1
|
Yin N, Li X, Zhang X, Xue S, Cao Y, Niedermann G, Lu Y, Xue J. Development of pharmacological immunoregulatory anti-cancer therapeutics: current mechanistic studies and clinical opportunities. Signal Transduct Target Ther 2024; 9:126. [PMID: 38773064 PMCID: PMC11109181 DOI: 10.1038/s41392-024-01826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering, agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers, newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.
Collapse
Affiliation(s)
- Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Shaolong Xue
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, PR China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
- Institute of Disaster Medicine & Institute of Emergency Medicine, Sichuan University, No. 17, Gaopeng Avenue, Chengdu, 610041, Sichuan, PR China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
2
|
Wang J, Zhao X, Wan YY. Intricacies of TGF-β signaling in Treg and Th17 cell biology. Cell Mol Immunol 2023; 20:1002-1022. [PMID: 37217798 PMCID: PMC10468540 DOI: 10.1038/s41423-023-01036-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Balanced immunity is pivotal for health and homeostasis. CD4+ helper T (Th) cells are central to the balance between immune tolerance and immune rejection. Th cells adopt distinct functions to maintain tolerance and clear pathogens. Dysregulation of Th cell function often leads to maladies, including autoimmunity, inflammatory disease, cancer, and infection. Regulatory T (Treg) and Th17 cells are critical Th cell types involved in immune tolerance, homeostasis, pathogenicity, and pathogen clearance. It is therefore critical to understand how Treg and Th17 cells are regulated in health and disease. Cytokines are instrumental in directing Treg and Th17 cell function. The evolutionarily conserved TGF-β (transforming growth factor-β) cytokine superfamily is of particular interest because it is central to the biology of both Treg cells that are predominantly immunosuppressive and Th17 cells that can be proinflammatory, pathogenic, and immune regulatory. How TGF-β superfamily members and their intricate signaling pathways regulate Treg and Th17 cell function is a question that has been intensely investigated for two decades. Here, we introduce the fundamental biology of TGF-β superfamily signaling, Treg cells, and Th17 cells and discuss in detail how the TGF-β superfamily contributes to Treg and Th17 cell biology through complex yet ordered and cooperative signaling networks.
Collapse
Affiliation(s)
- Junying Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xingqi Zhao
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yisong Y Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
3
|
Zhou X, Yang M, Jin J, Chen J, Li Z. Periplaneta americana (Insecta: Blattodea) and organ fibrosis: A mini review. Medicine (Baltimore) 2022; 101:e32039. [PMID: 36595847 PMCID: PMC9794353 DOI: 10.1097/md.0000000000032039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Fibrosis is the end stage of many chronic inflammatory diseases and eventually leads to organ failure. Periplaneta americana (P. americana) is referred to as "the product of flesh and blood" in traditional Chinese medicine and has a wide range of therapeutic effects. Owing to the growing interest in this insect for its application in the treatment of tissue injury-healing disorders that induce organ fibrosis, it has attracted the interest of researchers. A literature search was performed using core collections of electronic databases, such as PubMed, Web of Science, China National Knowledge Infrastructure, and Wanfang, using the keywords given below and terms such as pharmacological and biochemical details of this insect. P. americana extracts presented a wide range of therapeutic and biological activities, including antifibrotic, antiinflammatory, antioxidative, and tissue repair activities. Emerging evidence suggests that P. americana extracts may improve scarring, pulmonary fibrosis, liver fibrosis, and kidney fibrosis through the regulation of fibroblast activation, cytokine secretion, and deposition of fibrin, indicating the potential role of P. americana as a therapeutic option for organ fibrosis. P. americana is a potential therapeutic agent for treating fibrosis. Further studies are required for a more in-depth characterization of the antifibrogenic mechanism of P. americana prior to its clinical application in the treatment of organ fibrosis. (Fig. 1).
