1
|
Matsumoto M, Yoshida M, Oya T, Tsuneyama K, Matsumoto M, Yoshida H. Role of PRC2 in the stochastic expression of Aire target genes and development of mimetic cells in the thymus. J Exp Med 2025; 222:e20240817. [PMID: 40244172 PMCID: PMC12005117 DOI: 10.1084/jem.20240817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/10/2024] [Accepted: 03/11/2025] [Indexed: 04/18/2025] Open
Abstract
The transcriptional targets of Aire and the mechanisms controlling their expression in medullary thymic epithelial cells (mTECs) need to be clarified to understand Aire's tolerogenic function. By using a multi-omics single-cell approach coupled with deep scRNA-seq, we examined how Aire controls the transcription of a wide variety of genes in a small fraction of Aire-expressing cells. We found that chromatin repression by PRC2 is an important step for Aire to achieve stochastic gene expression. Aire unleashed the silenced chromatin configuration caused by PRC2, thereby increasing the expression of its functional targets. Besides this preconditioning for Aire's gene induction, we demonstrated that PRC2 also controls the composition of mTECs that mimic the developmental trait of peripheral tissues, i.e., mimetic cells. Of note, this action of PRC2 was independent of Aire and it was more apparent than Aire. Thus, our study uncovered the essential role of polycomb complex for Aire-mediated promiscuous gene expression and the development of mimetic cells.
Collapse
Affiliation(s)
- Minoru Matsumoto
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masaki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Takeshi Oya
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mitsuru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Hideyuki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
2
|
Sureka N, Zaheer S. Regulatory T Cells in Tumor Microenvironment: Therapeutic Approaches and Clinical Implications. Cell Biol Int 2025. [PMID: 40365758 DOI: 10.1002/cbin.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/19/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025]
Abstract
Regulatory T cells (Tregs), previously referred to as suppressor T cells, represent a distinct subset of CD4+ T cells that are uniquely specialized for immune suppression. They are characterized by the constitutive expression of the transcription factor FoxP3 in their nuclei, along with CD25 (the IL-2 receptor α-chain) and CTLA-4 on their cell surface. Tregs not only restrict natural killer cell-mediated cytotoxicity but also inhibit the proliferation of CD4+ and CD8+ T-cells and suppress interferon-γ secretion by immune cells, ultimately impairing an effective antitumor immune response. Treg cells are widely recognized as a significant barrier to the effectiveness of tumor immunotherapy in clinical settings. Extensive research has consistently shown that Treg cells play a pivotal role in facilitating tumor initiation and progression. Conversely, the depletion of Treg cells has been linked to a marked delay in tumor growth and development.
Collapse
Affiliation(s)
- Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
3
|
Sun J, Guo L, Ji D, Yu M, Cheng B, Zhu X, Yuan Y, Wu S, Zhang Y, Shi W, Chen Z, Chu X, Hu J, Hua L, Wang Y, Zhu Y, Mu Y, Sun H, Zhang C, Wang Q, Xiao S, Zhang L, Zhang B, Zhou D. Reshape the Fates of Treg and CD8+T Cells Through IL-2Rα by Synergizing Divergent Receptor-Biased IL-2 PEGylates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414931. [PMID: 40108893 PMCID: PMC12079483 DOI: 10.1002/advs.202414931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/10/2025] [Indexed: 03/22/2025]
Abstract
Clinical trials of receptor-biased interleukin-2 (IL-2) variants in cancer therapy show limited efficacy. To investigate, we re-evaluated divergent receptor-biased IL-2 PEGylates (generated via site-specific PEGylation at residues D20 (not-β) and Y45 (not-α)), alone or in combination. Results showed the not-α variant (Y45) activates regulatory T cells (Tregs) via βγ chain binding, overriding CD8+ T cells and impairing efficacy. Conversely, the not-β IL-2 (D20) is inert alone but spatially blocks Y45's βγ engagement, suppressing Treg activation. D20 also modulates activated CD8+ T cells by preferentially binding the α chain, disrupting Y45-mediated βγ signaling to prevent exhaustion and terminal differentiation. Synergy between these PEGylates highlights the α chain as a regulatory switch reshaping Treg, CD8+ T cell, and endothelial cell fates. In syngeneic tumor models, combined therapy enhanced CD8+ T cell infiltration, suppressed tumor growth, and reduced vascular leak syndrome risk. These findings propose combinatorial IL-2 strategies targeting α chain regulation to optimize antitumor responses.
Collapse
|
4
|
Schmidleithner L, Stüve P, Feuerer M. Transposable elements as instructors of the immune system. Nat Rev Immunol 2025:10.1038/s41577-025-01172-3. [PMID: 40301669 DOI: 10.1038/s41577-025-01172-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2025] [Indexed: 05/01/2025]
Abstract
Transposable elements (TEs) are mobile repetitive nucleic acid sequences that have been incorporated into the genome through spontaneous integration, accounting for almost 50% of human DNA. Even though most TEs are no longer mobile today, studies have demonstrated that they have important roles in different biological processes, such as ageing, embryonic development, and cancer. TEs influence these processes through various mechanisms, including active transposition of TEs contributing to ongoing evolution, transposon transcription generating RNA or protein, and by influencing gene regulation as enhancers. However, how TEs interact with the immune system remains a largely unexplored field. In this Perspective, we describe how TEs might influence different aspects of the immune system, such as innate immune responses, T cell activation and differentiation, and tissue adaptation. Furthermore, TEs can serve as a source of neoantigens for T cells in antitumour immunity. We suggest that TE biology is an important emerging field of immunology and discuss the potential to harness the TE network therapeutically, for example, to improve immunotherapies for cancer and autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
| | - Philipp Stüve
- Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Markus Feuerer
- Leibniz Institute for Immunotherapy, Regensburg, Germany.
- Chair for Immunology, University Regensburg, Regensburg, Germany.
| |
Collapse
|
5
|
Li Z, Si P, Meng T, Zhao X, Zhu C, Zhang D, Meng S, Li N, Liu R, Ni T, Yan J, Li H, Zhao N, Zhong C, Qin Y, Chen W, Chen ZJ, Jiao X. CCR8 + decidual regulatory T cells maintain maternal-fetal immune tolerance during early pregnancy. Sci Immunol 2025; 10:eado2463. [PMID: 40249828 DOI: 10.1126/sciimmunol.ado2463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 12/13/2024] [Accepted: 02/18/2025] [Indexed: 04/20/2025]
Abstract
Regulatory T (Treg) cells play a vital role in maintaining maternal immune tolerance to the semiallogeneic fetus during pregnancy. Treg cell population heterogeneity and tissue-specific functions in the human decidua remain largely unknown. Here, using single-cell transcriptomic and T cell receptor sequencing of human CD4+ T cells from first-trimester deciduae and matched peripheral blood of pregnant women, we identified a highly activated, immunosuppressive CCR8+ Treg cell subset specifically enriched in the decidua (dTreg cells). CCR8+ dTreg cells were decreased in patients with recurrent pregnancy loss (RPL) and an abortion-prone mouse model. Depletion of CCR8+ dTreg cells increased susceptibility to fetal loss, with altered decidual immune profiles. Adoptive transfer of CCR8+ Treg cells rescued fetal loss in abortion-prone mice. The CCR8 ligand CCL1 was mainly produced by decidual CD49a+ natural killer cells and was significantly decreased in patients with RPL. Our data demonstrate that CCR8+ dTreg cells are required to maintain maternal-fetal tolerance and highlight potential avenues for RPL therapies.
Collapse
Affiliation(s)
- Zhuqing Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Second Hospital, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
- Department of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Pinxin Si
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Second Hospital, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
| | - Tingting Meng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Second Hospital, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
| | - Xiaoran Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Second Hospital, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
| | - Chendi Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Second Hospital, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shutong Meng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Second Hospital, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
| | - Nianyu Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Second Hospital, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
| | - Ran Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Second Hospital, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
| | - Tianxiang Ni
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Second Hospital, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
| | - Junhao Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Second Hospital, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
| | - Hongchang Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Second Hospital, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
| | - Ning Zhao
- Analytical Biosciences Limited, Beijing 100191, China
| | - Chao Zhong
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-Related Diseases, Peking University, Beijing 100191, China
| | - Yingying Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Second Hospital, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
- Department of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - WanJun Chen
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Second Hospital, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Jiao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Second Hospital, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
| |
Collapse
|
6
|
Dikiy S, Ghelani AP, Levine AG, Martis S, Giovanelli P, Wang ZM, Beroshvili G, Pritykin Y, Krishna C, Huang X, Glasner A, Greenbaum BD, Leslie CS, Rudensky AY. Terminal differentiation and persistence of effector regulatory T cells essential for preventing intestinal inflammation. Nat Immunol 2025; 26:444-458. [PMID: 39905200 PMCID: PMC11876075 DOI: 10.1038/s41590-024-02075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/30/2024] [Indexed: 02/06/2025]
Abstract
Regulatory T (Treg) cells are a specialized CD4+ T cell lineage with essential anti-inflammatory functions. Analysis of Treg cell adaptations to non-lymphoid tissues that enable their specialized immunosuppressive and tissue-supportive functions raises questions about the underlying mechanisms of these adaptations and whether they represent stable differentiation or reversible activation states. Here, we characterize distinct colonic effector Treg cell transcriptional programs. Attenuated T cell receptor (TCR) signaling and acquisition of substantial TCR-independent functionality seems to facilitate the terminal differentiation of a population of colonic effector Treg cells that are distinguished by stable expression of the immunomodulatory cytokine IL-10. Functional studies show that this subset of effector Treg cells, but not their expression of IL-10, is indispensable for colonic health. These findings identify core features of the terminal differentiation of effector Treg cells in non-lymphoid tissues and their function.
Collapse
Affiliation(s)
- Stanislav Dikiy
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.
| | - Aazam P Ghelani
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Andrew G Levine
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen Martis
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paolo Giovanelli
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Zhong-Min Wang
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giorgi Beroshvili
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Yuri Pritykin
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Lewis-Sigler Institute for Integrative Genomics and Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Chirag Krishna
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiao Huang
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ariella Glasner
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin D Greenbaum
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christina S Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
7
|
Yakovenko I, Mihai IS, Selinger M, Rosenbaum W, Dernstedt A, Gröning R, Trygg J, Carroll L, Forsell M, Henriksson J. Telomemore enables single-cell analysis of cell cycle and chromatin condensation. Nucleic Acids Res 2025; 53:gkaf031. [PMID: 39878215 PMCID: PMC11775621 DOI: 10.1093/nar/gkaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/15/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
Single-cell RNA-seq methods can be used to delineate cell types and states at unprecedented resolution but do little to explain why certain genes are expressed. Single-cell ATAC-seq and multiome (ATAC + RNA) have emerged to give a complementary view of the cell state. It is however unclear what additional information can be extracted from ATAC-seq data besides transcription factor binding sites. Here, we show that ATAC-seq telomere-like reads counter-inituively cannot be used to infer telomere length, as they mostly originate from the subtelomere, but can be used as a biomarker for chromatin condensation. Using long-read sequencing, we further show that modern hyperactive Tn5 does not duplicate 9 bp of its target sequence, contrary to common belief. We provide a new tool, Telomemore, which can quantify nonaligning subtelomeric reads. By analyzing several public datasets and generating new multiome fibroblast and B-cell atlases, we show how this new readout can aid single-cell data interpretation. We show how drivers of condensation processes can be inferred, and how it complements common RNA-seq-based cell cycle inference, which fails for monocytes. Telomemore-based analysis of the condensation state is thus a valuable complement to the single-cell analysis toolbox.
