1
|
Ghosh S, Roy S, Baid N, Das UK, Rakshit S, Sanghavi P, Hajra D, Das S, Menon S, Sahil M, Shaw S, Rajmani RS, Adicherla H, Kaledhonkar S, Mondal J, Chakravortty D, Mallik R, Banerjee A. Host AAA-ATPase VCP/p97 lyses ubiquitinated intracellular bacteria as an innate antimicrobial defence. Nat Microbiol 2025; 10:1099-1114. [PMID: 40217128 DOI: 10.1038/s41564-025-01984-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 03/14/2025] [Indexed: 04/16/2025]
Abstract
Cell-autonomous immunity prevents intracellular pathogen growth through mechanisms such as ubiquitination and proteasomal targeting of bacteria for degradation. However, how the proteasome eradicates ubiquitinated bacteria has remained unclear. Here we show that host AAA-ATPase, VCP/p97, associates with diverse cytosol-exposed ubiquitinated bacteria (Streptococcus pneumoniae, Salmonella enterica serovar Typhimurium, Streptococcus pyogenes) and requires the ATPase activity in its D2 domain to reduce intracellular bacterial loads. Combining optical trap approaches along with molecular dynamic simulations, in vitro reconstitution and immunogold transmission electron microscopy, we demonstrate that p97 applies mechanical force to extract ubiquitinated surface proteins, BgaA and PspA, from S. pneumoniae cell membranes. This causes extensive membrane lysis and release of cytosolic content, thereby killing the pathogen. Further, p97 also controls S. pneumoniae proliferation in mice, ultimately protecting from fatal sepsis. Overall, we discovered a distinct innate antimicrobial function of p97 that can protect the host against lethal bacterial infections.
Collapse
Affiliation(s)
- Sourav Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Suvapriya Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Navin Baid
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Udit Kumar Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Sumit Rakshit
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Paulomi Sanghavi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Dipasree Hajra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sayani Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Sneha Menon
- Tata Institute of Fundamental Research, Hyderabad, Telangana, India
| | - Mohammad Sahil
- Tata Institute of Fundamental Research, Hyderabad, Telangana, India
| | - Sudipti Shaw
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Raju S Rajmani
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Harikrishna Adicherla
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Hyderabad, Telangana, India
| | - Sandip Kaledhonkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research, Hyderabad, Telangana, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Roop Mallik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Anirban Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
| |
Collapse
|
2
|
Cui S, Chong D, Wang YX, Tong H, Wang M, Zhao GP, Lyu LD. Fasting-induced ketogenesis sensitizes bacteria to antibiotic treatment. Cell Metab 2025:S1550-4131(25)00216-5. [PMID: 40315854 DOI: 10.1016/j.cmet.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/04/2024] [Accepted: 04/14/2025] [Indexed: 05/04/2025]
Abstract
Fasting metabolism is a commonly observed motivational response to acute infections and is conceptualized as being beneficial for host survival. Here, we show that fasting potentiates antibiotic treatment for murine sepsis caused by Salmonella Typhimurium, Klebsiella pneumoniae, and Enterobacter cloacae, resulting in increased bacterial clearance and improved host immune responses and survival. This effect is mediated by fasting-induced ketogenesis and could be alternatively implemented by combination therapy with antibiotics and ketone bodies. We show that the ketone body acetoacetate is an effector that sensitizes bacteria to antibiotic treatment by increasing antibiotic lethality and outer and inner membrane permeability. Our results demonstrate that acetoacetate depletes bacterial amino acids, particularly positively charged amino acids and putrescine, leading to cell membrane malfunctions and redox-related lethality. This study reveals an unrecognized role of ketogenesis in antibiotic treatment and a potential ketone body-based treatment strategy for bacterial sepsis.
Collapse
Affiliation(s)
- Shujun Cui
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission, School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Danyang Chong
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yi-Xin Wang
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission, School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Huixian Tong
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission, School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Guo-Ping Zhao
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission, School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China; CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Liang-Dong Lyu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission, School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China; Shanghai Clinical Research Center for Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Shanghai 200433, China.