Collapse
Affiliation(s)
- Xin Zhou
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Lu zhou, Sichuan, China
- College of Integration of Traditional Chinese and Western Medicine to Southwest Medical University, Lu zhou, Sichuan, China
| | - Meng Yang
- Department of Pediatrics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Lu Zhou, Sichuan, China
| | - Jing Jin
- Department of Gastroenterology, The First Affiliated Hospital of Naval Military Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Jie Chen
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Lu zhou, Sichuan, China
- Department of Gastroenterology, The First Affiliated Hospital of Naval Military Medical University (Shanghai Changhai Hospital), Shanghai, China
- * Correspondence: Jie Chen, Department of Gastroenterology, The First Affiliated Hospital of Naval Military Medical University (Shanghai Changhai Hospital), Shanghai 200082, China (e-mail: )
| | - Zhi Li
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Lu zhou, Sichuan, China
| |
Collapse
|
4
|
McRitchie BR, Akkaya B. Exhaust the exhausters: Targeting regulatory T cells in the tumor microenvironment. Front Immunol 2022; 13:940052. [PMID: 36248808 PMCID: PMC9562032 DOI: 10.3389/fimmu.2022.940052] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022] Open
Abstract
The concept of cancer immunotherapy has gained immense momentum over the recent years. The advancements in checkpoint blockade have led to a notable progress in treating a plethora of cancer types. However, these approaches also appear to have stalled due to factors such as individuals' genetic make-up, resistant tumor sub-types and immune related adverse events (irAE). While the major focus of immunotherapies has largely been alleviating the cell-intrinsic defects of CD8+ T cells in the tumor microenvironment (TME), amending the relationship between tumor specific CD4+ T cells and CD8+ T cells has started driving attention as well. A major roadblock to improve the cross-talk between CD4+ T cells and CD8+ T cells is the immune suppressive action of tumor infiltrating T regulatory (Treg) cells. Despite their indispensable in protecting tissues against autoimmune threats, Tregs have also been under scrutiny for helping tumors thrive. This review addresses how Tregs establish themselves at the TME and suppress anti-tumor immunity. Particularly, we delve into factors that promote Treg migration into tumor tissue and discuss the unique cellular and humoral composition of TME that aids survival, differentiation and function of intratumoral Tregs. Furthermore, we summarize the potential suppression mechanisms used by intratumoral Tregs and discuss ways to target those to ultimately guide new immunotherapies.
Collapse
Affiliation(s)
- Bayley R. McRitchie
- Department of Neurology, The College of Medicine, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Billur Akkaya
- Department of Neurology, The College of Medicine, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
- Department of Microbial Infection and Immunity, The College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
5
|
Moreau JM, Velegraki M, Bolyard C, Rosenblum MD, Li Z. Transforming growth factor-β1 in regulatory T cell biology. Sci Immunol 2022; 7:eabi4613. [PMID: 35302863 PMCID: PMC10552796 DOI: 10.1126/sciimmunol.abi4613] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) is inextricably linked to regulatory T cell (Treg) biology. However, precisely untangling the role for TGF-β1 in Treg differentiation and function is complicated by the pleiotropic and context-dependent activity of this cytokine and the multifaceted biology of Tregs. Among CD4+ T cells, Tregs are the major producers of latent TGF-β1 and are uniquely able to activate this cytokine via expression of cell surface docking receptor glycoprotein A repetitions predominant (GARP) and αv integrins. Although a preponderance of evidence indicates no essential roles for Treg-derived TGF-β1 in Treg immunosuppression, TGF-β1 signaling is crucial for Treg development in the thymus and periphery. Furthermore, active TGF-β1 instructs the differentiation of other T cell subsets, including TH17 cells. Here, we will review TGF-β1 signaling in Treg development and function and discuss knowledge gaps, future research, and the TGF-β1/Treg axis in the context of cancer immunotherapy and fibrosis.
