 (IL-12) family are assembled combinatorially from shared α and β subunits. A common theme is that human IL-12 family α subunits remain incompletely structured in isolation until they pair with a designate β subunit. Accordingly, chaperones need to support and control specific assembly processes. It remains incompletely understood, which chaperones are involved in IL-12 family biogenesis. Here, we site-specifically introduce photocrosslinking amino acids into the IL-12 and IL-23 α subunits (IL-12α and IL-23α) for stabilization of transient chaperone-client complexes for mass spectrometry. Our analysis reveals that a large set of endoplasmic reticulum chaperones interacts with IL-12α and IL-23α. Among these chaperones, we focus on protein disulfide isomerase (PDI) family members and reveal IL-12 family subunits to be clients of several incompletely characterized PDIs. We find that different PDIs show selectivity for different cysteines in IL-12α and IL-23α. Despite this, PDI binding generally stabilizes unassembled IL-12α and IL-23α against degradation. In contrast, α:β assembly appears robust, and only multiple simultaneous PDI depletions reduce IL-12 secretion. Our comprehensive analysis of the IL-12/IL-23 chaperone machinery reveals a hitherto uncharacterized role for several PDIs in this process. This extends our understanding of how cells accomplish the task of specific protein assembly reactions for signaling processes. Furthermore, our findings show that cytokine secretion can be modulated by targeting specific endoplasmic reticulum chaperones.
Collapse
Affiliation(s)
- Yonatan G. Mideksa
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Isabel Aschenbrenner
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Anja Fux
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Dinah Kaylani
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Caroline A.M. Weiß
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Tuan-Anh Nguyen
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Nina C. Bach
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Kathrin Lang
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany,Laboratory of Organic Chemistry, ETH Zürich, Zurich, Switzerland
| | - Stephan A. Sieber
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Matthias J. Feige
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany,For correspondence: Matthias J. Feige
| |
Collapse
|
25
|
Składanowska K, Bloch Y, Strand J, White KF, Hua J, Aldridge D, Welin M, Logan DT, Soete A, Merceron R, Murphy C, Provost M, Bazan JF, Hunter CA, Hill JA, Savvides SN. Structural basis of activation and antagonism of receptor signaling mediated by interleukin-27. Cell Rep 2022; 41:111490. [PMID: 36261006 PMCID: PMC9597551 DOI: 10.1016/j.celrep.2022.111490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/14/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022] Open
Abstract
Interleukin-27 (IL-27) uniquely assembles p28 and EBI3 subunits to a heterodimeric cytokine that signals via IL-27Rα and gp130. To provide the structural framework for receptor activation by IL-27 and its emerging therapeutic targeting, we report here crystal structures of mouse IL-27 in complex with IL-27Rα and of human IL-27 in complex with SRF388, a monoclonal antibody undergoing clinical trials with oncology indications. One face of the helical p28 subunit interacts with EBI3, while the opposite face nestles into the interdomain elbow of IL-27Rα to juxtapose IL-27Rα to EBI3. This orients IL-27Rα for paired signaling with gp130, which only uses its immunoglobulin domain to bind to IL-27. Such a signaling complex is distinct from those mediated by IL-12 and IL-23. The SRF388 binding epitope on IL-27 overlaps with the IL-27Rα interaction site explaining its potent antagonistic properties. Collectively, our findings will facilitate the mechanistic interrogation, engineering, and therapeutic targeting of IL-27.
Collapse
Affiliation(s)
- Katarzyna Składanowska
- Unit for Structural Biology, Department of Biochemistry and Microbiology Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Technologiepark 71, 9052 Ghent, Belgium
| | - Yehudi Bloch
- Unit for Structural Biology, Department of Biochemistry and Microbiology Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Technologiepark 71, 9052 Ghent, Belgium
| | - Jamie Strand
- Surface Oncology, 50 Hampshire Street, Cambridge, MA 02139, USA
| | - Kerry F White
- Surface Oncology, 50 Hampshire Street, Cambridge, MA 02139, USA
| | - Jing Hua
- Surface Oncology, 50 Hampshire Street, Cambridge, MA 02139, USA
| | - Daniel Aldridge
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Martin Welin
- SARomics Biostructures AB, Medicon Village, Scheelevägen 2, 223 63 Lund, Sweden
| | - Derek T Logan
- SARomics Biostructures AB, Medicon Village, Scheelevägen 2, 223 63 Lund, Sweden
| | - Arne Soete
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Romain Merceron
- Unit for Structural Biology, Department of Biochemistry and Microbiology Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Technologiepark 71, 9052 Ghent, Belgium
| | - Casey Murphy
- Unit for Structural Biology, Department of Biochemistry and Microbiology Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Technologiepark 71, 9052 Ghent, Belgium
| | - Mathias Provost
- Unit for Structural Biology, Department of Biochemistry and Microbiology Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Technologiepark 71, 9052 Ghent, Belgium
| | - J Fernando Bazan
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Technologiepark 71, 9052 Ghent, Belgium; ħ Bioconsulting, Stillwater, MN, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan A Hill
- Surface Oncology, 50 Hampshire Street, Cambridge, MA 02139, USA.
| | - Savvas N Savvides
- Unit for Structural Biology, Department of Biochemistry and Microbiology Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Technologiepark 71, 9052 Ghent, Belgium.
| |
Collapse
|
26
|
Colorectal Cancer in Ulcerative Colitis: Mechanisms, Surveillance and Chemoprevention. Curr Oncol 2022; 29:6091-6114. [PMID: 36135048 PMCID: PMC9498229 DOI: 10.3390/curroncol29090479] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Patients with ulcerative colitis (UC) are at a two- to three-fold increased risk of developing colorectal cancer (CRC) than the general population based on population-based data. UC-CRC has generated a series of clinical problems, which are reflected in its worse prognosis and higher mortality than sporadic CRC. Chronic inflammation is a significant contributor to the development of UC-CRC, so comprehending the relationship between the proinflammatory factors and epithelial cells together with downstream signaling pathways is the core to elucidate the mechanisms involved in developing of CRC. Clinical studies have shown the importance of early prevention, detection and management of CRC in patients with UC, and colonoscopic surveillance at regular intervals with multiple biopsies is considered the most effective way. The use of endoscopy with targeted biopsies of visible lesions has been supported in most populations. In contrast, random biopsies in patients with high-risk characteristics have been suggested during surveillance. Some of the agents used to treat UC are chemopreventive, the effects of which will be examined in cancers in UC in a population-based setting. In this review, we outline the current state of potential risk factors and chemopreventive recommendations in UC-CRC, with a specific focus on the proinflammatory mechanisms in promoting CRC and evidence for personalized surveillance.