Collapse
Affiliation(s)
- Iryna Yakovenko
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Universitetstorget 4, 901 87, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
| | - Ionut Sebastian Mihai
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Universitetstorget 4, 901 87, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
- Industrial Doctoral School, Umeå University, Umeå, Sweden
| | - Martin Selinger
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Universitetstorget 4, 901 87, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
- Department of Chemistry, Faculty of Science, University of South Bohemia, Ceske Budejovice 37005, Czech Republic
| | - William Rosenbaum
- Department of Molecular Biology, Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
| | - Andy Dernstedt
- Department of Clinical Microbiology, Umeå University, Biomedicinbyggnaden 6M, Umeå universitetssjukhus, 901 87, Umeå, Sweden
| | - Remigius Gröning
- Department of Clinical Microbiology, Umeå University, Biomedicinbyggnaden 6M, Umeå universitetssjukhus, 901 87, Umeå, Sweden
| | - Johan Trygg
- Department of Chemistry, Umeå University, Linnaeus väg 10, Umeå universitet, 901 87, Umeå, Sweden
- Sartorius Corporate Research, Östra Strandgatan 24, 903 33, Umeå, Sweden
| | - Laura Carroll
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Universitetstorget 4, 901 87, Umeå, Sweden
- Department of Clinical Microbiology, Umeå University, Biomedicinbyggnaden 6M, Umeå universitetssjukhus, 901 87, Umeå, Sweden
- Integrated Science Lab (IceLab), Umeå University, Naturvetarhuset, Universitetsvägen, 901 87, Umeå, Sweden
| | - Mattias Forsell
- Department of Clinical Microbiology, Umeå University, Biomedicinbyggnaden 6M, Umeå universitetssjukhus, 901 87, Umeå, Sweden
| | - Johan Henriksson
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Universitetstorget 4, 901 87, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
- Integrated Science Lab (IceLab), Umeå University, Naturvetarhuset, Universitetsvägen, 901 87, Umeå, Sweden
| |
Collapse
|
8
|
Elkins C, Ye C, Sivasami P, Mulpur R, Diaz-Saldana PP, Peng A, Xu M, Chiang YP, Moll S, Rivera-Rodriguez DE, Cervantes-Barragan L, Wu T, Au-Yeung BB, Scharer CD, Ford ML, Kissick H, Li C. Obesity reshapes regulatory T cells in the visceral adipose tissue by disrupting cellular cholesterol homeostasis. Sci Immunol 2025; 10:eadl4909. [PMID: 39792637 PMCID: PMC11786953 DOI: 10.1126/sciimmunol.adl4909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 09/08/2024] [Accepted: 11/22/2024] [Indexed: 01/12/2025]
Abstract
Regulatory T cells (Tregs) accumulate in the visceral adipose tissue (VAT) to maintain systemic metabolic homeostasis but decline during obesity. Here, we explored the metabolic pathways controlling the homeostasis, composition, and function of VAT Tregs under normal and high-fat diet feeding conditions. We found that cholesterol metabolism was specifically up-regulated in ST2hi VAT Treg subsets. Treg-specific deletion of Srebf2, the master regulator of cholesterol homeostasis, selectively reduced ST2hi VAT Tregs, increasing VAT inflammation and insulin resistance. Single-cell RNA/T cell receptor (TCR) sequencing revealed a specific loss and reduced clonal expansion of ST2hi VAT Treg subsets after Srebf2 deletion. Srebf2-mediated cholesterol homeostasis potentiated strong TCR signaling, which preferentially promoted ST2hi VAT Treg accumulation. However, long-term high-fat diet feeding disrupted VAT Treg cholesterol homeostasis and impaired clonal expansion of the ST2hi subset. Restoring Treg cholesterol homeostasis rescued VAT Treg accumulation in obese mice, suggesting that modulation of cholesterol homeostasis could be a promising strategy for Treg-targeted therapies in obesity-associated metabolic diseases.
Collapse
Affiliation(s)
- Cody Elkins
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Chengyu Ye
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Pulavendran Sivasami
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Roy Mulpur
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Pamela P. Diaz-Saldana
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Amy Peng
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Miaoer Xu
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yeun-po Chiang
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Samara Moll
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Dormarie E. Rivera-Rodriguez
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Luisa Cervantes-Barragan
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Tuoqi Wu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Byron B. Au-Yeung
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher D. Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mandy L. Ford
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Haydn Kissick
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Chaoran Li
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
9
|
Stankiewicz LN, Salim K, Flaschner EA, Wang YX, Edgar JM, Durland LJ, Lin BZB, Bingham GC, Major MC, Jones RD, Blau HM, Rideout EJ, Levings MK, Zandstra PW, Rossi FMV. Sex-biased human thymic architecture guides T cell development through spatially defined niches. Dev Cell 2025; 60:152-169.e8. [PMID: 39383865 DOI: 10.1016/j.devcel.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/11/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024]
Abstract
Within the thymus, regulation of the cellular crosstalk directing T cell development depends on spatial interactions within specialized niches. To create a spatially defined map of tissue niches guiding human postnatal T cell development, we employed the multidimensional imaging platform co-detection by indexing (CODEX) as well as cellular indexing of transcriptomes and epitopes sequencing (CITE-seq) and assay for transposase accessible chromatin sequencing (ATAC-seq). We generated age-matched 4- to 5-month-old human postnatal thymus datasets for male and female donors, identifying significant sex differences in both T cell and thymus biology. We demonstrate a possible role for JAG ligands in directing thymic-like dendritic cell development, identify important functions of a population of extracellular matrix (ECM)- fibroblasts, and characterize the medullary niches surrounding Hassall's corpuscles. Together, these data represent an age-matched spatial multiomic resource to investigate how sex-based differences in thymus regulation and T cell development arise, providing an essential resource to understand the mechanisms underlying immune function and dysfunction in males and females.
Collapse
Affiliation(s)
- Laura N Stankiewicz
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 2B9, Canada
| | - Kevin Salim
- Department of Surgery, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada; BC Children's Hospital Research Institute, 938 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Emily A Flaschner
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 2B9, Canada
| | - Yu Xin Wang
- Center for Genetic Disorders and Aging, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - John M Edgar
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 2B9, Canada
| | - Lauren J Durland
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 2B9, Canada
| | - Bruce Z B Lin
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 2B9, Canada
| | - Grace C Bingham
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Matthew C Major
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 2B9, Canada
| | - Ross D Jones
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 2B9, Canada
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA
| | - Elizabeth J Rideout
- Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Megan K Levings
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 2B9, Canada; Department of Surgery, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada; BC Children's Hospital Research Institute, 938 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Peter W Zandstra
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Fabio M V Rossi
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 2B9, Canada; Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 2A1, Canada.
| |
Collapse
|
10
|
Xie D, Lu G, Mai G, Guo Q, Xu G. Tissue-resident memory T cells in diseases and therapeutic strategies. MedComm (Beijing) 2025; 6:e70053. [PMID: 39802636 PMCID: PMC11725047 DOI: 10.1002/mco2.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Tissue-resident memory T (TRM) cells are crucial components of the immune system that provide rapid, localized responses to recurrent pathogens at mucosal and epithelial barriers. Unlike circulating memory T cells, TRM cells are located within peripheral tissues, and they play vital roles in antiviral, antibacterial, and antitumor immunity. Their unique retention and activation mechanisms, including interactions with local epithelial cells and the expression of adhesion molecules, enable their persistence and immediate functionality in diverse tissues. Recent advances have revealed their important roles in chronic inflammation, autoimmunity, and cancer, illuminating both their protective and their pathogenic potential. This review synthesizes current knowledge on TRM cells' molecular signatures, maintenance pathways, and functional dynamics across different tissues. We also explore the interactions of TRM cells with other immune cells, such as B cells, macrophages, and dendritic cells, highlighting the complex network that underpins the efficacy of TRM cells in immune surveillance and response. Understanding the nuanced regulation of TRM cells is essential for developing targeted therapeutic strategies, including vaccines and immunotherapies, to enhance their protective roles while mitigating adverse effects. Insights into TRM cells' biology hold promise for innovative treatments for infectious diseases, cancer, and autoimmune conditions.
Collapse
Affiliation(s)
- Daoyuan Xie
- Laboratory of Translational Medicine ResearchDeyang People's Hospital of Chengdu University of Traditional Chinese MedicineDeyangChina
| | - Guanting Lu
- Laboratory of Translational Medicine ResearchDeyang People's Hospital of Chengdu University of Traditional Chinese MedicineDeyangChina
| | - Gang Mai
- Laboratory of Translational Medicine ResearchDeyang People's Hospital of Chengdu University of Traditional Chinese MedicineDeyangChina
| | - Qiuyan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaAcademy of Chinese Medical SciencesBeijingChina
| | - Guofeng Xu
- Inflammation & Allergic Diseases Research UnitThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
11
|
Zhang A, Fan T, Liu Y, Yu G, Li C, Jiang Z. Regulatory T cells in immune checkpoint blockade antitumor therapy. Mol Cancer 2024; 23:251. [PMID: 39516941 PMCID: PMC11545879 DOI: 10.1186/s12943-024-02156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Regulatory T cells (Tregs), an essential component of the human immune system, are a heterogeneous group of T lymphocytes with the ability to suppress immune responses and maintain immune homeostasis. Recent evidence indicates that Tregs may impair antitumor immunity and facilitate cancer progression by weakening functions of effector T cells (Teffs). Consequently, targeting Tregs to eliminate them from tumor microenvironments to improve Teffs' activity could emerge as an effective strategy for cancer immunotherapy. This review outlines the biology of Tregs, detailing their origins, classification, and crucial markers. Our focus lies on the complex role of Tregs in cancer's development, progression and treatment, particularly on their suppressive role upon antitumor responses via multiple mechanisms. We delve into Tregs' involvement in immune checkpoint blockade (ICB) therapy, their dual effect on cancer immunotherapy and their potential biomarkers for ICB therapy effectiveness. We also summarize advances in the therapies that adjust Tregs to optimize ICB therapy, which may be crucial for devising innovative cancer treatment strategies.
Collapse
Affiliation(s)
- An Zhang
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yixiao Liu
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Guanhua Yu
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zheng Jiang
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
12
|
Chen R, Zhang X, Li B, Tonetti MS, Yang Y, Li Y, Liu B, Qian S, Gu Y, Wang Q, Mao K, Cheng H, Lai H, Shi J. Progranulin-dependent repair function of regulatory T cells drives bone-fracture healing. J Clin Invest 2024; 135:e180679. [PMID: 39509336 PMCID: PMC11735098 DOI: 10.1172/jci180679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Local immunoinflammatory events instruct skeletal stem cells (SSCs) to repair/regenerate bone after injury, but mechanisms are incompletely understood. We hypothesized that specialized Tregs are necessary for bone repair and interact directly with SSCs through organ-specific messages. Both in human patients with bone fracture and a mouse model of bone injury, we identified a bone injury-responding Treg subpopulation with bone-repair capacity marked by CCR8. Local production of CCL1 induced a massive migration of CCR8+ Tregs from periphery to the injury site. Depending on secretion of progranulin (PGRN), a protein encoded by the granulin (Grn) gene, CCR8+ Tregs supported the accumulation and osteogenic differentiation of SSCs and thereby bone repair. Mechanistically, we revealed that CCL1 enhanced expression levels of basic leucine zipper ATF-like transcription factor (BATF) in CCR8+ Tregs, which bound to the Grn promoter and increased Grn translational output and then PGRN secretion. Together, our work provides a new perspective in osteoimmunology and highlights possible ways of manipulating Treg signaling to enhance bone repair and regeneration.
Collapse
Affiliation(s)
- Ruiying Chen
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xiaomeng Zhang
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Integrated TCM & Western Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
- Department of Oncology, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Maurizio S. Tonetti
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yijie Yang
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yuan Li
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Beilei Liu
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shujiao Qian
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yingxin Gu
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qingwen Wang
- Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Shenzhen, Guangdong, China
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Guangdong, China
| | - Kairui Mao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hao Cheng
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Guangdong, China
- Center for Cancer Immunology Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Hongchang Lai
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Junyu Shi
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
13
|
Santiago-Carvalho I, Ishikawa M, Borges da Silva H. Channel plan: control of adaptive immune responses by pannexins. Trends Immunol 2024; 45:892-902. [PMID: 39393945 PMCID: PMC11560585 DOI: 10.1016/j.it.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024]
Abstract
The development of mammalian adaptive (i.e., B and T cell-mediated) immune responses is tightly controlled at transcriptional, epigenetic, and metabolic levels. Signals derived from the extracellular milieu are crucial regulators of adaptive immunity. Beyond the traditionally studied cytokines and chemokines, many other extracellular metabolites can bind to specialized receptors and regulate T and B cell immune responses. These molecules often accumulate extracellularly through active export by plasma membrane transporters. For example, mammalian immune and non-immune cells express pannexin (PANX)1-3 channels on the plasma membrane, which release many distinct small molecules, notably intracellular ATP. Here, we review novel findings defining PANXs as crucial regulators of T and B cell immune responses in disease contexts such as cancer or viral infections.