Collapse
Affiliation(s)
- Joshua M. Moreau
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Maria Velegraki
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center—James Cancer Hospital, Columbus, OH, USA
| | - Chelsea Bolyard
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center—James Cancer Hospital, Columbus, OH, USA
| | - Michael D. Rosenblum
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center—James Cancer Hospital, Columbus, OH, USA
| |
Collapse
|
6
|
Chalmers FE, Dusold JE, Shaik JA, Walsh HA, Glick AB. Targeted deletion of TGFβ1 in basal keratinocytes causes profound defects in stratified squamous epithelia and aberrant melanocyte migration. Dev Biol 2022; 485:9-23. [PMID: 35227671 PMCID: PMC8969113 DOI: 10.1016/j.ydbio.2022.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
Abstract
Transforming Growth Factor Beta 1 (TGFβ1) is a multifunctional cytokine that regulates proliferation, apoptosis, and epithelial-mesenchymal transition of epithelial cells. While its role in cancer is well studied, less is known about TGFβ1 and regulation of epithelial development. To address this, we deleted TGFβ1 in basal keratinocytes of stratified squamous epithelia. Newborn mice with a homozygous TGFβ1 deletion had significant defects in proliferation and differentiation of the epidermis and oral mucosa, and died shortly after birth. Hair follicles were sparse in TGFβ1 depleted skin and had delayed development. Additionally, the Wnt pathway transcription factor LEF1 was reduced in hair follicle bulbs and nearly absent from the basal epithelial layer. Hemizygous knockout mice survived to adulthood but were runted and had sparse coats. The skin of these mice had irregular hair follicle morphology and aberrant hair cycle progression, as well as abnormally high melanin expression and delayed melanocyte migration. In contrast to newborn TGFβ1 null mice, the epidermis was hyperproliferative, acanthotic and inflamed. Expression of p63, a master regulator of stratified epithelial identity, proliferation and differentiation, was reduced in TGFβ1 null newborn epidermis but expanded in the postnatal acanthotic epidermis of TGFβ1 hemizygous mice. Thus, TGFβ1 is both essential and haploinsufficient with context dependent roles in stratified squamous epithelial development and homeostasis.
Collapse
Affiliation(s)
- Fiona E Chalmers
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, USA
| | - Justyn E Dusold
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, USA
| | - Javed A Shaik
- Dermatology Department, University of Minnesota, USA
| | - Hailey A Walsh
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, USA
| | - Adam B Glick
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, USA.
| |
Collapse
|
7
|
Liu J, Wang X, Deng Y, Yu X, Wang H, Li Z. Research Progress on the Role of Regulatory T Cell in Tumor Microenvironment in the Treatment of Breast Cancer. Front Oncol 2021; 11:766248. [PMID: 34868991 PMCID: PMC8636122 DOI: 10.3389/fonc.2021.766248] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is a complex ecosystem comprised of cancer cells, stromal cells, and immune cells. Analysis of the composition of TME is essential to assess the prognosis of patients with breast cancer (BC) and the efficacy of different regimes. Treg plays a crucial role in the microenvironment of breast cancer subtypes, and its function contributes to the development and progression of BC by suppressing anti-tumor immunity directly or indirectly through multiple mechanisms. In addition, conventional treatments, such as anthracycline-based neoadjuvant chemotherapy, and neo-therapies, such as immune-checkpoint blockades, have a significant impact on the absence of Tregs in BC TME, thus gaining additional anti-tumor effect to some extent. Strikingly, Treg in BC TME revealed the predicted efficacy of some therapeutic strategies. All these results suggest that we can manipulate the abundance of Treg to achieve the ultimate effect of both conventional and novel treatments. In this review, we discuss new insights into the characteristics of Treg in BC TME, the impact of different regiments on Treg, and the possibilities of Treg as a predictive marker of efficacy for certain treatments.
Collapse
Affiliation(s)
- Jianyu Liu
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xueying Wang
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuhan Deng
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Yu
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongbin Wang
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhigao Li
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
8
|
Stephen-Victor E, Cui Y, Wang Z, Benamar M, Charbonnier LM, Chatila TA. Essential functions of regulatory T cell TGF-β1 revealed by differential gene-targeting approaches. Immunity 2021; 54:397-398. [PMID: 33691127 DOI: 10.1016/j.immuni.2021.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Emmanuel Stephen-Victor
- Division of Immunology, Boston Children's Hospital, Boston, MA, 02115 USA; Department of Pediatrics, Harvard Medical School, Boston, MA, 02115 USA
| | - Ye Cui
- Division of Immunology, Boston Children's Hospital, Boston, MA, 02115 USA; Department of Pediatrics, Harvard Medical School, Boston, MA, 02115 USA
| | - Ziwei Wang
- Division of Immunology, Boston Children's Hospital, Boston, MA, 02115 USA
| | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, MA, 02115 USA; Department of Pediatrics, Harvard Medical School, Boston, MA, 02115 USA
| | - Louis-Marie Charbonnier
- Division of Immunology, Boston Children's Hospital, Boston, MA, 02115 USA; Department of Pediatrics, Harvard Medical School, Boston, MA, 02115 USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, MA, 02115 USA; Department of Pediatrics, Harvard Medical School, Boston, MA, 02115 USA.
| |
Collapse
|