Collapse
|
27
|
Hildenbrand K, Aschenbrenner I, Franke FC, Devergne O, Feige MJ. Biogenesis and engineering of interleukin 12 family cytokines. Trends Biochem Sci 2022; 47:936-949. [PMID: 35691784 DOI: 10.1016/j.tibs.2022.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Interleukin 12 (IL-12) family cytokines are secreted proteins that regulate immune responses. Each family member is a heterodimer and nature uses shared building blocks to assemble the functionally distinct IL-12 cytokines. In recent years we have gained insights into the molecular principles and cellular regulation of IL-12 family biogenesis. For each of the family members, generally one subunit depends on its partner to acquire its native structure and be secreted from immune cells. If unpaired, molecular chaperones retain these subunits in cells. This allows cells to regulate and control secretion of the highly potent IL-12 family cytokines. Molecular insights gained into IL-12 family biogenesis, structure, and function now allow us to engineer IL-12 family cytokines to develop novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Karen Hildenbrand
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Isabel Aschenbrenner
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Fabian C Franke
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Odile Devergne
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), 75 013 Paris, France.
| | - Matthias J Feige
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
28
|
Abstract
The interleukin-23 [IL-23] cytokine, derived predominantly from macrophages and dendritic cells in response to microbial stimulation, has emerged as a critical promoter of chronic intestinal inflammation. Genome-wide association studies linking variants in IL23R to disease protection, bolstered by experimental evidence from colitis models, and the successful application of therapies against the IL-12/IL-23 shared p40 subunit in the treatment of inflammatory bowel disease [IBD] all provide compelling evidence of a crucial role for IL-23 in disease pathogenesis. Moreover, targeting the p19 subunit specific for IL-23 has shown considerable promise in recent phase 2 studies in IBD. The relative importance of the diverse immunological pathways downstream of IL-23 in propagating mucosal inflammation in the gut, however, remains contentious. Here we review current understanding of IL-23 biology and explore its pleiotropic effects on T cells, and innate lymphoid, myeloid and intestinal epithelial cells in the context of the pathogenesis of IBD. We furthermore discuss these pathways in the light of recent evidence from clinical trials and indicate emerging targets amenable to therapeutic intervention and translation into clinical practice.
Collapse
Affiliation(s)
- Gavin W Sewell
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| |
Collapse
|
29
|
Wight AE, Sido JM, Degryse S, Ao L, Nakagawa H, Qiu(Vivian) Y, Shen X, Oseghali O, Kim HJ, Cantor H. Antibody-mediated blockade of the IL23 receptor destabilizes intratumoral regulatory T cells and enhances immunotherapy. Proc Natl Acad Sci U S A 2022; 119:e2200757119. [PMID: 35482921 PMCID: PMC9170135 DOI: 10.1073/pnas.2200757119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/31/2022] [Indexed: 11/18/2022] Open
Abstract
Regulatory T cells (Treg) can impede antitumor immunity and currently represent a major obstacle to effective cancer immunotherapy. Targeting tumor-infiltrating regulatory Treg while sparing systemic Treg represents an optimal approach to this problem. Here, we provide evidence that the interleukin 23 receptor (IL23R) expressed by tumor-infiltrating Treg promotes suppressive activity. Disruption of the IL23R results in increased responsiveness of destabilized Treg to the IL12 cytokine, the production of γ-interferon, and the recruitment of CD8 T cells that inhibit tumor growth. Since the Treg destabilization pathway that is initiated by IL23R blockade is distinct and independent from the destabilization pathway coupled to glucocorticoid-induced TNFR-related protein (GITR) activation, we examined the impact of the coordinate induction of the two destabilization pathways on antitumor immune responses. Combined GITR and IL23R antibody treatment of mice inoculated with MC38 tumors resulted in robust and synergistic antitumor responses. These findings indicate that the delineation of independent Treg destabilization pathways may allow improved approaches to the development of combination immunotherapy for cancers.
Collapse
Affiliation(s)
- Andrew E. Wight
- Department of Cancer Immunology and Virology, Dana–Farber Cancer Institute, Boston, MA 02115
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Jessica M. Sido
- Department of Cancer Immunology and Virology, Dana–Farber Cancer Institute, Boston, MA 02115
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Sandrine Degryse
- Department of Cancer Immunology and Virology, Dana–Farber Cancer Institute, Boston, MA 02115
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Lin Ao
- Department of Cancer Immunology and Virology, Dana–Farber Cancer Institute, Boston, MA 02115
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Hidetoshi Nakagawa
- Department of Cancer Immunology and Virology, Dana–Farber Cancer Institute, Boston, MA 02115
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Yiguo Qiu(Vivian)
- Department of Cancer Immunology and Virology, Dana–Farber Cancer Institute, Boston, MA 02115
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Xianli Shen
- Department of Cancer Immunology and Virology, Dana–Farber Cancer Institute, Boston, MA 02115
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Oba Oseghali
- Department of Cancer Immunology and Virology, Dana–Farber Cancer Institute, Boston, MA 02115
| | - Hye-Jung Kim
- Department of Cancer Immunology and Virology, Dana–Farber Cancer Institute, Boston, MA 02115
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Harvey Cantor
- Department of Cancer Immunology and Virology, Dana–Farber Cancer Institute, Boston, MA 02115
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
30
|
Structural basis of human IL-18 sequestration by the decoy receptor IL-18 binding protein (IL-18BP) in inflammation and tumor immunity. J Biol Chem 2022; 298:101908. [PMID: 35398099 PMCID: PMC9111989 DOI: 10.1016/j.jbc.2022.101908] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
Human Interleukin-18 (IL-18) is an omnipresent proinflammatory cytokine of the IL-1 family with central roles in autoimmune and inflammatory diseases and serves as a staple biomarker in the evaluation of inflammation in physiology and disease, including the inflammatory phase of COVID-19. The sequestration of IL-18 by its soluble decoy receptor IL-18-Binding Protein (IL-18BP) is critical to the regulation of IL-18 activity. Since an imbalance in expression and circulating levels of IL-18 is associated with disease, structural insights into how IL-18BP outcompetes binding of IL-18 by its cognate cell-surface receptors are highly desirable; however, the structure of human IL-18BP in complex with IL-18 has been elusive. Here, we elucidate the sequestration mechanism of human IL-18 mediated by IL-18BP based on the crystal structure of the IL-18:IL-18BP complex. These detailed structural snapshots reveal the interaction landscape leading to the ultra-high affinity of IL-18BP toward IL-18 and identify substantial differences with respect to previously characterized complexes of IL-18 with IL-18BP of viral origin. Furthermore, our structure captured a fortuitous higher-order assembly between IL-18 and IL-18BP coordinated by a disulfide-bond distal to the binding surface connecting IL-18 and IL-18BP molecules from different complexes, resulting in a novel tetramer with 2:2 stoichiometry. This tetrapartite assembly was found to restrain IL-18 activity more effectively than the canonical 1:1 complex. Collectively, our findings provide a framework for innovative, structure-driven therapeutic strategies and further functional interrogation of IL-18 in physiology and disease.