Collapse
Affiliation(s)
| | - Masaki Ishikawa
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
14
|
Qi Q, Pang J, Chen Y, Tang Y, Wang H, Gul S, Sun Y, Tang W, Sheng M. Targeted Drug Screening Leveraging Senescence-Induced T-Cell Exhaustion Signatures in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:11232. [PMID: 39457014 PMCID: PMC11508728 DOI: 10.3390/ijms252011232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most prevalent cancer and a leading cause of cancer-related mortality globally, with most patients diagnosed at advanced stages and facing limited early treatment options. This study aimed to identify characteristic genes associated with T-cell exhaustion due to senescence in hepatocellular carcinoma patients, elucidating the interplay between senescence and T-cell exhaustion. We constructed prognostic models based on five signature genes (ENO1, STMN1, PRDX1, RAN, and RANBP1) linked to T-cell exhaustion, utilizing elastic net regression. The findings indicate that increased expression of ENO1 in T cells may contribute to T-cell exhaustion and Treg infiltration in hepatocellular carcinoma. Furthermore, molecular docking was employed to screen small molecule compounds that target the anti-tumor effects of these exhaustion-related genes. This study provides crucial insights into the diagnosis and treatment of hepatocellular carcinoma, establishing a strong foundation for the development of predictive biomarkers and therapeutic targets for affected patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenru Tang
- Laboratory of Molecular Genetics of Aging & Tumor, Medicine School, Kunming University of Science and Technology, Kunming 650500, China; (Q.Q.); (J.P.); (Y.C.); (Y.T.); (H.W.); (S.G.); (Y.S.)
| | - Miaomiao Sheng
- Laboratory of Molecular Genetics of Aging & Tumor, Medicine School, Kunming University of Science and Technology, Kunming 650500, China; (Q.Q.); (J.P.); (Y.C.); (Y.T.); (H.W.); (S.G.); (Y.S.)
| |
Collapse
|
15
|
Aki D, Hayakawa T, Srirat T, Shichino S, Ito M, Saitoh SI, Mise-Omata S, Yoshimura A. The Nr4a family regulates intrahepatic Treg proliferation and liver fibrosis in MASLD models. J Clin Invest 2024; 134:e175305. [PMID: 39405120 PMCID: PMC11601941 DOI: 10.1172/jci175305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/01/2024] [Indexed: 11/29/2024] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a chronic progressive liver disease and highly prevalent worldwide. NASH is characterized by hepatic steatosis, inflammation, fibrosis and liver damage, which eventually results in liver dysfunction due to cirrhosis or hepatocellular carcinoma. However, the cellular and molecular mechanisms underlying NASH progression remain largely unknown. Here, we found an increase of Nr4a family of orphan nuclear receptors expression in intrahepatic T cells from mice with diet-induced NASH. Loss of Nr4a1 and Nr4a2 in T cell (dKO) ameliorated liver cell death and fibrosis, thereby mitigating liver dysfunction in NASH mice. dKO resulted in reduction of infiltrated macrophages and Th1/Th17 cells, whereas massive accumulation of T regulatory (Treg) cells in the liver of NASH mice. Combined single-cell RNA transcriptomic and TCR sequencing analysis revealed that intrahepatic dKO Tregs exhibited enhanced TIGIT and IL10 expression and were clonally expanded during NASH progression. Mechanistically, we found that dKO Tregs expressed high levels of Batf which promotes Treg cell proliferation and function upon TCR stimulation. Collectively, our findings not only provide an insight into the impact of intrahepatic Treg cells on NASH pathogenesis, but also suggest a therapeutic potential of targeting of Nr4a family to treat the disease.
Collapse
Affiliation(s)
- Daisuke Aki
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- Department of Intractable Disorders, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Taeko Hayakawa
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Tanakorn Srirat
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Minako Ito
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shin-Ichiroh Saitoh
- Department of Intractable Disorders, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Setsuko Mise-Omata
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Chiba, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
16
|
Loffredo LF, Kaiser KA, Kornberg A, Rao S, de Los Santos-Alexis K, Han A, Arpaia N. An amphiregulin reporter mouse enables transcriptional and clonal expansion analysis of reparative lung Treg cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615245. [PMID: 39386607 PMCID: PMC11463663 DOI: 10.1101/2024.09.26.615245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Regulatory T (Treg) cells are known to play critical roles in tissue repair via provision of growth factors such as amphiregulin (Areg). Areg-producing Treg cells have previously been difficult to study because of an inability to isolate live Areg-producing cells. In this report, we created a novel reporter mouse to detect Areg expression in live cells ( Areg Thy1.1 ). We employed influenza A and bleomycin models of lung damage to sort Areg-producing and -non-producing Treg cells for transcriptomic analyses. Single cell RNA-seq revealed distinct subpopulations of Treg cells and allowed transcriptomic comparisons of damage-induced populations. Single cell TCR sequencing showed that Treg cell clonal expansion is biased towards Areg-producing Treg cells, and largely occurs within damage-induced subgroups. Gene module analysis revealed functional divergence of Treg cells into immunosuppression-oriented and tissue repair-oriented groups, leading to identification of candidate receptors for induction of repair activity in Treg cells. We tested these using an ex vivo assay for Treg cell-mediated tissue repair, identifying 4-1BB agonism as a novel mechanism for reparative activity induction. Overall, we demonstrate that the Areg Thy1.1 mouse is a promising tool for investigating tissue repair activity in leukocytes.
Collapse
|
17
|
de Kivit S, Mensink M, Kostidis S, Derks RJE, Zaal EA, Heijink M, Verleng LJ, de Vries E, Schrama E, Blomberg N, Berkers CR, Giera M, Borst J. Immune suppression by human thymus-derived effector Tregs relies on glucose/lactate-fueled fatty acid synthesis. Cell Rep 2024; 43:114681. [PMID: 39180751 DOI: 10.1016/j.celrep.2024.114681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/10/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
Regulatory T cells (Tregs) suppress pro-inflammatory conventional T cell (Tconv) responses. As lipids impact cell signaling and function, we compare the lipid composition of CD4+ thymus-derived (t)Tregs and Tconvs. Lipidomics reveal constitutive enrichment of neutral lipids in Tconvs and phospholipids in tTregs. TNFR2-co-stimulated effector tTregs and Tconvs are both glycolytic, but only in tTregs are glycolysis and the tricarboxylic acid (TCA) cycle linked to a boost in fatty acid (FA) synthesis (FAS), supported by relevant gene expression. FA chains in tTregs are longer and more unsaturated than in Tconvs. In contrast to Tconvs, tTregs effectively use either lactate or glucose for FAS and rely on this process for proliferation. FASN and SCD1, enzymes responsible for FAS and FA desaturation, prove essential for the ability of tTregs to suppress Tconvs. These data illuminate how effector tTregs can thrive in inflamed or cancerous tissues with limiting glucose but abundant lactate levels.
Collapse
Affiliation(s)
- Sander de Kivit
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.
| | - Mark Mensink
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Rico J E Derks
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Esther A Zaal
- Division of Cell Biology, Metabolism, and Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Marieke Heijink
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Lotte J Verleng
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Evert de Vries
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Ellen Schrama
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Niek Blomberg
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Celia R Berkers
- Division of Cell Biology, Metabolism, and Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Jannie Borst
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.
| |
Collapse
|
18
|
Chowdhary K, Léon J, Mathis D, Benoist C. An integrated transcription factor framework for Treg identity and diversity. Proc Natl Acad Sci U S A 2024; 121:e2411301121. [PMID: 39196621 PMCID: PMC11388289 DOI: 10.1073/pnas.2411301121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
Vertebrate cell identity depends on the combined activity of scores of transcription factors (TF). While TFs have often been studied in isolation, a systematic perspective on their integration has been missing. Focusing on FoxP3+ regulatory T cells (Tregs), key guardians of immune tolerance, we combined single-cell chromatin accessibility, machine learning, and high-density genetic variation, to resolve a validated framework of diverse Treg chromatin programs, each shaped by multi-TF inputs. This framework identified previously unrecognized Treg controllers (Smarcc1) and illuminated the mechanism of action of FoxP3, which amplified a pre-existing Treg identity, diversely activating or repressing distinct programs, dependent on different regulatory partners. Treg subpopulations in the colon relied variably on FoxP3, Helios+ Tregs being completely dependent, but RORγ+ Tregs largely independent. These differences were rooted in intrinsic biases decoded by the integrated framework. Moving beyond master regulators, this work unravels how overlapping TF activities coalesce into Treg identity and diversity.
Collapse
Affiliation(s)
| | - Juliette Léon
- Department of Immunology, Harvard Medical School, Boston, MA 02115
- INSERM UMR 1163, Imagine Institute, University of Paris, Paris, France 75015
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
19
|
He M, Zong X, Xu B, Qi W, Huang W, Djekidel MN, Zhang Y, Pagala VR, Li J, Hao X, Guy C, Bai L, Cross R, Li C, Peng J, Feng Y. Dynamic Foxp3-chromatin interaction controls tunable Treg cell function. J Exp Med 2024; 221:e20232068. [PMID: 38935023 PMCID: PMC11211070 DOI: 10.1084/jem.20232068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/11/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Nuclear factor Foxp3 determines regulatory T (Treg) cell fate and function via mechanisms that remain unclear. Here, we investigate the nature of Foxp3-mediated gene regulation in suppressing autoimmunity and antitumor immune response. Contrasting with previous models, we find that Foxp3-chromatin binding is regulated by Treg activation states, tumor microenvironment, and antigen and cytokine stimulations. Proteomics studies uncover dynamic proteins within Foxp3 proximity upon TCR or IL-2 receptor signaling in vitro, reflecting intricate interactions among Foxp3, signal transducers, and chromatin. Pharmacological inhibition and genetic knockdown experiments indicate that NFAT and AP-1 protein Batf are required for enhanced Foxp3-chromatin binding in activated Treg cells and tumor-infiltrating Treg cells to modulate target gene expression. Furthermore, mutations at the Foxp3 DNA-binding domain destabilize the Foxp3-chromatin association. These representative settings delineate context-dependent Foxp3-chromatin interaction, suggesting that Foxp3 associates with chromatin by hijacking DNA-binding proteins resulting from Treg activation or differentiation, which is stabilized by direct Foxp3-DNA binding, to dynamically regulate Treg cell function according to immunological contexts.
Collapse
Affiliation(s)
- Minghong He
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Xinying Zong
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Wenjie Qi
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Wenjun Huang
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | - Yang Zhang
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Vishwajeeth R. Pagala
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jun Li
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Xiaolei Hao
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Clifford Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Lu Bai
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Richard Cross
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Junmin Peng
- Department of Structure Biology and Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yongqiang Feng
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
20
|
Simon M, Stüve P, Schmidleithner L, Bittner S, Beumer N, Strieder N, Schmidl C, Pant A, Gebhard C, Eigenberger A, Rehli M, Prantl L, Hehlgans T, Brors B, Imbusch CD, Delacher M, Feuerer M. Single-cell chromatin accessibility and transposable element landscapes reveal shared features of tissue-residing immune cells. Immunity 2024; 57:1975-1993.e10. [PMID: 39047731 DOI: 10.1016/j.immuni.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/12/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Tissue adaptation is required for regulatory T (Treg) cell function within organs. Whether this program shares aspects with other tissue-localized immune populations is unclear. Here, we analyzed single-cell chromatin accessibility data, including the transposable element (TE) landscape of CD45+ immune cells from colon, skin, adipose tissue, and spleen. We identified features of organ-specific tissue adaptation across different immune cells. Focusing on tissue Treg cells, we found conservation of the Treg tissue adaptation program in other tissue-localized immune cells, such as amphiregulin-producing T helper (Th)17 cells. Accessible TEs can act as regulatory elements, but their contribution to tissue adaptation is not understood. TE landscape analysis revealed an enrichment of specific transcription factor binding motifs in TE regions within accessible chromatin peaks. TEs, specifically from the LTR family, were located in enhancer regions and associated with tissue adaptation. These findings broaden our understanding of immune tissue residency and provide an important step toward organ-specific immune interventions.