Collapse
|
31
|
Lay CS, Bridges A, Goulding J, Briddon SJ, Soloviev Z, Craggs PD, Hill SJ. Probing the binding of interleukin-23 to individual receptor components and the IL-23 heteromeric receptor complex in living cells using NanoBRET. Cell Chem Biol 2022; 29:19-29.e6. [PMID: 34038748 PMCID: PMC8790524 DOI: 10.1016/j.chembiol.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/06/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Interleukin-23 (IL-23) is a pro-inflammatory cytokine involved in the host defense against pathogens but is also implicated in the development of several autoimmune disorders. The IL-23 receptor has become a key target for drug discovery, but the exact mechanism of the receptor ligand interaction remains poorly understood. In this study the affinities of IL-23 for its individual receptor components (IL23R and IL12Rβ1) and the heteromeric complex formed between them have been measured in living cells using NanoLuciferase-tagged full-length proteins. Here, we demonstrate that TAMRA-tagged IL-23 has a greater than 7-fold higher affinity for IL12Rβ1 than IL23R. However, in the presence of both receptor subunits, IL-23 affinity is increased more than three orders of magnitude to 27 pM. Furthermore, we show that IL-23 induces a potent change in the position of the N-terminal domains of the two receptor subunits, consistent with a conformational change in the heteromeric receptor structure.
Collapse
Affiliation(s)
- Charles S Lay
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, UK; Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Angela Bridges
- Protein and Cellular Sciences, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Joelle Goulding
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, UK
| | - Stephen J Briddon
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, UK
| | - Zoja Soloviev
- Protein and Cellular Sciences, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Peter D Craggs
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK; GSK-Francis Crick Institute Linklabs, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, UK.
| |
Collapse
|
32
|
Druszczyńska M, Godkowicz M, Kulesza J, Wawrocki S, Fol M. Cytokine Receptors-Regulators of Antimycobacterial Immune Response. Int J Mol Sci 2022; 23:1112. [PMID: 35163035 PMCID: PMC8835057 DOI: 10.3390/ijms23031112] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
Cytokine receptors are critical regulators of the antimycobacterial immune response, playing a key role in initiating and coordinating the recruitment and activation of immune cells during infection. They recognize and bind specific cytokines and are involved in inducing intracellular signal transduction pathways that regulate a diverse range of biological functions, including proliferation, differentiation, metabolism and cell growth. Due to mutations in cytokine receptor genes, defective signaling may contribute to increased susceptibility to mycobacteria, allowing the pathogens to avoid killing and immune surveillance. This paper provides an overview of cytokine receptors important for the innate and adaptive immune responses against mycobacteria and discusses the implications of receptor gene defects for the course of mycobacterial infection.
Collapse
Affiliation(s)
- Magdalena Druszczyńska
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.G.); (S.W.); (M.F.)
| | - Magdalena Godkowicz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.G.); (S.W.); (M.F.)
- Lodz Institutes of the Polish Academy of Sciences, The Bio-Med-Chem Doctoral School, University of Lodz, 90-237 Lodz, Poland
| | - Jakub Kulesza
- Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Kniaziewicza 1/5, 91-347 Lodz, Poland;
| | - Sebastian Wawrocki
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.G.); (S.W.); (M.F.)
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland
| | - Marek Fol
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.G.); (S.W.); (M.F.)
| |
Collapse
|
33
|
Grevys A, Frick R, Mester S, Flem-Karlsen K, Nilsen J, Foss S, Sand KMK, Emrich T, Fischer JAA, Greiff V, Sandlie I, Schlothauer T, Andersen JT. Antibody variable sequences have a pronounced effect on cellular transport and plasma half-life. iScience 2022; 25:103746. [PMID: 35118359 PMCID: PMC8800109 DOI: 10.1016/j.isci.2022.103746] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/11/2021] [Accepted: 01/05/2022] [Indexed: 11/15/2022] Open
Abstract
Monoclonal IgG antibodies are the fastest growing class of biologics, but large differences exist in their plasma half-life in humans. Thus, to design IgG antibodies with favorable pharmacokinetics, it is crucial to identify the determinants of such differences. Here, we demonstrate that the variable region sequences of IgG antibodies greatly affect cellular uptake and subsequent recycling and rescue from intracellular degradation by endothelial cells. When the variable sequences are masked by the cognate antigen, it influences both their transport behavior and binding to the neonatal Fc receptor (FcRn), a key regulator of IgG plasma half-life. Furthermore, we show how charge patch differences in the variable domains modulate both binding and transport properties and that a short plasma half-life, due to unfavorable charge patches, may partly be overcome by Fc-engineering for improved FcRn binding. IgG variable region sequences greatly affect cellular uptake and recycling Variable region charge patches affect FcRn binding and transport The presence of cognate antigen modulates cellular transport and FcRn binding Fc-engineering for improved FcRn binding can overcome unfavorable charge patches
Collapse
Affiliation(s)
- Algirdas Grevys
- Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, 0371 Oslo, Norway
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, 82377 Penzberg, Germany
- Corresponding author
| | - Rahel Frick
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Simone Mester
- Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, 0371 Oslo, Norway
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Karine Flem-Karlsen
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Jeannette Nilsen
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Stian Foss
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Kine Marita Knudsen Sand
- Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, 0371 Oslo, Norway
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Thomas Emrich
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, 82377 Penzberg, Germany
| | | | - Victor Greiff
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway
| | - Inger Sandlie
- Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, 0371 Oslo, Norway
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Tilman Schlothauer
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Jan Terje Andersen
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
- Corresponding author
| |
Collapse
|
34
|
Lee SY, Moon SJ, Moon YM, Seo HB, Ryu JG, Lee AR, Lee CR, Kim DS, Her YM, Choi JW, Kwok SK, Park SH, Cho ML. A novel cytokine consisting of the p40 and EBI3 subunits suppresses experimental autoimmune arthritis via reciprocal regulation of Th17 and Treg cells. Cell Mol Immunol 2021; 19:79-91. [PMID: 34782759 PMCID: PMC8752814 DOI: 10.1038/s41423-021-00798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE The interleukin (IL)-12 cytokine family is closely related to the development of T helper cells, which are responsible for autoimmune disease enhancement or suppression. IL-12 family members are generally heterodimers and share three α-subunits (p35, p19, and p28) and two β-subunits (p40 and EBI3). However, a β-sheet p40 homodimer has been shown to exist and antagonize IL-12 and IL-23 signaling 1. Therefore, we assumed the existence of a p40-EBI3 heterodimer in nature and sought to investigate its role in immune regulation. METHODS The presence of the p40-EBI3 heterodimer was confirmed by ELISA, immunoprecipitation, and western blotting. A p40-EBI3 vector and p40-EBI3-Fc protein were synthesized to confirm the immunological role of this protein in mice with collagen-induced arthritis (CIA). The anti-inflammatory effects of p40-EBI3 were analyzed with regard to clinical, histological, and immune cell-regulating features in mice with CIA. RESULTS Clinical arthritis scores and the expression levels of proinflammatory cytokines (e.g., IL-17, IL-1β, IL-6, and TNF-α) were significantly attenuated in p40-EBI3-overexpressing and p40-EBI3-Fc-treated mice with CIA compared to vehicle-treated mice with CIA. Structural joint damage and vessel formation-related gene expression were also reduced by p40-EBI3 heterodimer treatment. In vitro, the p40-EBI3-Fc protein significantly suppressed the differentiation of Th17 cells and reciprocally induced CD4+CD25+Foxp3+ (regulatory T) cells. p40-EBI3 also inhibited osteoclast formation in a concentration-dependent manner. CONCLUSION In this study, p40-EBI3 ameliorated proinflammatory conditions both in vivo and in vitro. We propose that p40-EBI3 is a novel anti-inflammatory cytokine involved in suppressing the immune response through the expansion of Treg cells and suppression of Th17 cells and osteoclastogenesis.
Collapse
Affiliation(s)
- Seon-Yeong Lee
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Su-Jin Moon
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Young-Mee Moon
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Hyeon-Beom Seo
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Jun-Geol Ryu
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - A Ram Lee
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chae Rim Lee
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Da-Som Kim
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Yang-Mi Her
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Jeong Won Choi
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Ki Kwok
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea. .,Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
35
|
Georgy J, Arlt Y, Moll JM, Ouzin M, Weitz HT, Gremer L, Willbold D, Grötzinger J, Thives-Kurenbach F, Scheller J, Floss DM. Tryptophan (W) at position 37 of murine IL-12/IL-23 p40 is mandatory for binding to IL-12Rβ1 and subsequent signal transduction. J Biol Chem 2021; 297:101295. [PMID: 34637790 PMCID: PMC8571081 DOI: 10.1016/j.jbc.2021.101295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Interleukin (IL)-12 and IL-23 are composite cytokines consisting of p35/p40 and p19/p40, respectively, which signal via the common IL-12 receptor β1 (IL-12Rβ1) and the cytokine-specific receptors IL-12Rβ2 and IL-23R. Previous data showed that the p40 component interacts with IL-12Rβ1, whereas p19 and p35 subunits solely bind to IL-23R and IL-12Rβ2, resulting in tetrameric signaling complexes. In the absence of p19 and p35, p40 forms homodimers and may induce signaling via IL-12Rβ1 homodimers. The critical amino acids of p19 and p35 required for binding to IL-23R and IL-12Rβ2 are known, and two regions of p40 critical for binding to IL-12Rβ1 have recently been identified. In order to characterize the involvement of the N-terminal region of p40 in binding to IL-12Rβ1, we generated deletion variants of the p40-p19 fusion cytokine. We found that an N-terminal deletion variant missing amino acids M23 to P39 failed to induce IL-23-dependent signaling and did not bind to IL-12Rβ1, whereas binding to IL-23R was maintained. Amino acid replacements showed that p40W37K largely abolished IL-23-induced signal transduction and binding to IL-12Rβ1, but not binding to IL-23R. Combining p40W37K with D36K and T38K mutations eliminated the biological activity of IL-23. Finally, homodimeric p40D36K/W37K/T38K did not interact with IL-12Rβ1, indicating binding of homodimeric p40 to IL-12Rβ1 is comparable to the interaction of IL-23/IL-12 and IL-12Rβ1. In summary, we have defined D36, W37, and T38 as hotspot amino acids for the interaction of IL-12/IL-23 p40 with IL-12Rβ1. Structural insights into cytokine–cytokine receptor binding are important to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Jacqueline Georgy
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Yvonne Arlt
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Meryem Ouzin
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Hendrik T Weitz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Lothar Gremer
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Dieter Willbold
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Joachim Grötzinger
- Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Felix Thives-Kurenbach
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
36
|
Clinical Implementation of Biologics and Small Molecules in the Treatment of Hidradenitis Suppurativa. Drugs 2021; 81:1397-1410. [PMID: 34283386 PMCID: PMC8352818 DOI: 10.1007/s40265-021-01566-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 01/03/2023]
Abstract
Hidradenitis suppurativa (HS) is a chronic, recurrent, auto-inflammatory skin disease originating from the hair follicles. The typical inflammatory nodules, abscesses, and draining sinus tracts (tunnels) are characterized by a massive influx of neutrophils, macrophages, B-cells, plasma cells, T helper (Th)1, Th17 cells and upregulation of pro-inflammatory cytokines such as IL-1, IL-17, IL-12/23, and TNF-α. Over the last decades, several clinical trials evaluated the clinical efficacy of different biologics targeting these pro-inflammatory cytokines, in particular TNF-α and IL-1. However, adalimumab is still the only registered drug for HS. This review discusses biologics and small molecules with high level of evidence for their clinical application, provides guidance on when and how to use these biologics and small molecules in clinical practice, and elaborates on the combination with medical and surgical treatment options beyond the current guidelines. Furthermore this review provides an overview of potential biologics and small molecules currently under investigation for novel targets in HS such as IL-36, C5a, Janus kinase family members, CD-40, LTA4 and CXCR1/2.
Collapse
|
37
|
Scheller J, Berg A, Moll JM, Floss DM, Jungesblut C. Current status and relevance of single nucleotide polymorphisms in IL-6-/IL-12-type cytokine receptors. Cytokine 2021; 148:155550. [PMID: 34217594 DOI: 10.1016/j.cyto.2021.155550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 01/06/2023]
Abstract
Cytokines control immune related events and are critically involved in a plethora of patho-physiological processes including autoimmunity and cancer development. In rare cases, single nucleotide polymorphisms (SNPs) or single nucleotide variations (SNVs) in cytokine receptors eventually cause detrimental ligand-independent, constitutive activation of signal transduction. Most SNPs have, however, no or only marginal influences on gene expression, protein stability, localization and function and thereby only slightly affecting pathogenesis probability. The SNP database (dbSNP) is an archive for a broad collection of polymorphisms in which SNPs are categorized and marked with a locus accession number "reference SNP" (rs). Here, we engineered an algorithm to directly align dbSNP information to DNA and protein sequence information to clearly illustrate a genetic SNP landscape exemplified for all tall cytokine receptors of the IL-6/IL-12 family, including IL-23R, IL-12Rβ1, IL-12Rβ2, gp130, LIFR, OSMR and WSX-1. This information was complemented by a comprehensive literature summary and structural insights of relevant disease-causing SNPs in cytokine/cytokine receptor interfaces. In summary, we present a general strategy with potential to apply to other cytokine receptor networks.