Collapse
Affiliation(s)
- Malte Simon
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany; Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Philipp Stüve
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Lisa Schmidleithner
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Sebastian Bittner
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Niklas Beumer
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany; DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, 68167 Mannheim, Germany; Division of Personalized Medical Oncology, DKFZ, 69120 Heidelberg, Germany; Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | | | | | - Asmita Pant
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Claudia Gebhard
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany
| | - Andreas Eigenberger
- Department of Plastic, Hand, and Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Michael Rehli
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic, Hand, and Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Thomas Hehlgans
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany; Medical Faculty Heidelberg and Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Charles D Imbusch
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael Delacher
- Institute of Immunology, University Medical Center Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy, University Medical Center Mainz, 55131 Mainz, Germany
| | - Markus Feuerer
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Chair for Immunology, University Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
21
|
You Y, Wu X, Yuan H, He Y, Chen Y, Wang S, Min H, Chen J, Li C. Crystalline silica-induced recruitment and immuno-imbalance of CD4 + tissue resident memory T cells promote silicosis progression. Commun Biol 2024; 7:971. [PMID: 39122899 PMCID: PMC11316055 DOI: 10.1038/s42003-024-06662-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Occupational crystalline silica (CS) particle exposure leads to silicosis. The burden of CS-associated disease remains high, and treatment options are limited due to vague mechanisms. Here we show that pulmonary CD4+ tissue-resident memory T cells (TRM) accumulate in response to CS particles, mediating the pathogenesis of silicosis. The TRM cells are derived from peripheral lymphocyte recruitment and in situ expansion. Specifically, CD69+CD103+ TRM-Tregs depend more on circulating T cell replenishment. CD69 and CD103 can divide the TRM cells into functionally distinct subsets, mirroring the immuno-balance within CD4+ TRM cells. However, targeting CD103+ TRM-Tregs do not mitigate disease phenotype since the TRM subsets exert immunosuppressive but not pro-fibrotic roles. After identifying pathogenic CD69+CD103- subsets, we highlight IL-7 for their maintenance and function, that present a promising avenue for mitigating silicosis. Together, our findings highlight the distinct role of CD4+ TRM cells in mediating CS-induced fibrosis and provide potential therapeutic strategies.
Collapse
Affiliation(s)
- Yichuan You
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
| | - Xiulin Wu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
| | - Haoyang Yuan
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
| | - Yangyang He
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
| | - Yinghui Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
| | - Sisi Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
| | - Jie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China.
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China.
| | - Chao Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China.
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China.
| |
Collapse
|
22
|
Liang C, Spoerl S, Xiao Y, Habenicht KM, Haeusl SS, Sandner I, Winkler J, Strieder N, Eder R, Stanewsky H, Alexiou C, Dudziak D, Rosenwald A, Edinger M, Rehli M, Hoffmann P, Winkler TH, Berberich-Siebelt F. Oligoclonal CD4 +CXCR5 + T cells with a cytotoxic phenotype appear in tonsils and blood. Commun Biol 2024; 7:879. [PMID: 39025930 PMCID: PMC11258247 DOI: 10.1038/s42003-024-06563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
In clinical situations, peripheral blood accessible CD3+CD4+CXCR5+ T-follicular helper (TFH) cells may have to serve as a surrogate indicator for dysregulated germinal center responses in tissues. To determine the heterogeneity of TFH cells in peripheral blood versus tonsils, CD3+CD4+CD45RA-CXCR5+ cells of both origins were sorted. Transcriptomes, TCR repertoires and cell-surface protein expression were analysed by single-cell RNA sequencing, flow cytometry and immunohistochemistry. Reassuringly, all blood-circulating CD3+CD4+CXCR5+ T-cell subpopulations also appear in tonsils, there with some supplementary TFH characteristics, while peripheral blood-derived TFH cells display markers of proliferation and migration. Three further subsets of TFH cells, however, with bona fide T-follicular gene expression patterns, are exclusively found in tonsils. One additional, distinct and oligoclonal CD4+CXCR5+ subpopulation presents pronounced cytotoxic properties. Those 'killer TFH (TFK) cells' can be discovered in peripheral blood as well as among tonsillar cells but are located predominantly outside of germinal centers. They appear terminally differentiated and can be distinguished from all other TFH subsets by expression of NKG7 (TIA-1), granzymes, perforin, CCL5, CCR5, EOMES, CRTAM and CX3CR1. All in all, this study provides data for detailed CD4+CXCR5+ T-cell assessment of clinically available blood samples and extrapolation possibilities to their tonsil counterparts.
Collapse
Affiliation(s)
- Chunguang Liang
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Silvia Spoerl
- Department of Internal Medicine 5, Hematology/Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Yin Xiao
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Katharina M Habenicht
- Division of Genetics, Department Biology, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sigrun S Haeusl
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Isabel Sandner
- Department of Internal Medicine 5, Hematology/Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Julia Winkler
- Department of Internal Medicine 5, Hematology/Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | | | - Rüdiger Eder
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | | | - Christoph Alexiou
- Department of Otorhinolaryngology, Head & Neck Surgery, Else Kröner-Fresenius-Foundation-Professorship, Section of Experimental Oncology & Nanomedicine (SEON), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Comprehensive Cancer Centre Mainfranken, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Matthias Edinger
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Michael Rehli
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Petra Hoffmann
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Thomas H Winkler
- Division of Genetics, Department Biology, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
23
|
Xu F, Wei Z, Ye X. Immunomodulatory effects of microwave ablation on malignant tumors. Am J Cancer Res 2024; 14:2714-2730. [PMID: 39005685 PMCID: PMC11236778 DOI: 10.62347/qjid8425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/04/2024] [Indexed: 07/16/2024] Open
Abstract
Image-guided thermal ablation (IGTA) is an important treatment modality for interventional oncology. It is widely used for the treatment of solid tumors, such as liver, lung, breast, kidney, and thyroid cancers. IGTA include radiofrequency ablation, microwave ablation (MWA), cryoablation, and laser ablation. Compared with other energy sources, MWA has the advantage of a large ablative volume, short ablative time, and a low heat sink effect. MWA can also induce antitumor immunity; however, only a minority of patients derive a clinical benefit from it. Based on these data, the combination of MWA and immunotherapy has emerged as a promising new direction for cancer treatment. This review article focuses on current research on the combination of MWA and immunotherapy. The status of immune activation and related studies involving MWA for the treatment of various malignant tumors are discussed.
Collapse
Affiliation(s)
- Fengkuo Xu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer InstituteJinan 250014, Shandong, China
| | - Zhigang Wei
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer InstituteJinan 250014, Shandong, China
- Cheeloo College of Medicine, Shandong UniversityJinan 250033, Shandong, China
| | - Xin Ye
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer InstituteJinan 250014, Shandong, China
| |
Collapse
|
24
|
Wang G, Muñoz-Rojas AR, Spallanzani RG, Franklin RA, Benoist C, Mathis D. Adipose-tissue Treg cells restrain differentiation of stromal adipocyte precursors to promote insulin sensitivity and metabolic homeostasis. Immunity 2024; 57:1345-1359.e5. [PMID: 38692280 PMCID: PMC11188921 DOI: 10.1016/j.immuni.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/08/2024] [Accepted: 04/04/2024] [Indexed: 05/03/2024]
Abstract
Regulatory T (Treg) cells in epidydimal visceral adipose tissue (eVAT) of lean mice and humans regulate metabolic homeostasis. We found that constitutive or punctual depletion of eVAT-Treg cells reined in the differentiation of stromal adipocyte precursors. Co-culture of these precursors with conditional medium from eVAT-Treg cells limited their differentiation in vitro, suggesting a direct effect. Transcriptional comparison of adipocyte precursors, matured in the presence or absence of the eVAT-Treg-conditioned medium, identified the oncostatin-M (OSM) signaling pathway as a key distinction. Addition of OSM to in vitro cultures blocked the differentiation of adipocyte precursors, while co-addition of anti-OSM antibodies reversed the ability of the eVAT-Treg-conditioned medium to inhibit in vitro adipogenesis. Genetic depletion of OSM (specifically in Treg) cells or of the OSM receptor (specifically on stromal cells) strongly impaired insulin sensitivity and related metabolic indices. Thus, Treg-cell-mediated control of local progenitor cells maintains adipose tissue and metabolic homeostasis, a regulatory axis seemingly conserved in humans.
Collapse
Affiliation(s)
- Gang Wang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | | | | - Ruth A Franklin
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | | | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Watanabe M, Matsui A, Awata N, Nagafuchi A, Kawazoe M, Harada Y, Ito M. Differences in the characteristics and functions of brain and spinal cord regulatory T cells. J Neuroinflammation 2024; 21:146. [PMID: 38824594 PMCID: PMC11143704 DOI: 10.1186/s12974-024-03144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024] Open
Abstract
T cells play an important role in the acquired immune response, with regulatory T cells (Tregs) serving as key players in immune tolerance. Tregs are found in nonlymphoid and damaged tissues and are referred to as "tissue Tregs". They have tissue-specific characteristics and contribute to immunomodulation, homeostasis, and tissue repair through interactions with tissue cells. However, important determinants of Treg tissue specificity, such as antigen specificity, tissue environment, and pathology, remain unclear. In this study, we analyzed Tregs in the central nervous system of mice with ischemic stroke and experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. The gene expression pattern of brain Tregs in the EAE model was more similar to that of ischemic stroke Tregs in the brain than to that of spinal cord Tregs. In addition, most T-cell receptors (TCRs) with high clonality were present in both the brain and spinal cord. Furthermore, Gata3+ and Rorc+ Tregs expressed TCRs recognizing MOG in the spinal cord, suggesting a tissue environment conducive to Rorc expression. Tissue-specific chemokine/chemokine receptor interactions in the spinal cord and brain influenced Treg localization. Finally, spinal cord- or brain-derived Tregs had greater anti-inflammatory capacities in EAE mice, respectively. Taken together, these findings suggest that the tissue environment, rather than pathogenesis or antigen specificity, is the primary determinant of the tissue-specific properties of Tregs. These findings may contribute to the development of novel therapies to suppress inflammation through tissue-specific Treg regulation.
Collapse
Affiliation(s)
- Mahiro Watanabe
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Ako Matsui
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Natsumi Awata
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Ayame Nagafuchi
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Mio Kawazoe
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yoshihiro Harada
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Minako Ito
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
26
|
Bonnin E, Rodrigo Riestra M, Marziali F, Mena Osuna R, Denizeau J, Maurin M, Saez JJ, Jouve M, Bonté PE, Richer W, Nevo F, Lemoine S, Girard N, Lefevre M, Borcoman E, Vincent-Salomon A, Baulande S, Moreau HD, Sedlik C, Hivroz C, Lennon-Duménil AM, Tosello Boari J, Piaggio E. CD74 supports accumulation and function of regulatory T cells in tumors. Nat Commun 2024; 15:3749. [PMID: 38702311 PMCID: PMC11068745 DOI: 10.1038/s41467-024-47981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
Regulatory T cells (Tregs) are plastic cells playing a pivotal role in the maintenance of immune homeostasis. Tregs actively adapt to the microenvironment where they reside; as a consequence, their molecular and functional profiles differ among tissues and pathologies. In tumors, the features acquired by Tregs remains poorly characterized. Here, we observe that human tumor-infiltrating Tregs selectively overexpress CD74, the MHC class II invariant chain. CD74 has been previously described as a regulator of antigen-presenting cell biology, however its function in Tregs remains unknown. CD74 genetic deletion in human primary Tregs reveals that CD74KO Tregs exhibit major defects in the organization of their actin cytoskeleton and intracellular organelles. Additionally, intratumoral CD74KO Tregs show a decreased activation, a drop in Foxp3 expression, a low accumulation in the tumor, and consistently, they are associated with accelerated tumor rejection in preclinical models in female mice. These observations are unique to tumor conditions as, at steady state, CD74KO-Treg phenotype, survival, and suppressive capacity are unaffected in vitro and in vivo. CD74 therefore emerges as a specific regulator of tumor-infiltrating Tregs and as a target to interfere with Treg anti-tumor activity.