Collapse
Affiliation(s)
- Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Anna Berg
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | | |
Collapse
|
38
|
Razawy W, Alves CH, Koedam M, Asmawidjaja PS, Mus AMC, Oukka M, Leenen PJM, Visser JA, van der Eerden BCJ, Lubberts E. IL-23 receptor deficiency results in lower bone mass via indirect regulation of bone formation. Sci Rep 2021; 11:10244. [PMID: 33986359 PMCID: PMC8119722 DOI: 10.1038/s41598-021-89625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
The IL-23 receptor (IL-23R) signaling pathway has pleiotropic effects on the differentiation of osteoclasts and osteoblasts, since it can inhibit or stimulate these processes via different pathways. However, the potential role of this pathway in the regulation of bone homeostasis remains elusive. Therefore, we studied the role of IL-23R signaling in physiological bone remodeling using IL-23R deficient mice. Using µCT, we demonstrate that 7-week-old IL-23R−/− mice have similar bone mass as age matched littermate control mice. In contrast, 12-week-old IL-23R−/− mice have significantly lower trabecular and cortical bone mass, shorter femurs and more fragile bones. At the age of 26 weeks, there were no differences in trabecular bone mass and femur length, but most of cortical bone mass parameters remain significantly lower in IL-23R−/− mice. In vitro osteoclast differentiation and resorption capacity of 7- and 12-week-old IL-23R−/− mice are similar to WT. However, serum levels of the bone formation marker, PINP, are significantly lower in 12-week-old IL-23R−/− mice, but similar to WT at 7 and 26 weeks. Interestingly, Il23r gene expression was not detected in in vitro cultured osteoblasts, suggesting an indirect effect of IL-23R. In conclusion, IL-23R deficiency results in temporal and long-term changes in bone growth via regulation of bone formation.
Collapse
Affiliation(s)
- Wida Razawy
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Celso H Alves
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Association for Innovation and Biomedical Research On Light and Image (AIBILI), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Marijke Koedam
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Patrick S Asmawidjaja
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Adriana M C Mus
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mohamed Oukka
- Department of Pediatrics, Seattle Children's Research Institute, Center for Immunity and Immunotherapies, Seattle, USA.,Department of Immunology, University of Washington, Seattle, USA
| | - Pieter J M Leenen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bram C J van der Eerden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands. .,Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
39
|
Fan L, Zhou L. Anti-IL-23 exerted protective effects on cerebral ischemia-reperfusion injury through JAK2/STAT3 signaling pathway. Mol Biol Rep 2021; 48:3475-3484. [PMID: 33904141 DOI: 10.1007/s11033-021-06339-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/07/2021] [Indexed: 01/06/2023]
Abstract
Ischemia-reperfusion frequently occurs in ischemic cerebral vascular disease, during which the inflammatory signaling plays essential roles. The aim of this study was to discover the efficacy of the antibody to a key immune cytokine IL-23 (anti-IL-23) for the therapy of cerebral ischemia-reperfusion injury. We established the cerebral ischemia-reperfusion injury model by middle cerebral artery occlusion (MCAO). Anti-IL-23 injection attenuated lesions indicated by histology study. RT-PCR and Western blot were employed to detect the mRNA and protein expression of JAK2 and STAT3 after anti-IL-23 treatment. ELISA was utilized to measure the levels of MDA (malondialdehyde) and superoxide dismutase (SOD). Moreover, curcumin and IL-6 were implicated in the endogenous intervention of IL-23 signaling in vivo. Our data demonstrated that the treatment of anti-IL-23 might transcriptionally activate the classic immune pathway in the brain. Anti-IL-23 augmented phosphorylation levels of both JAK2 and STAT3, suggesting the amplification signaling of JAK/STAT after exogenous IL-23 intervention. Anti-IL-23 reduced ROS molecules of STAT downstream in the serum and brain. It also alleviated the injury by bringing down levels of MDA and SOD in the serum. JAK2 inhibitor could abolish the effect of anti-IL-23 whereas JAK3 ameliorated the injury. The combination of anti-IL-23 and JAK3i could reduce infarct volume more effectively. In summary, this study indicated that anti-IL-23 had protective effects against cerebral ischemia-reperfusion injury by targeting the immune specific JAK2-STAT3 in JAK/STAT pathway.
Collapse
Affiliation(s)
- Lichao Fan
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, No. 5 Jingyuan Road, Shijingshan District, Beijing, 100043, China
| | - Lichun Zhou
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, No. 5 Jingyuan Road, Shijingshan District, Beijing, 100043, China.
| |
Collapse
|
40
|
Pannecoucke E, Raes L, Savvides SN. Engineering and crystal structure of a monomeric FLT3 ligand variant. Acta Crystallogr F Struct Biol Commun 2021; 77:121-127. [PMID: 33830077 PMCID: PMC8034431 DOI: 10.1107/s2053230x21003289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/27/2021] [Indexed: 12/02/2022] Open
Abstract
The overarching paradigm for the activation of class III and V receptor tyrosine kinases (RTKs) prescribes cytokine-mediated dimerization of the receptor ectodomains and homotypic receptor-receptor interactions. However, structural studies have shown that the hematopoietic receptor FLT3, a class III RTK, does not appear to engage in such receptor-receptor contacts, despite its efficient dimerization by dimeric FLT3 ligand (FL). As part of efforts to better understand the intricacies of FLT3 activation, we sought to engineer a monomeric FL. It was found that a Leu27Asp substitution at the dimer interface of the cytokine led to a stable monomeric cytokine (FLL27D) without abrogation of receptor binding. The crystal structure of FLL27D at 1.65 Å resolution revealed that the introduced point mutation led to shielding of the hydrophobic footprint of the dimerization interface in wild-type FL without affecting the conformation of the FLT3 binding site. Thus, FLL27D can serve as a monomeric FL variant to further interrogate the assembly mechanism of extracellular complexes of FLT3 in physiology and disease.
Collapse
Affiliation(s)
- Erwin Pannecoucke
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Zwijnaarde, Belgium
- Unit for Structural Biology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Zwijnaarde, Belgium
| | - Laurens Raes
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Zwijnaarde, Belgium
- Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Savvas N. Savvides
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Zwijnaarde, Belgium
- Unit for Structural Biology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Zwijnaarde, Belgium
| |
Collapse
|
41
|
Guo K, Zhang X. Cytokines that Modulate the Differentiation of Th17 Cells in Autoimmune Uveitis. J Immunol Res 2021; 2021:6693542. [PMID: 33816637 PMCID: PMC7990547 DOI: 10.1155/2021/6693542] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence has suggested that T helper 17 (Th17) cells play a central role in the pathogenesis of ocular immune disease. The association between pathogenic Th17 cells and the development of uveitis has been confirmed in experimental and clinical studies. Several cytokines affect the initiation and stabilization of the differentiation of Th17 cells. Therefore, understanding the mechanism of related cytokines in the differentiation of Th17 cells is important for exploring the pathogenesis and the potential therapeutic targets of uveitis. This article briefly describes the structures, mechanisms, and targeted drugs of cytokines-including interleukin (IL)-6, transforming growth factor-β1 (TGF-β1), IL-1β, IL-23, IL-27, IL-35, IL-2, IL-4, IL-21, and interferon (IFN)-γ-which have an important influence on the differentiation of Th17 cells and discusses their potential as therapeutic targets for treating autoimmune uveitis.
Collapse
Affiliation(s)
- Kailei Guo
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| |
Collapse
|
42
|
Pannecoucke E, Van Trimpont M, Desmet J, Pieters T, Reunes L, Demoen L, Vuylsteke M, Loverix S, Vandenbroucke K, Alard P, Henderikx P, Deroo S, Baatz F, Lorent E, Thiolloy S, Somers K, McGrath Y, Van Vlierberghe P, Lasters I, Savvides SN. Cell-penetrating Alphabody protein scaffolds for intracellular drug targeting. SCIENCE ADVANCES 2021; 7:7/13/eabe1682. [PMID: 33771865 PMCID: PMC7997521 DOI: 10.1126/sciadv.abe1682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/05/2021] [Indexed: 05/02/2023]
Abstract
The therapeutic scope of antibody and nonantibody protein scaffolds is still prohibitively limited against intracellular drug targets. Here, we demonstrate that the Alphabody scaffold can be engineered into a cell-penetrating protein antagonist against induced myeloid leukemia cell differentiation protein MCL-1, an intracellular target in cancer, by grafting the critical B-cell lymphoma 2 homology 3 helix of MCL-1 onto the Alphabody and tagging the scaffold's termini with designed cell-penetration polypeptides. Introduction of an albumin-binding moiety extended the serum half-life of the engineered Alphabody to therapeutically relevant levels, and administration thereof in mouse tumor xenografts based on myeloma cell lines reduced tumor burden. Crystal structures of such a designed Alphabody in complex with MCL-1 and serum albumin provided the structural blueprint of the applied design principles. Collectively, we provide proof of concept for the use of Alphabodies against intracellular disease mediators, which, to date, have remained in the realm of small-molecule therapeutics.
Collapse
Affiliation(s)
- Erwin Pannecoucke
- VIB Center for Inflammation Research, 9052 Ghent, Belgium
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium
| | - Maaike Van Trimpont
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | | | - Tim Pieters
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Lindy Reunes
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Lisa Demoen
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | | | - Savvas N Savvides
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
43
|
Glassman CR, Mathiharan YK, Jude KM, Su L, Panova O, Lupardus PJ, Spangler JB, Ely LK, Thomas C, Skiniotis G, Garcia KC. Structural basis for IL-12 and IL-23 receptor sharing reveals a gateway for shaping actions on T versus NK cells. Cell 2021; 184:983-999.e24. [PMID: 33606986 PMCID: PMC7899134 DOI: 10.1016/j.cell.2021.01.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/23/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Interleukin-12 (IL-12) and IL-23 are heterodimeric cytokines that are produced by antigen-presenting cells to regulate the activation and differentiation of lymphocytes, and they share IL-12Rβ1 as a receptor signaling subunit. We present a crystal structure of the quaternary IL-23 (IL-23p19/p40)/IL-23R/IL-12Rβ1 complex, together with cryoelectron microscopy (cryo-EM) maps of the complete IL-12 (IL-12p35/p40)/IL-12Rβ2/IL-12Rβ1 and IL-23 receptor (IL-23R) complexes, which reveal "non-canonical" topologies where IL-12Rβ1 directly engages the common p40 subunit. We targeted the shared IL-12Rβ1/p40 interface to design a panel of IL-12 partial agonists that preserved interferon gamma (IFNγ) induction by CD8+ T cells but impaired cytokine production from natural killer (NK) cells in vitro. These cell-biased properties were recapitulated in vivo, where IL-12 partial agonists elicited anti-tumor immunity to MC-38 murine adenocarcinoma absent the NK-cell-mediated toxicity seen with wild-type IL-12. Thus, the structural mechanism of receptor sharing used by IL-12 family cytokines provides a protein interface blueprint for tuning this cytokine axis for therapeutics.
Collapse
Affiliation(s)
- Caleb R Glassman
- Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yamuna Kalyani Mathiharan
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin M Jude
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leon Su
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ouliana Panova
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Patrick J Lupardus
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jamie B Spangler
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lauren K Ely
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christoph Thomas
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Georgios Skiniotis
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
44
|
Woś I, Tabarkiewicz J. Effect of interleukin-6, -17, -21, -22, and -23 and STAT3 on signal transduction pathways and their inhibition in autoimmune arthritis. Immunol Res 2021; 69:26-42. [PMID: 33515210 PMCID: PMC7921069 DOI: 10.1007/s12026-021-09173-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/10/2021] [Indexed: 02/07/2023]
Abstract
Rheumatic diseases are complex autoimmune diseases which include among others rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), and psoriatic arthritis (PsA). These diseases are characterized by prolonged and increased secretion of inflammatory factors, eventually leading to inflammation. This is often accompanied by persistent pain and stiffness in the joint and finally bone destruction and osteoporosis. These diseases can occur at any age, regardless of gender or origin. Autoimmune arthritis is admittedly associated with long-term treatment, and discontinuation of medication is associated with unavoidable relapse. Therefore, it is important to detect the disease at an early stage and apply appropriate preventative measures. During inflammation, pro-inflammatory factors such as interleukins (IL)-6, -17, -21, -22, and -23 are secreted, while anti-inflammatory factors including IL-10 are downregulated. Research conducted over the past several years has focused on inhibiting inflammatory pathways and activating anti-inflammatory factors to improve the quality of life of people with rheumatic diseases. The aim of this paper is to review current knowledge on stimulatory and inhibitory pathways involving the signal transducer and activator of transcription 3 (STAT3). STAT3 has been shown to be one of the crucial factors involved in inflammation and is directly linked with other pro-inflammatory factors and thus is a target of current research on rheumatoid diseases.
Collapse
Affiliation(s)
- Izabela Woś
- Laboratory for Translational Research in Medicine, Centre for Innovative Research in Medical and Natural Sciences, College for Medical Sciences of University of Rzeszow, ul. Warzywna 1a, 35-310 Rzeszow, Poland
- Department of Human Immunology, Institute of Medical Sciences, College for Medical Sciences of University of Rzeszow, ul. Warzywna 1a, 35-310 Rzeszow, Poland
| | - Jacek Tabarkiewicz
- Laboratory for Translational Research in Medicine, Centre for Innovative Research in Medical and Natural Sciences, College for Medical Sciences of University of Rzeszow, ul. Warzywna 1a, 35-310 Rzeszow, Poland
- Department of Human Immunology, Institute of Medical Sciences, College for Medical Sciences of University of Rzeszow, ul. Warzywna 1a, 35-310 Rzeszow, Poland
| |
Collapse
|
45
|
Abstract
Axial spondyloarthritis (axSpA) is an inflammatory disease of the axial skeleton associated with significant pain and disability. Previously, the diagnosis of ankylosing spondylitis required advanced changes on plain radiographs of the sacroiliac joints. Classification criteria released in 2009, however, identified a subset of patients, under the age of 45, with back pain for more than three months in the absence of radiographic sacroiliitis who were classified as axSpA based on a positive magnetic resonance imaging or HLAB27 positivity and specific clinical features. This subgroup was labeled non-radiographic (nr)-axSpA. These patients, compared with those identified by the older New York criteria, contained a larger percentage of women and demonstrated less structural damage. However, their clinical manifestations and response to biologics were similar to radiographic axSpA. The discovery of the interleukin (IL) IL-23/IL-17 pathway revealed key molecules involved in the pathophysiology of axSpA. This discovery propelled the generation of antibodies directed toward IL-17A, which are highly effective and demonstrate treatment responses in axSpA that are similar to those observed with anti-TNF agents. The finding that agents that block IL-23 were not effective in axSpA came as a surprise and the potential underlying mechanisms underlying this lack of response are discussed. New agents with dual inhibition of the IL-17A and F isoforms and some oral small molecule agents that target the Jak-STAT pathway, have also shown efficacy in axSpA.