Collapse
MESH Headings
- T-Lymphocytes, Regulatory/immunology
- Animals
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/immunology
- Histocompatibility Antigens Class II/metabolism
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/genetics
- Humans
- Female
- Mice
- Forkhead Transcription Factors/metabolism
- Forkhead Transcription Factors/genetics
- Tumor Microenvironment/immunology
- Neoplasms/immunology
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
Collapse
Affiliation(s)
- Elisa Bonnin
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Maria Rodrigo Riestra
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Federico Marziali
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Rafael Mena Osuna
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Jordan Denizeau
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Mathieu Maurin
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
| | - Juan Jose Saez
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
| | - Mabel Jouve
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
| | - Pierre-Emmanuel Bonté
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
| | - Wilfrid Richer
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | | | | | - Nicolas Girard
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Paris Saclay University, UVSQ, Versailles, France
- Institut du Thorax Curie Montsouris, Institut Curie, Paris, France
| | - Marine Lefevre
- Pathology Department, Institut Mutualiste Montsouris, Paris, France
| | - Edith Borcoman
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - Anne Vincent-Salomon
- Institut du Thorax Curie Montsouris, Institut Curie, Paris, France
- Diagnostic and Theranostic Medicine Division, Institut Curie, PSL Research University, Paris, France
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, PSL Research University, Institut Curie Research Center, Paris, France
| | - Helene D Moreau
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
| | - Christine Sedlik
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Claire Hivroz
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
| | | | - Jimena Tosello Boari
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France.
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France.
| | - Eliane Piaggio
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France.
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France.
- Egle Therapeutics, Paris, France.
| |
Collapse
|
27
|
Ma J, Wu Y, Ma L, Yang X, Zhang T, Song G, Li T, Gao K, Shen X, Lin J, Chen Y, Liu X, Fu Y, Gu X, Chen Z, Jiang S, Rao D, Pan J, Zhang S, Zhou J, Huang C, Shi S, Fan J, Guo G, Zhang X, Gao Q. A blueprint for tumor-infiltrating B cells across human cancers. Science 2024; 384:eadj4857. [PMID: 38696569 DOI: 10.1126/science.adj4857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 03/06/2024] [Indexed: 05/04/2024]
Abstract
B lymphocytes are essential mediators of humoral immunity and play multiple roles in human cancer. To decode the functions of tumor-infiltrating B cells, we generated a B cell blueprint encompassing single-cell transcriptome, B cell-receptor repertoire, and chromatin accessibility data across 20 different cancer types (477 samples, 269 patients). B cells harbored extraordinary heterogeneity and comprised 15 subsets, which could be grouped into two independent developmental paths (extrafollicular versus germinal center). Tumor types grouped into the extrafollicular pathway were linked with worse clinical outcomes and resistance to immunotherapy. The dysfunctional extrafollicular program was associated with glutamine-derived metabolites through epigenetic-metabolic cross-talk, which promoted a T cell-driven immunosuppressive program. These data suggest an intratumor B cell balance between extrafollicular and germinal-center responses and suggest that humoral immunity could possibly be harnessed for B cell-targeting immunotherapy.
Collapse
Affiliation(s)
- Jiaqiang Ma
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yingcheng Wu
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lifeng Ma
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, and Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Xupeng Yang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tiancheng Zhang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guohe Song
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Teng Li
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xia Shen
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian Lin
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yamin Chen
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoshan Liu
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuting Fu
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, and Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Xixi Gu
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zechuan Chen
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shan Jiang
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongning Rao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiaomeng Pan
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shu Zhang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chen Huang
- Department of Gastrointestinal Surgery, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, and Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiaoming Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
28
|
McCullough MJ, Bose PG, Mock JR. Regulatory T cells: Supporting lung homeostasis and promoting resolution and repair after lung injury. Int J Biochem Cell Biol 2024; 170:106568. [PMID: 38518980 PMCID: PMC11031275 DOI: 10.1016/j.biocel.2024.106568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Regulatory T cells, characterized by their expression of the transcription factor Forkhead box P3, are indispensable in maintaining immune homeostasis. The respiratory system is constantly exposed to many environmental challenges, making it susceptible to various insults and infections. Regulatory T cells play essential roles in maintaining homeostasis in the lung and promoting repair after injury. Regulatory T cell function dysregulation can lead to inflammation, tissue damage, or aberrant repair. Research on regulatory T cell mechanisms in the lung has unveiled their influence on lung inflammation and repair mechanisms. In this review, our goal is to highlight the advances in regulatory T cell biology with respect to lung injury and resolution. We further provide a perspective that a deeper understanding of regulatory T cell interactions in the lung microenvironment in health and disease states offers opportunities for therapeutic interventions as treatments to promote lung health.
Collapse
Affiliation(s)
- Morgan J McCullough
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina Chapel Hill, NC, USA; Marsico Lung Institute, School of Medicine, University of North Carolina Chapel Hill, NC, USA
| | - Pria G Bose
- Marsico Lung Institute, School of Medicine, University of North Carolina Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina Chapel Hill, NC, USA
| | - Jason R Mock
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina Chapel Hill, NC, USA; Marsico Lung Institute, School of Medicine, University of North Carolina Chapel Hill, NC, USA; Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine School of Medicine, University of North Carolina Chapel Hill, NC, USA.
| |
Collapse
|
29
|
Kumagai S, Itahashi K, Nishikawa H. Regulatory T cell-mediated immunosuppression orchestrated by cancer: towards an immuno-genomic paradigm for precision medicine. Nat Rev Clin Oncol 2024; 21:337-353. [PMID: 38424196 DOI: 10.1038/s41571-024-00870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Accumulating evidence indicates that aberrant signalling stemming from genetic abnormalities in cancer cells has a fundamental role in their evasion of antitumour immunity. Immune escape mechanisms include enhanced expression of immunosuppressive molecules, such as immune-checkpoint proteins, and the accumulation of immunosuppressive cells, including regulatory T (Treg) cells, in the tumour microenvironment. Therefore, Treg cells are key targets for cancer immunotherapy. Given that therapies targeting molecules predominantly expressed by Treg cells, such as CD25 or GITR, have thus far had limited antitumour efficacy, elucidating how certain characteristics of cancer, particularly genetic abnormalities, influence Treg cells is necessary to develop novel immunotherapeutic strategies. Hence, Treg cell-targeted strategies based on the particular characteristics of cancer in each patient, such as the combination of immune-checkpoint inhibitors with molecularly targeted agents that disrupt the immunosuppressive networks mediating Treg cell recruitment and/or activation, could become a new paradigm of cancer therapy. In this Review, we discuss new insights on the mechanisms by which cancers generate immunosuppressive networks that attenuate antitumour immunity and how these networks confer resistance to cancer immunotherapy, with a focus on Treg cells. These insights lead us to propose the concept of 'immuno-genomic precision medicine' based on specific characteristics of cancer, especially genetic profiles, that correlate with particular mechanisms of tumour immune escape and might, therefore, inform the optimal choice of immunotherapy for individual patients.
Collapse
Affiliation(s)
- Shogo Kumagai
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
- Division of Cellular Signalling, Research Institute, National Cancer Center, Tokyo, Japan
| | - Kota Itahashi
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan.
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan.
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
30
|
Zhang Y, Lu Q. Immune cells in skin inflammation, wound healing, and skin cancer. J Leukoc Biol 2024; 115:852-865. [PMID: 37718697 DOI: 10.1093/jleuko/qiad107] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023] Open
Abstract
Given the self-evident importance of cutaneous immunity in the maintenance of body-surface homeostasis, disturbance of the steady-state skin is inextricably intertwined with dysfunction in cutaneous immunity. It is often overlooked by people that skin, well-known as a solid physical barrier, is also a strong immunological barrier, considering the abundant presence of immune cells including lymphocytes, granulocytes, dendritic cells, and macrophages. What's more, humoral immune components including cytokines, immunoglobulins, and antimicrobial peptides are also rich in the skin. This review centers on skin inflammation (acute and chronic, infection and aseptic inflammation), wound healing, and skin cancer to elucidate the elaborate network of immune cells in skin diseases.
Collapse
Affiliation(s)
- Yuhan Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| |
Collapse
|
31
|
Swatler J, De Luca M, Rotella I, Lise V, Mazza EMC, Lugli E. CD4+ Regulatory T Cells in Human Cancer: Subsets, Origin, and Molecular Regulation. Cancer Immunol Res 2024; 12:393-399. [PMID: 38562083 DOI: 10.1158/2326-6066.cir-23-0517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/18/2023] [Accepted: 12/20/2023] [Indexed: 04/04/2024]
Abstract
CD4+CD25hiFOXP3+ regulatory T cells (Treg) play major roles in the maintenance of immune tolerance, prevention of inflammation, and tissue homeostasis and repair. In contrast with these beneficial roles, Tregs are abundant in virtually all tumors and have been mechanistically linked to disease progression, metastases development, and therapy resistance. Tregs are thus recognized as a major target for cancer immunotherapy. Compared with other sites in the body, tumors harbor hyperactivated Treg subsets whose molecular characteristics are only beginning to be elucidated. Here, we describe current knowledge of intratumoral Tregs and discuss their potential cellular and tissue origin. Furthermore, we describe currently recognized molecular regulators that drive differentiation and maintenance of Tregs in cancer, with a special focus on those signals regulating their chronic immune activation, with relevant implications for cancer progression and therapy.
Collapse
Affiliation(s)
- Julian Swatler
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan
| | - Marco De Luca
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan
| | - Ivano Rotella
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan
| | - Veronica Lise
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan
| | | | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan
| |
Collapse
|
32
|
de la Fuente AG, Dittmer M, Heesbeen EJ, de la Vega Gallardo N, White JA, Young A, McColgan T, Dashwood A, Mayne K, Cabeza-Fernández S, Falconer J, Rodriguez-Baena FJ, McMurran CE, Inayatullah M, Rawji KS, Franklin RJM, Dooley J, Liston A, Ingram RJ, Tiwari VK, Penalva R, Dombrowski Y, Fitzgerald DC. Ageing impairs the regenerative capacity of regulatory T cells in mouse central nervous system remyelination. Nat Commun 2024; 15:1870. [PMID: 38467607 PMCID: PMC10928230 DOI: 10.1038/s41467-024-45742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 01/31/2024] [Indexed: 03/13/2024] Open
Abstract
Myelin regeneration (remyelination) is essential to prevent neurodegeneration in demyelinating diseases such as Multiple Sclerosis, however, its efficiency declines with age. Regulatory T cells (Treg) recently emerged as critical players in tissue regeneration, including remyelination. However, the effect of ageing on Treg-mediated regenerative processes is poorly understood. Here, we show that expansion of aged Treg does not rescue age-associated remyelination impairment due to an intrinsically diminished capacity of aged Treg to promote oligodendrocyte differentiation and myelination in male and female mice. This decline in regenerative Treg functions can be rescued by a young environment. We identified Melanoma Cell Adhesion Molecule 1 (MCAM1) and Integrin alpha 2 (ITGA2) as candidates of Treg-mediated oligodendrocyte differentiation that decrease with age. Our findings demonstrate that ageing limits the neuroregenerative capacity of Treg, likely limiting their remyelinating therapeutic potential in aged patients, and describe two mechanisms implicated in Treg-driven remyelination that may be targetable to overcome this limitation.
Collapse
Affiliation(s)
- Alerie Guzman de la Fuente
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK.
- Institute for Health and Biomedical Sciences of Alicante (ISABIAL), Alicante, 03010, Spain.