Collapse
Affiliation(s)
- Christopher Ritchlin
- Allergy, Immunology & Rheumatology Division, University of Rochester Medical Center, Rochester, New York, USA
| | - Iannis E Adamopoulos
- Rheumatology, Allergy & Clinical Immunology Division, University of California, Davis, Shriners Hospital, Sacramento, California, USA
| |
Collapse
|
46
|
Zhou L, Wang Y, Wan Q, Wu F, Barbon J, Dunstan R, Gauld S, Konrad M, Leys L, McCarthy R, Namovic M, Nelson C, Overmeyer G, Perron D, Su Z, Wang L, Westmoreland S, Zhang J, Zhu R, Veldman G. A non-clinical comparative study of IL-23 antibodies in psoriasis. MAbs 2021; 13:1964420. [PMID: 34460338 PMCID: PMC8409790 DOI: 10.1080/19420862.2021.1964420] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/27/2021] [Accepted: 08/01/2021] [Indexed: 10/25/2022] Open
Abstract
Four antibodies that inhibit interleukin (IL)-23 are approved for the treatment of moderate-to-severe plaque psoriasis. Here, we present non-clinical data comparing ustekinumab, guselkumab, tildrakizumab and risankizumab with regard to thermostability, IL-23 binding affinity, inhibitory-binding mode, in vitro potency and in vivo efficacy. Risankizumab and guselkumab exhibited 5-fold higher affinity for IL-23 and showed more potent inhibition of IL-23 signaling than ustekinumab and tildrakizumab. Risankizumab and guselkumab completely blocked the binding of IL-23 to IL-23Rα as expected, whereas tildrakizumab did not. In vitro, risankizumab and guselkumab blocked the terminal differentiation of TH17 cells in a similar manner, while tildrakizumab had minimal impact on TH17 differentiation. In a human IL-23-induced ear-swelling mouse model, risankizumab and guselkumab were more effective than ustekinumab and tildrakizumab at reducing IL-17, IL-22, and keratinocyte gene expression. Our results indicate that the four clinically approved antibodies targeting IL-23 differ in affinity and binding epitope. These attributes contribute to differences in in vitro potency, receptor interaction inhibition mode and in vivo efficacy in preclinical studies as described in this report, and similarly may affect the clinical performance of these drugs.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/metabolism
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibody Affinity
- Binding Sites, Antibody
- Cells, Cultured
- Disease Models, Animal
- Drug Stability
- Epitopes
- Female
- Hot Temperature
- Humans
- Interleukin-23/antagonists & inhibitors
- Interleukin-23/immunology
- Interleukin-23/metabolism
- Mice, Inbred C57BL
- Protein Denaturation
- Protein Stability
- Psoriasis/drug therapy
- Psoriasis/immunology
- Psoriasis/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Ustekinumab/immunology
- Ustekinumab/metabolism
- Ustekinumab/pharmacology
- Mice
Collapse
Affiliation(s)
- Li Zhou
- Abbvie Bioresearch Center, Worcester
| | | | - Qi Wan
- Abbvie Bioresearch Center, Worcester
| | - Fei Wu
- Abbvie Bioresearch Center, Worcester
| | | | | | | | | | | | | | | | | | | | | | - Zhi Su
- Abbvie, North Chicago, USA
| | - Leyu Wang
- Abbvie Bioresearch Center, Worcester
| | | | - Jun Zhang
- Abbvie Bioresearch Center, Worcester
| | - Rui Zhu
- Abbvie Bioresearch Center, Worcester
| | | |
Collapse
|
47
|
Wang Y, Xu Y, Fan Y, Bi D, Song J, Xia L, Shang Q, Gao C, Zhang X, Zhu D, Qiao Y, Su Y, Wang X, Zhu C, Xing Q. The Association Study of IL-23R Polymorphisms With Cerebral Palsy in Chinese Population. Front Neurosci 2020; 14:590098. [PMID: 33324152 PMCID: PMC7724030 DOI: 10.3389/fnins.2020.590098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/14/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Cerebral palsy (CP) is a syndrome of non-progressive motor dysfunction caused by early brain development injury. Recent evidence has shown that immunological abnormalities are associated with an increased risk of CP. Methods: We recruited 782 children with CP as the case group and 770 healthy children as the control group. The association between IL-23R single nucleotide polymorphisms (SNPs; namely, rs10889657, rs6682925, rs1884444, rs17375018, rs1004819, rs11805303, and rs10889677) and CP was studied by using a case–control method and SHEsis online software. Subgroup analysis based on complications and clinical subtypes was also carried out. Results: There were differences in the allele and genotype frequencies between CP cases and controls at the rs11805303 and rs10889677 SNPs (Pallele = 0.014 and 0.048, respectively; Pgenotype = 0.023 and 0.008, respectively), and the difference in genotype frequency of rs10889677 remained significant after Bonferroni correction (Pgenotype = 0.048). Subgroup analysis revealed a more significant association of rs10889677 with CP accompanied by global developmental delay (Pgenotype = 0.024 after correction) and neonatal encephalopathy (Pgenotype = 0.024 after correction). Conclusion: The present results showed a significant association between IL-23R and CP, suggesting that IL-23R may play a potential role in CP pathogenesis.