- Instituto de Neurosciencias CSIC-UMH, San Juan de Alicante, Alicante, 03550, Spain.
| | - Marie Dittmer
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Elise J Heesbeen
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
- Division of Pharmacology, Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Nira de la Vega Gallardo
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Jessica A White
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Andrew Young
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Tiree McColgan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Amy Dashwood
- Department of Pathology, University of Cambridge, CB2 1QP, Cambridge, UK
- Babraham Institute, CB22 3AT, Cambridge, UK
| | - Katie Mayne
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Sonia Cabeza-Fernández
- Institute for Health and Biomedical Sciences of Alicante (ISABIAL), Alicante, 03010, Spain
- Instituto de Neurosciencias CSIC-UMH, San Juan de Alicante, Alicante, 03550, Spain
| | - John Falconer
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
- CRUK Beatson Institute, G61 1BD, Glasgow, UK
| | | | - Christopher E McMurran
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Mohammed Inayatullah
- Institute of Molecular Medicine, University of Southern Denmark, 5000, Odense, Denmark
- Danish Institute for Advanced Study (DIAS), 5230, Odense, Denmark
| | - Khalil S Rawji
- Altos Labs - Cambridge Institute of Science, Granta Park, Cambridge, CB21 6GP, UK
| | - Robin J M Franklin
- Altos Labs - Cambridge Institute of Science, Granta Park, Cambridge, CB21 6GP, UK
| | - James Dooley
- Department of Pathology, University of Cambridge, CB2 1QP, Cambridge, UK
| | - Adrian Liston
- Department of Pathology, University of Cambridge, CB2 1QP, Cambridge, UK
| | - Rebecca J Ingram
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
- Institute of Molecular Medicine, University of Southern Denmark, 5000, Odense, Denmark
- Danish Institute for Advanced Study (DIAS), 5230, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, 5000, Odense, Denmark
| | - Rosana Penalva
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Yvonne Dombrowski
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Denise C Fitzgerald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
33
|
Mensink M, Verleng LJ, Schrama E, Janssen GM, Tjokrodirijo RT, van Veelen PA, Jiang Q, Pascutti MF, van der Hoorn ML, Eikmans M, de Kivit S, Borst J. Tregs from human blood differentiate into nonlymphoid tissue-resident effector cells upon TNFR2 costimulation. JCI Insight 2024; 9:e172942. [PMID: 38341270 PMCID: PMC10972588 DOI: 10.1172/jci.insight.172942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Tregs can facilitate transplant tolerance and attenuate autoimmune and inflammatory diseases. Therefore, it is clinically relevant to stimulate Treg expansion and function in vivo and to create therapeutic Treg products in vitro. We report that TNF receptor 2 (TNFR2) is a unique costimulus for naive, thymus-derived Tregs (tTregs) from human blood that promotes their differentiation into nonlymphoid tissue-resident (NLT-resident) effector Tregs, without Th-like polarization. In contrast, CD28 costimulation maintains a lymphoid tissue-resident (LT-resident) Treg phenotype. We base this conclusion on transcriptome and proteome analysis of TNFR2- and CD28-costimulated CD4+ tTregs and conventional T cells (Tconvs), followed by bioinformatic comparison with published transcriptomic Treg signatures from NLT and LT in health and disease, including autoimmunity and cancer. These analyses illuminate that TNFR2 costimulation promoted tTreg capacity for survival, migration, immunosuppression, and tissue regeneration. Functional studies confirmed improved migratory ability of TNFR2-costimulated tTregs. Flow cytometry validated the presence of the TNFR2-driven tTreg signature in effector/memory Tregs from the human placenta, as opposed to blood. Thus, TNFR2 can be exploited as a driver of NLT-resident tTreg differentiation for adoptive cell therapy or antibody-based immunomodulation in human disease.
Collapse
|
34
|
Frijlink E, Bosma DM, Busselaar J, Battaglia TW, Staal MD, Verbrugge I, Borst J. PD-1 or CTLA-4 blockade promotes CD86-driven Treg responses upon radiotherapy of lymphocyte-depleted cancer in mice. J Clin Invest 2024; 134:e171154. [PMID: 38349740 PMCID: PMC10940086 DOI: 10.1172/jci171154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 01/17/2024] [Indexed: 03/16/2024] Open
Abstract
Radiotherapy (RT) is considered immunogenic, but clinical data demonstrating RT-induced T cell priming are scarce. Here, we show in a mouse tumor model representative of human lymphocyte-depleted cancer that RT enhanced spontaneous priming of thymus-derived (FOXP3+Helios+) Tregs by the tumor. These Tregs acquired an effector phenotype, populated the tumor, and impeded tumor control by a simultaneous, RT-induced CD8+ cytotoxic T cell (CTL) response. Combination of RT with CTLA-4 or PD-1 blockade, which enables CD28 costimulation, further increased this Treg response and failed to improve tumor control. We discovered that upon RT, the CD28 ligands CD86 and CD80 differentially affected the Treg response. CD86, but not CD80, blockade prevented the effector Treg response, enriched the tumor-draining lymph node migratory conventional DCs that were positive for PD-L1 and CD80 (PD-L1+CD80+), and promoted CTL priming. Blockade of CD86 alone or in combination with PD-1 enhanced intratumoral CTL accumulation, and the combination significantly increased RT-induced tumor regression and OS. We advise that combining RT with PD-1 and/or CTLA-4 blockade may be counterproductive in lymphocyte-depleted cancers, since these interventions drive Treg responses in this context. However, combining RT with CD86 blockade may promote the control of such tumors by enabling a CTL response.
Collapse
Affiliation(s)
- Elselien Frijlink
- Division of Tumor Biology and Immunology and Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Douwe M.T. Bosma
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Julia Busselaar
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Thomas W. Battaglia
- Division of Molecular Oncology and Immunology and Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Mo D. Staal
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Inge Verbrugge
- Division of Tumor Biology and Immunology and Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Jannie Borst
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
35
|
Delacher M, Schmidleithner L, Simon M, Stüve P, Sanderink L, Hotz-Wagenblatt A, Wuttke M, Schambeck K, Ruhland B, Hofmann V, Bittner S, Ritter U, Pant A, Helbich SS, Voss M, Lemmermann NA, Bessiri-Schake L, Bohn T, Eigenberger A, Menevse AN, Gebhard C, Strieder N, Abken H, Rehli M, Huehn J, Beckhove P, Hehlgans T, Junger H, Geissler EK, Prantl L, Werner JM, Schmidl C, Brors B, Imbusch CD, Feuerer M. The effector program of human CD8 T cells supports tissue remodeling. J Exp Med 2024; 221:e20230488. [PMID: 38226976 PMCID: PMC10791561 DOI: 10.1084/jem.20230488] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/19/2023] [Accepted: 12/06/2023] [Indexed: 01/17/2024] Open
Abstract
CD8 T lymphocytes are classically viewed as cytotoxic T cells. Whether human CD8 T cells can, in parallel, induce a tissue regeneration program is poorly understood. Here, antigen-specific assay systems revealed that human CD8 T cells not only mediated cytotoxicity but also promoted tissue remodeling. Activated CD8 T cells could produce the epidermal growth factor receptor (EGFR)-ligand amphiregulin (AREG) and sensitize epithelial cells for enhanced regeneration potential. Blocking the EGFR or the effector cytokines IFN-γ and TNF could inhibit tissue remodeling. This regenerative program enhanced tumor spheroid and stem cell-mediated organoid growth. Using single-cell gene expression analysis, we identified an AREG+, tissue-resident CD8 T cell population in skin and adipose tissue from patients undergoing abdominal wall or abdominoplasty surgery. These tissue-resident CD8 T cells showed a strong TCR clonal relation to blood PD1+TIGIT+ CD8 T cells with tissue remodeling abilities. These findings may help to understand the complex CD8 biology in tumors and could become relevant for the design of therapeutic T cell products.
Collapse
Affiliation(s)
- Michael Delacher
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Lisa Schmidleithner
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Malte Simon
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Philipp Stüve
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Lieke Sanderink
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Agnes Hotz-Wagenblatt
- Core Facility Omics IT and Data Management, German Cancer Research Center, Heidelberg, Germany
| | - Marina Wuttke
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Kathrin Schambeck
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Brigitte Ruhland
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Veronika Hofmann
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Sebastian Bittner
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Uwe Ritter
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Asmita Pant
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Sara Salome Helbich
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Morten Voss
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Niels A. Lemmermann
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
- Institute of Virology, University Medical Center Mainz, Mainz, Germany
- Institute of Virology, University of Bonn, Bonn, Germany
| | - Lisa Bessiri-Schake
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Toszka Bohn
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Andreas Eigenberger
- Department of Plastic, Hand- and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Ayse Nur Menevse
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Interventional Immunology, University Regensburg, Regensburg, Germany
| | | | | | - Hinrich Abken
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Genetic Immunotherapy, University Regensburg, Regensburg, Germany
| | - Michael Rehli
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Hannover Medical School, Hannover, Germany
- RESIST, Cluster of Excellence 2155, Hannover Medical School, Hannover, Germany
| | - Philipp Beckhove
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Interventional Immunology, University Regensburg, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Thomas Hehlgans
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Henrik Junger
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Edward K. Geissler
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic, Hand- and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Jens M. Werner
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | | | - Benedikt Brors
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Faculty of Medicine Heidelberg, Heidelberg University, Heidelberg, Germany
- Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
- National Center for Tumor Diseases, Heidelberg, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Charles D. Imbusch
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
- Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Markus Feuerer
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| |
Collapse
|
36
|
Christofi P, Pantazi C, Psatha N, Sakellari I, Yannaki E, Papadopoulou A. Promises and Pitfalls of Next-Generation Treg Adoptive Immunotherapy. Cancers (Basel) 2023; 15:5877. [PMID: 38136421 PMCID: PMC10742252 DOI: 10.3390/cancers15245877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Regulatory T cells (Tregs) are fundamental to maintaining immune homeostasis by inhibiting immune responses to self-antigens and preventing the excessive activation of the immune system. Their functions extend beyond immune surveillance and subpopulations of tissue-resident Treg cells can also facilitate tissue repair and homeostasis. The unique ability to regulate aberrant immune responses has generated the concept of harnessing Tregs as a new cellular immunotherapy approach for reshaping undesired immune reactions in autoimmune diseases and allo-responses in transplantation to ultimately re-establish tolerance. However, a number of issues limit the broad clinical applicability of Treg adoptive immunotherapy, including the lack of antigen specificity, heterogeneity within the Treg population, poor persistence, functional Treg impairment in disease states, and in vivo plasticity that results in the loss of suppressive function. Although the early-phase clinical trials of Treg cell therapy have shown the feasibility and tolerability of the approach in several conditions, its efficacy has remained questionable. Leveraging the smart tools and platforms that have been successfully developed for primary T cell engineering in cancer, the field has now shifted towards "next-generation" adoptive Treg immunotherapy, where genetically modified Treg products with improved characteristics are being generated, as regards antigen specificity, function, persistence, and immunogenicity. Here, we review the state of the art on Treg adoptive immunotherapy and progress beyond it, while critically evaluating the hurdles and opportunities towards the materialization of Tregs as a living drug therapy for various inflammation states and the broad clinical translation of Treg therapeutics.
Collapse
Affiliation(s)
- Panayiota Christofi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- University General Hospital of Patras, 26504 Rio, Greece
| | - Chrysoula Pantazi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| | - Nikoleta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioanna Sakellari
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Medicine, University of Washington, Seattle, WA 98195-7710, USA
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| |
Collapse
|
37
|
Ramanan D, Chowdhary K, Candéias SM, Sassone-Corsi M, Gelineau A, Mathis D, Benoist C. Homeostatic, repertoire and transcriptional relationships between colon T regulatory cell subsets. Proc Natl Acad Sci U S A 2023; 120:e2311566120. [PMID: 38064511 PMCID: PMC10723124 DOI: 10.1073/pnas.2311566120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/26/2023] [Indexed: 12/17/2023] Open
Abstract
Foxp3+ regulatory T cells (Tregs) in the colon are key to promoting peaceful coexistence with symbiotic microbes. Differentiated in either thymic or peripheral locations, and modulated by microbes and other cellular influencers, colonic Treg subsets have been identified through key transcription factors (TFs; Helios, Rorγ, Gata3, and cMaf), but their interrelationships are unclear. Applying a multimodal array of immunologic, genomic, and microbiological assays, we find more overlap than expected between populations. The key TFs (Rorγ, Helios, Gata3, and cMaf) play different roles, some essential for subset identity, others driving functional gene signatures. Functional divergence was clearest under challenge. Single-cell genomics revealed a spectrum of phenotypes between the Helios+ and Rorγ+ poles, different Treg-inducing bacteria inducing the same Treg phenotypes to varying degrees, not distinct populations. TCR repertoires in monocolonized mice revealed that Helios+ and Rorγ+ Tregs are related and cannot be uniquely equated to tTreg and pTreg. Comparison of spleen and colon repertoires revealed that 2 to 5% of clonotypes are shared between the locations. We propose that rather than the origin of their differentiation, tissue-specific cues dictate the spectrum of colonic Treg phenotypes.
Collapse
Affiliation(s)
| | | | - Serge M. Candéias
- Université Grenoble Alpes, Commissariat à l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Interdisciplinary Research Institute of Grenoble, Laboratory of Chemistry and Biology of Metals, Grenoble38054, France
| | | | | | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA02115
| | | |
Collapse
|
38
|
Titcombe PJ, Silva Morales M, Zhang N, Mueller DL. BATF represses BIM to sustain tolerant T cells in the periphery. J Exp Med 2023; 220:e20230183. [PMID: 37862030 PMCID: PMC10588758 DOI: 10.1084/jem.20230183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/13/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
T cells that encounter self-antigens after exiting the thymus avert autoimmunity through peripheral tolerance. Pathways for this include an unresponsive state known as anergy, clonal deletion, and T regulatory (Treg) cell induction. The transcription factor cues and kinetics that guide distinct peripheral tolerance outcomes remain unclear. Here, we found that anergic T cells are epigenetically primed for regulation by the non-classical AP-1 family member BATF. Tolerized BATF-deficient CD4+ T cells were resistant to anergy induction and instead underwent clonal deletion due to proapoptotic BIM (Bcl2l11) upregulation. During prolonged antigen exposure, BIM derepression resulted in fewer PD-1+ conventional T cells as well as loss of peripherally induced FOXP3+ Treg cells. Simultaneous Batf and Bcl2l11 knockdown meanwhile restored anergic T cell survival and Treg cell maintenance. The data identify the AP-1 nuclear factor BATF as a dominant driver of sustained T cell anergy and illustrate a mechanism for divergent peripheral tolerance fates.
Collapse
Affiliation(s)
- Philip J. Titcombe
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Milagros Silva Morales
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Na Zhang
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Daniel L. Mueller
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
39
|
Xie J, Huang QF, Zhang Z, Dong Y, Xu H, Cao Y, Sheng CS, Li Y, Wang C, Wang X, Wang JG. Angiotensin-converting enzyme 2 in human plasma and lung tissue. Blood Press 2023; 32:6-15. [PMID: 36495008 DOI: 10.1080/08037051.2022.2154745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE We investigated plasma angiotensin-converting enzyme 2 (ACE2) concentration in a population sample and the ACE2 expression quantitated with the diaminobenzidine mean intensity in the lung tissue in patients who underwent lung surgery. MATERIALS AND METHODS The study participants were recruited from a residential area in the suburb of Shanghai for the plasma ACE2 concentration study (n = 503) and the lung tissue samples were randomly selected from the storage in Ruijin Hospital (80 men and 78 age-matched women). RESULTS In analyses adjusted for covariables, men had a significantly higher plasma ACE2 concentration (1.21 vs. 0.98 ng/mL, p = 0.027) and the mean intensity of ACE2 in the lung tissue (55.1 vs. 53.9 a.u., p = 0.037) than women. With age increasing, plasma ACE2 concentration decreased (p = 0.001), while the mean intensity of ACE2 in the lung tissue tended to increase (p = 0.087). Plasma ACE2 concentration was higher in hypertension than normotension, especially treated hypertension (1.23 vs. 0.98 ng/mL, p = 0.029 vs. normotension), with no significant difference between users of RAS inhibitors and other classes of antihypertensive drugs (p = 0.64). There was no significance of the mean intensity of ACE2 in the lung tissue between patients taking and those not taking RAS inhibitors (p = 0.14). Neither plasma ACE2 concentration nor the mean intensity of ACE2 in the lung tissue differed between normoglycemia and diabetes (p ≥ 0.20). CONCLUSION ACE2 in the plasma and lung tissue showed divergent changes according to several major characteristics of patients.Plain language summary What is the context? • The primary physiological function of ACE2 is the degradation of angiotensin I and II to angiotensin 1-9 and 1-7, respectively. • ACE2 was found to behave as a mediator of the severe acute respiratory syndrome coronavirus (SARS) infection. • There is little research on ACE2 in humans, especially in the lung tissue. • In the present report, we investigated plasma ACE2 concentration and the ACE2 expression quantitated with the diaminobenzidine mean intensity in the lung tissue respectively in two study populations. What is new? • Our study investigated both circulating and tissue ACE2 in human subjects. The main findings were: • In men as well as women, plasma ACE2 concentration was higher in younger than older participants, whereas the mean intensity of ACE2 in the lung tissue increase with age increasing. • Compared with normotension, hypertensive patients had higher plasma ACE2 concentration but similar mean intensity of ACE2 in the lung tissue. • Neither plasma ACE2 concentration nor lung tissue ACE2 expression significantly differed between users of RAS inhibitors and other classes of antihypertensive drugs. What is the impact? • ACE2 in the plasma and lung tissue showed divergent changes according to several major characteristics, such as sex, age, and treated and untreated hypertension. • A major implication is that plasma ACE2 concentration might not be an appropriate surrogate for the ACE2 expression in the lung tissue, and hence not a good predictor of SARS-COV-2 infection or fatality.
Collapse
Affiliation(s)
- Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi-Fang Huang
- Department of Cardiovascular Medicine, Center for Epidemiological Studies and Clinical Trials and Center for Vascular Evaluations, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhihan Zhang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yihan Dong
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haimin Xu
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanan Cao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Research Center for Translational Medicine, National Key Scientific Infrastructure for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China
| | - Chang-Sheng Sheng
- Department of Cardiovascular Medicine, Center for Epidemiological Studies and Clinical Trials and Center for Vascular Evaluations, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Cardiovascular Medicine, Center for Epidemiological Studies and Clinical Trials and Center for Vascular Evaluations, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of Clinical Laboratory, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ji-Guang Wang
- Department of Cardiovascular Medicine, Center for Epidemiological Studies and Clinical Trials and Center for Vascular Evaluations, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Trujillo-Ochoa JL, Kazemian M, Afzali B. The role of transcription factors in shaping regulatory T cell identity. Nat Rev Immunol 2023; 23:842-856. [PMID: 37336954 PMCID: PMC10893967 DOI: 10.1038/s41577-023-00893-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/21/2023]
Abstract
Forkhead box protein 3-expressing (FOXP3+) regulatory T cells (Treg cells) suppress conventional T cells and are essential for immunological tolerance. FOXP3, the master transcription factor of Treg cells, controls the expression of multiples genes to guide Treg cell differentiation and function. However, only a small fraction (<10%) of Treg cell-associated genes are directly bound by FOXP3, and FOXP3 alone is insufficient to fully specify the Treg cell programme, indicating a role for other accessory transcription factors operating upstream, downstream and/or concurrently with FOXP3 to direct Treg cell specification and specialized functions. Indeed, the heterogeneity of Treg cells can be at least partially attributed to differential expression of transcription factors that fine-tune their trafficking, survival and functional properties, some of which are niche-specific. In this Review, we discuss the emerging roles of accessory transcription factors in controlling Treg cell identity. We specifically focus on members of the basic helix-loop-helix family (AHR), basic leucine zipper family (BACH2, NFIL3 and BATF), CUT homeobox family (SATB1), zinc-finger domain family (BLIMP1, Ikaros and BCL-11B) and interferon regulatory factor family (IRF4), as well as lineage-defining transcription factors (T-bet, GATA3, RORγt and BCL-6). Understanding the imprinting of Treg cell identity and specialized function will be key to unravelling basic mechanisms of autoimmunity and identifying novel targets for drug development.
Collapse
Affiliation(s)
- Jorge L Trujillo-Ochoa
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
41
|
Bei KF, Moshkelgosha S, Liu BJ, Juvet S. Intragraft regulatory T cells in the modern era: what can high-dimensional methods tell us about pathways to allograft acceptance? Front Immunol 2023; 14:1291649. [PMID: 38077395 PMCID: PMC10701590 DOI: 10.3389/fimmu.2023.1291649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Replacement of diseased organs with transplanted healthy donor ones remains the best and often only treatment option for end-stage organ disease. Immunosuppressants have decreased the incidence of acute rejection, but long-term survival remains limited. The broad action of current immunosuppressive drugs results in global immune impairment, increasing the risk of cancer and infections. Hence, achievement of allograft tolerance, in which graft function is maintained in the absence of global immunosuppression, has long been the aim of transplant clinicians and scientists. Regulatory T cells (Treg) are a specialized subset of immune cells that control a diverse array of immune responses, can prevent allograft rejection in animals, and have recently been explored in early phase clinical trials as an adoptive cellular therapy in transplant recipients. It has been established that allograft residency by Tregs can promote graft acceptance, but whether intragraft Treg functional diversification and spatial organization contribute to this process is largely unknown. In this review, we will explore what is known regarding the properties of intragraft Tregs during allograft acceptance and rejection. We will summarize recent advances in understanding Treg tissue residency through spatial, transcriptomic and high-dimensional cytometric methods in both animal and human studies. Our discussion will explore properties of intragraft Tregs in mediating operational tolerance to commonly transplanted solid organs. Finally, given recent developments in Treg cellular therapy, we will review emerging knowledge of whether and how these adoptively transferred cells enter allografts in humans. An understanding of the properties of intragraft Tregs will help lay the foundation for future therapies that will promote immune tolerance.
Collapse
Affiliation(s)
- Ke Fan Bei
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Sajad Moshkelgosha
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Bo Jie Liu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Stephen Juvet
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
42
|
Rhoiney ML, Alvizo CR, Jameson JM. Skin Homeostasis and Repair: A T Lymphocyte Perspective. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1266-1275. [PMID: 37844280 DOI: 10.4049/jimmunol.2300153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/22/2023] [Indexed: 10/18/2023]
Abstract
Chronic, nonhealing wounds remain a clinical challenge and a significant burden for the healthcare system. Skin-resident and infiltrating T cells that recognize pathogens, microbiota, or self-antigens participate in wound healing. A precise balance between proinflammatory T cells and regulatory T cells is required for the stages of wound repair to proceed efficiently. When diseases such as diabetes disrupt the skin microenvironment, T cell activation and function are altered, and wound repair is hindered. Recent studies have used cutting-edge technology to further define the cellular makeup of the skin prior to and during tissue repair. In this review, we discuss key advances that highlight mechanisms used by T cell subsets to populate the epidermis and dermis, maintain skin homeostasis, and regulate wound repair. Advances in our understanding of how skin cells communicate in the skin pave the way for therapeutics that modulate regulatory versus effector functions to improve nonhealing wound treatment.
Collapse
Affiliation(s)
- Mikaela L Rhoiney
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA
| | - Cristian R Alvizo
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA
| | - Julie M Jameson
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA
| |
Collapse
|
43
|
Ramanan D, Pratama A, Zhu Y, Venezia O, Sassone-Corsi M, Chowdhary K, Galván-Peña S, Sefik E, Brown C, Gélineau A, Mathis D, Benoist C. Regulatory T cells in the face of the intestinal microbiota. Nat Rev Immunol 2023; 23:749-762. [PMID: 37316560 DOI: 10.1038/s41577-023-00890-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
Regulatory T cells (Treg cells) are key players in ensuring a peaceful coexistence with microorganisms and food antigens at intestinal borders. Startling new information has appeared in recent years on their diversity, the importance of the transcription factor FOXP3, how T cell receptors influence their fate and the unexpected and varied cellular partners that influence Treg cell homeostatic setpoints. We also revisit some tenets, maintained by the echo chambers of Reviews, that rest on uncertain foundations or are a subject of debate.
Collapse
Affiliation(s)
| | - Alvin Pratama
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Yangyang Zhu
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Olivia Venezia
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Esen Sefik
- Department of Immunology, Yale University, New Haven, CT, USA
| | - Chrysothemis Brown
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Paediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA
| | | | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
44
|
Raugh A, Jing Y, Bettini ML, Bettini M. The amphiregulin/EGFR axis has limited contribution in controlling autoimmune diabetes. Sci Rep 2023; 13:18653. [PMID: 37903947 PMCID: PMC10616065 DOI: 10.1038/s41598-023-45738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/23/2023] [Indexed: 11/01/2023] Open
Abstract
Conventional immunosuppressive functions of CD4+Foxp3+ regulatory T cells (Tregs) in type 1 diabetes (T1D) pathogenesis have been well described, but whether Tregs have additional non-immunological functions supporting tissue homeostasis in pancreatic islets is unknown. Within the last decade novel tissue repair functions have been ascribed to Tregs. One function is production of the epidermal growth factor receptor (EGFR) ligand, amphiregulin, which promotes tissue repair in response to inflammatory or mechanical tissue injury. However, whether such pathways are engaged during autoimmune diabetes and promote tissue repair is undetermined. Previously, we observed that upregulation of amphiregulin at the transcriptional level was associated with functional Treg populations in the non-obese diabetic (NOD) mouse model of T1D. From this we postulated that amphiregulin promoted islet tissue repair and slowed the progression of diabetes in NOD mice. Here, we report that islet-infiltrating Tregs have increased capacity to produce amphiregulin, and that both Tregs and beta cells express EGFR. Moreover, we show that amphiregulin can directly modulate mediators of endoplasmic reticulum stress in beta cells. Despite this, NOD amphiregulin deficient mice showed no acceleration of spontaneous autoimmune diabetes. Taken together, the data suggest that the ability for amphiregulin to affect the progression of autoimmune diabetes is limited.