Collapse
Affiliation(s)
- Yangong Wang
- Institutes of Biomedical Science and Children's Hospital, Fudan University, Shanghai, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury, Department of Pediatrics, The 3rd Affiliated Hospital of Zhengzhou University and Institute of Neuroscience, Zhengzhou, China
| | - Yangyi Fan
- Institutes of Biomedical Science and Children's Hospital, Fudan University, Shanghai, China
| | - Dan Bi
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Juan Song
- Henan Key Laboratory of Child Brain Injury, Department of Pediatrics, The 3rd Affiliated Hospital of Zhengzhou University and Institute of Neuroscience, Zhengzhou, China
| | - Lei Xia
- Henan Key Laboratory of Child Brain Injury, Department of Pediatrics, The 3rd Affiliated Hospital of Zhengzhou University and Institute of Neuroscience, Zhengzhou, China
| | - Qing Shang
- Department of Pediatrics, Children's Hospital of Zhengzhou University and Henan Children's Hospital, Zhengzhou, China
| | - Chao Gao
- Department of Pediatrics, Children's Hospital of Zhengzhou University and Henan Children's Hospital, Zhengzhou, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury, Department of Pediatrics, The 3rd Affiliated Hospital of Zhengzhou University and Institute of Neuroscience, Zhengzhou, China
| | - Dengna Zhu
- Child Rehabilitation Center, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yimeng Qiao
- Institutes of Biomedical Science and Children's Hospital, Fudan University, Shanghai, China
| | - Yu Su
- Institutes of Biomedical Science and Children's Hospital, Fudan University, Shanghai, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury, Department of Pediatrics, The 3rd Affiliated Hospital of Zhengzhou University and Institute of Neuroscience, Zhengzhou, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Department of Pediatrics, The 3rd Affiliated Hospital of Zhengzhou University and Institute of Neuroscience, Zhengzhou, China.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Qinghe Xing
- Institutes of Biomedical Science and Children's Hospital, Fudan University, Shanghai, China.,Shanghai Center for Women and Children's Health, Shanghai, China
| |
Collapse
|
48
|
Kozak S, Bloch Y, De Munck S, Mikula A, Bento I, Savvides SN, Meijers R. Homogeneously N-glycosylated proteins derived from the GlycoDelete HEK293 cell line enable diffraction-quality crystallogenesis. Acta Crystallogr D Struct Biol 2020; 76:1244-1255. [PMID: 33263330 PMCID: PMC7709199 DOI: 10.1107/s2059798320013753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Structural studies of glycoproteins and their complexes provide critical insights into their roles in normal physiology and disease. Most glycoproteins contain N-linked glycosylation, a key post-translation modification that critically affects protein folding and stability and the binding kinetics underlying protein interactions. However, N-linked glycosylation is often an impediment to yielding homogeneous protein preparations for structure determination by X-ray crystallography or other methods. In particular, obtaining diffraction-quality crystals of such proteins and their complexes often requires modification of both the type of glycosylation patterns and their extent. Here, we demonstrate the benefits of producing target glycoproteins in the GlycoDelete human embryonic kidney 293 cell line that has been engineered to produce N-glycans as short glycan stumps comprising N-acetylglucosamine, galactose and sialic acid. Protein fragments of human Down syndrome cell-adhesion molecule and colony-stimulating factor 1 receptor were obtained from the GlycoDelete cell line for crystallization. The ensuing reduction in the extent and complexity of N-glycosylation in both protein molecules compared with alternative glycoengineering approaches enabled their productive deployment in structural studies by X-ray crystallography. Furthermore, a third successful implementation of the GlycoDelete technology focusing on murine IL-12B is shown to lead to N-glycosylation featuring an immature glycan in diffraction-quality crystals. It is proposed that the GlycoDelete cell line could serve as a valuable go-to option for the production of homogeneous glycoproteins and their complexes for structural studies by X-ray crystallography and cryo-electron microscopy.
Collapse
Affiliation(s)
- Sandra Kozak
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607 Hamburg, Germany
| | - Yehudi Bloch
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
- Unit for Structural Biology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Steven De Munck
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
- Unit for Structural Biology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Aleksandra Mikula
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607 Hamburg, Germany
| | - Isabel Bento
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607 Hamburg, Germany
| | - Savvas N. Savvides
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
- Unit for Structural Biology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Rob Meijers
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607 Hamburg, Germany
- Institute for Protein Innovation, 4 Blackfan Circle, Boston, MA 02115, USA
| |
Collapse
|
49
|
Jefremow A, Neurath MF. All are Equal, Some are More Equal: Targeting IL 12 and 23 in IBD - A Clinical Perspective. Immunotargets Ther 2020; 9:289-297. [PMID: 33274187 PMCID: PMC7705252 DOI: 10.2147/itt.s282466] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic inflammatory diseases like inflammatory bowel diseases (IBD) or psoriasis represents a worldwide health burden. Researchers provided great achievements in understanding the origin of these diseases leading to improved therapeutic options. The discovery of cytokines like tumor necrosis factor-α or transforming growth factor-β are examples for these efforts. Interleukin 12 (IL 12) and interleukin 23 (IL 23) represent different important cytokines in this regard. They both belong to the interleukin 12 family and are related by sharing the subunit p40. Ustekinumab is an antibody that blocks p40 and thereby interleukins 12 and 23. Trials showed promising results in treating IBD patients with this drug. Consequently, new questions arose about the distinct features of IL 12 and 23. This review focuses on these interleukins regarding their functions in the healthy and inflamed gut and provides an overview about the results from in vitro and in vivo studies as well as clinical trials.
Collapse
Affiliation(s)
- André Jefremow
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
50
|
Lee S, Nakayamada S, Kubo S, Yamagata K, Yoshinari H, Tanaka Y. Interleukin-23 drives expansion of Thelper 17 cells through epigenetic regulation by signal transducer and activators of transcription 3 in lupus patients. Rheumatology (Oxford) 2020; 59:3058-3069. [DOI: 10.1093/rheumatology/keaa176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
Objectives
To elucidate the molecular mechanisms underlying pathogenic Th17 cells, we investigated the modulation of epigenetic modifications and its association with SLE.
Methods
Naive CD4+ T cells were cultured in Th17 polarizing conditions for 5 days and then treated with various cytokines, including IL-23. Expression of Th17 cell–related markers and phosphorylation of signal transducers and activators of transcription (pSTATs) were analysed using flow cytometry and quantitative PCR. Histone modifications were assessed using chromatin immunoprecipitation PCR. T cell phenotypes and pSTATs were analysed in blood samples of patients with SLE (n = 28). Finally, the effects of baricitinib on memory Th17 cells were investigated in SLE patients (n = 12).
Results
Stimulation of resting Th17 cells with IL-23 promoted maturation of these cells (P < 0.0001). IL-23 induced pSTAT3, but not pSTAT4, during Th17 cell maturation (P < 0.05). IL-23-induced STAT3 directly bound the RORγT gene locus. This was accompanied by induction of the H3H4me3 permissive mark and reduction of the H3K27me3 repressive mark, leading to enhanced RORγT gene expression. IL-23-induced expansion of Th17 cells and pSTAT3 were suppressed by the addition of baricitinib in a concentration-dependent manner (P < 0.05). In memory Th17 cells from SLE patients, pSTAT3 was hypersensitized by IL-23 stimulation and inhibited by baricitinib (P < 0.05).
Conclusion
The results of this study indicate that IL-23/STAT3 signalling plays a fundamental role in Th17 cell maturation through transcriptional and epigenetic modifications in patients with SLE. This mechanism may underlie pathogenic Th17 cell expansion and may lead to identification of novel therapeutic targets for SLE.
Collapse
Affiliation(s)
- Seunghyun Lee
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu Japan
| | - Shingo Nakayamada
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu Japan
| | - Satoshi Kubo
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu Japan
| | - Kaoru Yamagata
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu Japan
| | - Hiroko Yoshinari
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu Japan
| |
Collapse
|