Collapse
Affiliation(s)
- Arielle Raugh
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Yi Jing
- Microbiology and Immunology Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Matthew L Bettini
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Maria Bettini
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
45
|
Knoedler S, Knoedler L, Kauke-Navarro M, Rinkevich Y, Hundeshagen G, Harhaus L, Kneser U, Pomahac B, Orgill DP, Panayi AC. Regulatory T cells in skin regeneration and wound healing. Mil Med Res 2023; 10:49. [PMID: 37867188 PMCID: PMC10591349 DOI: 10.1186/s40779-023-00484-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
As the body's integumentary system, the skin is vulnerable to injuries. The subsequent wound healing processes aim to restore dermal and epidermal integrity and functionality. To this end, multiple tissue-resident cells and recruited immune cells cooperate to efficiently repair the injured tissue. Such temporally- and spatially-coordinated interplay necessitates tight regulation to prevent collateral damage such as overshooting immune responses and excessive inflammation. In this context, regulatory T cells (Tregs) hold a key role in balancing immune homeostasis and mediating cutaneous wound healing. A comprehensive understanding of Tregs' multifaceted field of activity may help decipher wound pathologies and, ultimately, establish new treatment modalities. Herein, we review the role of Tregs in orchestrating the regeneration of skin adnexa and catalyzing healthy wound repair. Further, we discuss how Tregs operate during fibrosis, keloidosis, and scarring.
Collapse
Affiliation(s)
- Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, 06510, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, 85764, Germany
| | - Leonard Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, 85764, Germany
| | - Gabriel Hundeshagen
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, 67071, Germany
| | - Leila Harhaus
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, 67071, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, 67071, Germany
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Dennis P Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Adriana C Panayi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, 67071, Germany.
| |
Collapse
|
46
|
Braband KL, Nedwed AS, Helbich SS, Simon M, Beumer N, Brors B, Marini F, Delacher M. Using single-cell chromatin accessibility sequencing to characterize CD4+ T cells from murine tissues. Front Immunol 2023; 14:1232511. [PMID: 37908367 PMCID: PMC10613658 DOI: 10.3389/fimmu.2023.1232511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/29/2023] [Indexed: 11/02/2023] Open
Abstract
The Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) is a cutting-edge technology that enables researchers to assess genome-wide chromatin accessibility and to characterize cell type specific gene-regulatory programs. Recent technological progress allows for using this technology also on the single-cell level. In this article, we describe the whole value chain from the isolation of T cells from murine tissues to a complete bioinformatic analysis workflow. We start with methods for isolating scATAC-seq-ready CD4+ T cells from murine tissues such as visceral adipose tissue, skin, colon, and secondary lymphoid tissues such as the spleen. We describe the preparation of nuclei and quality control parameters during library preparation. Based on publicly available sequencing data that was generated using these protocols, we describe a step-by-step bioinformatic analysis pipeline for data pre-processing and downstream analysis. Our analysis workflow will follow the R-based bioinformatics framework ArchR, which is currently well established for scATAC-seq datasets. All in all, this work serves as a one-stop shop for generating and analyzing chromatin accessibility landscapes in T cells.
Collapse
Affiliation(s)
- Kathrin Luise Braband
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center Mainz, Mainz, Germany
| | - Annekathrin Silvia Nedwed
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Mainz, Germany
| | - Sara Salome Helbich
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center Mainz, Mainz, Germany
| | - Malte Simon
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Niklas Beumer
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Federico Marini
- Research Center for Immunotherapy (FZI), University Medical Center Mainz, Mainz, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Mainz, Germany
| | - Michael Delacher
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
47
|
Nedwed AS, Helbich SS, Braband KL, Volkmar M, Delacher M, Marini F. Using combined single-cell gene expression, TCR sequencing and cell surface protein barcoding to characterize and track CD4+ T cell clones from murine tissues. Front Immunol 2023; 14:1241283. [PMID: 37901204 PMCID: PMC10602882 DOI: 10.3389/fimmu.2023.1241283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/31/2023] [Indexed: 10/31/2023] Open
Abstract
Single-cell gene expression analysis using sequencing (scRNA-seq) has gained increased attention in the past decades for studying cellular transcriptional programs and their heterogeneity in an unbiased manner, and novel protocols allow the simultaneous measurement of gene expression, T-cell receptor clonality and cell surface protein expression. In this article, we describe the methods to isolate scRNA/TCR-seq-compatible CD4+ T cells from murine tissues, such as skin, spleen, and lymph nodes. We describe the processing of cells and quality control parameters during library preparation, protocols for multiplexing of samples, and strategies for sequencing. Moreover, we describe a step-by-step bioinformatic analysis pipeline from sequencing data generated using these protocols. This includes quality control, preprocessing of sequencing data and demultiplexing of individual samples. We perform quantification of gene expression and extraction of T-cell receptor alpha and beta chain sequences, followed by quality control and doublet detection, and methods for harmonization and integration of datasets. Next, we describe the identification of highly variable genes and dimensionality reduction, clustering and pseudotemporal ordering of data, and we demonstrate how to visualize the results with interactive and reproducible dashboards. We will combine different analytic R-based frameworks such as Bioconductor and Seurat, illustrating how these can be interoperable to optimally analyze scRNA/TCR-seq data of CD4+ T cells from murine tissues.
Collapse
Affiliation(s)
- Annekathrin Silvia Nedwed
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Mainz, Germany
| | - Sara Salome Helbich
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Kathrin Luise Braband
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Michael Volkmar
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON Mainz), Mainz, Germany
| | - Michael Delacher
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
48
|
Mellman I, Chen DS, Powles T, Turley SJ. The cancer-immunity cycle: Indication, genotype, and immunotype. Immunity 2023; 56:2188-2205. [PMID: 37820582 DOI: 10.1016/j.immuni.2023.09.011] [Citation(s) in RCA: 305] [Impact Index Per Article: 152.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
The cancer-immunity cycle provides a framework to understand the series of events that generate anti-cancer immune responses. It emphasizes the iterative nature of the response where the killing of tumor cells by T cells initiates subsequent rounds of antigen presentation and T cell stimulation, maintaining active immunity and adapting it to tumor evolution. Any step of the cycle can become rate-limiting, rendering the immune system unable to control tumor growth. Here, we update the cancer-immunity cycle based on the remarkable progress of the past decade. Understanding the mechanism of checkpoint inhibition has evolved, as has our view of dendritic cells in sustaining anti-tumor immunity. We additionally account for the role of the tumor microenvironment in facilitating, not just suppressing, the anti-cancer response, and discuss the importance of considering a tumor's immunological phenotype, the "immunotype". While these new insights add some complexity to the cycle, they also provide new targets for research and therapeutic intervention.
Collapse
Affiliation(s)
| | - Daniel S Chen
- Engenuity Life Sciences, Burlingame, CA, USA; Synthetic Design Lab, Burlingame, CA, USA
| | | | | |
Collapse
|
49
|
Guo W, Zhou B, Bie F, Huai Q, Xue X, Guo L, Tan F, Xue Q, Zhao L, Gao S. Single-cell RNA sequencing analysis reveals transcriptional heterogeneity of multiple primary lung cancer. Clin Transl Med 2023; 13:e1453. [PMID: 37846760 PMCID: PMC10580343 DOI: 10.1002/ctm2.1453] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023] Open
Abstract
INTRODUCTION With the advancements in early diagnosis, more and more patients with multiple primary lung cancer (MPLC) have been identified. However, the progression of MPLC involves complex changes in cell composition and metabolic function, which remains largely controversial. OBJECTIVE Our study aims to comprehensively reveal the cellular characteristics and inter-cellular connections of MPLC. METHODS We performed scRNA-seq from 23 samples of six MPLC patients, combined with bulk whole-exome sequencing. We performed trajectory analysis to investigate the transition of different cell types during the development of MPLC. RESULTS A total of 1 67 397 cells were sequenced derived from tumour and adjacent tissues of MPLC patients, and tumour, normal, immune and stromal cells were identified. Two states of epithelial cells were identified, which were associated with immune response and cell death, respectively. Furthermore, both CD8+ naïve and memory T cells participated in the differentiation of CD8+ T cells. The terminal states of CD8+ T cells were exhausted T cells and cytotoxic T cells, which positively regulated cell death and were implicated in the regulation of cytokine production, respectively. Two main subpopulations of B cells with distinct functions were identified, which participate in the regulation of the immune response and antigen presentation, respectively. In addition, we found a specific type of endothelial cells that were abundant in tumour samples, with an increasing trend from normal to tumour samples. CONCLUSIONS Our study showed the comprehensive landscape of different cells of MPLC, which might reveal the key cellular mechanisms and, therefore, may provide new insights into the early diagnosis and treatment of MPLC.
Collapse
Affiliation(s)
- Wei Guo
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
- Key Laboratory of Minimally Invasive Therapy Research for Lung CancerChinese Academy of Medical SciencesBeijingP. R. China
| | - Bolun Zhou
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Fenglong Bie
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
- Department of Thoracic SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
| | - Qilin Huai
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Xuemin Xue
- Department of PathologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Lei Guo
- Department of PathologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Fengwei Tan
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
- Key Laboratory of Minimally Invasive Therapy Research for Lung CancerChinese Academy of Medical SciencesBeijingP. R. China
| | - Qi Xue
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
- Key Laboratory of Minimally Invasive Therapy Research for Lung CancerChinese Academy of Medical SciencesBeijingP. R. China
| | - Liang Zhao
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Shugeng Gao
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
- Key Laboratory of Minimally Invasive Therapy Research for Lung CancerChinese Academy of Medical SciencesBeijingP. R. China
| |
Collapse
|
50
|
Herppich S, Hoenicke L, Kern F, Kruse F, Smout J, Greweling-Pils MC, Geffers R, Burton OT, Liston A, Keller A, Floess S, Huehn J. Zfp362 potentiates murine colonic inflammation by constraining Treg cell function rather than promoting Th17 cell differentiation. Eur J Immunol 2023; 53:e2250270. [PMID: 37366299 DOI: 10.1002/eji.202250270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/02/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
Mucosal barrier integrity and pathogen clearance is a complex process influenced by both Th17 and Treg cells. Previously, we had described the DNA methylation profile of Th17 cells and identified Zinc finger protein (Zfp)362 to be uniquely demethylated. Here, we generated Zfp362-/- mice to unravel the role of Zfp362 for Th17 cell biology. Zfp362-/- mice appeared clinically normal, showed no phenotypic alterations in the T-cell compartment, and upon colonization with segmented filamentous bacteria, no effect of Zfp362 deficiency on Th17 cell differentiation was observed. By contrast, Zfp362 deletion resulted in increased frequencies of colonic Foxp3+ Treg cells and IL-10+ and RORγt+ Treg cell subsets in mesenteric lymph nodes. Adoptive transfer of naïve CD4+ T cells from Zfp362-/- mice into Rag2-/- mice resulted in a significantly lower weight loss when compared with controls receiving cells from Zfp362+/+ littermates. However, this attenuated weight loss did not correlate with alterations of Th17 cells but instead was associated with an increase of effector Treg cells in mesenteric lymph nodes. Together, these results suggest that Zfp362 plays an important role in promoting colonic inflammation; however, this function is derived from constraining the effector function of Treg cells rather than directly promoting Th17 cell differentiation.
Collapse
Affiliation(s)
- Susanne Herppich
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lisa Hoenicke
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Fabian Kern
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Saarland University, Saarbrücken, Germany
- Department of Clinical Bioinformatics, Saarland University, Homburg, Germany
| | - Friederike Kruse
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Justine Smout
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Oliver T Burton
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
| | - Adrian Liston
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
| | - Andreas Keller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Saarland University, Saarbrücken, Germany
- Department of Clinical Bioinformatics, Saarland University, Homburg, Germany
| | - Stefan Floess
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|