| |
Collapse
|
3
|
Zhang Q, Wang Q, Zheng J, Zhang J, Zhang G, Ying F, Liu D, Wen J, Li Q, Zhao G. Single-cell RNA sequencing of the spleen reveals differences in Salmonella typhimurium infection mechanisms between different chicken breeds. Poult Sci 2025; 104:104669. [PMID: 39793244 PMCID: PMC11954797 DOI: 10.1016/j.psj.2024.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/30/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025] Open
Abstract
Bacterial infections remain an important cause of morbidity in poultry production. The molecular characteristics and dynamic changes in immune cell populations after bacterial infection have yet to be fully understood. Beijing-You chicken and Cobb broiler, two broiler breeds with different disease resistance, were infected with Salmonella typhimurium, and inflammation models were constructed. Compared to Beijing-You, Cobb showed higher survival rates, lower liver load, and milder spleen damage after Salmonella infection. We characterized chicken spleen CD45+ immune cells by single-cell RNA sequencing and identified 9 distinct cell types among 54,487 cells. In Beijing-You, mono-macrophages expressed higher levels of pro-inflammatory factors, including IL1B, IL6, and M-CSF, after bacterial infection. In Cobb, Tregs exhibited intense inflammatory inhibition and highly expressed CTLA4, LAG3 and other immunosuppressive regulators. In addition, we found complex macrophage phenotypes during bacterial infection, with a tendency in macrophages from pro-inflammatory phenotypes (Mac-IL1B) to anti-inflammatory phenotypes (Mac-C1QC/Mac-MARCO). This study represents the first single-cell transcriptomic analysis of chicken spleen and compares the immune responses of Beijing-You and Cobb after bacterial infection. These findings provide insight into the mechanism of inflammation regulation in different broiler breeds.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Qiao Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Jumei Zheng
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Jin Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Gaomeng Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Fan Ying
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan, 528515, PR China.
| | - Dawei Liu
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan, 528515, PR China.
| | - Jie Wen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Qinghe Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Guiping Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| |
Collapse
|
4
|
Solomon A, Bossel Ben-Moshe N, Hoffman D, Trzebanski S, Yehezkel D, Vainman L, Netea MG, Avraham R. Early and delayed STAT1-dependent responses drive local trained immunity of macrophages in the spleen. eLife 2025; 13:RP100922. [PMID: 39819562 PMCID: PMC11737870 DOI: 10.7554/elife.100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
Trained immunity (TI) is the process wherein innate immune cells gain functional memory upon exposure to specific ligands or pathogens, leading to augmented inflammatory responses and pathogen clearance upon secondary exposure. While the differentiation of hematopoietic stem cells (HSCs) and reprogramming of bone marrow (BM) progenitors are well-established mechanisms underpinning durable TI protection, remodeling of the cellular architecture within the tissue during TI remains underexplored. Here, we study the effects of peritoneal Bacillus Calmette-Guérin (BCG) administration to find TI-mediated protection in the spleen against a subsequent heterologous infection by the Gram-negative pathogen Salmonella Typhimurium (S.Tm). Utilizing single cell RNA-sequencing and flow cytometry, we discerned STAT1-regulated genes in TI-associated resident and recruited splenic myeloid populations. The temporal dynamics of TI were further elucidated, revealing both early and delayed myeloid subsets with time-dependent, cell-type-specific STAT1 signatures. Using lineage tracing, we find that tissue-resident red pulp macrophages (RPM), initially depleted by BCG exposure, are restored from both tissue-trained, self-renewing macrophages and from bone marrow-derived progenitors, fostering long lasting local defense. Early inhibition of STAT1 activation, using specific JAK-STAT inhibitors, reduces both RPM loss and recruitment of trained monocytes. Our study suggests a temporal window soon after BCG vaccination, in which STAT1-dependent activation of long-lived resident cells in the tissue mediates localized protection.
Collapse
Affiliation(s)
- Aryeh Solomon
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Noa Bossel Ben-Moshe
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Dotan Hoffman
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Sébastien Trzebanski
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Dror Yehezkel
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Leia Vainman
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical CenterNijmegenNetherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of BonnBonnGermany
| | - Roi Avraham
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
5
|
Wang X, Sun Y, Guo H, Yan X, Ma S, Yang B, Jiang L. Xylose utilization promotes Salmonella replication within macrophages and systemic infection in mice. Virulence 2024; 15:2435381. [PMID: 39603596 PMCID: PMC11610547 DOI: 10.1080/21505594.2024.2435381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/03/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024] Open
Abstract
The intracellular pathogen Salmonella can cause systemic diseases via its survival and replication in host macrophages. Xylose is the second most abundant sugar in nature and Salmonella can use xylose as its sole carbon source for growth. However, whether xylose utilization contributes to the pathogenicity and intracellular growth of Salmonella has not yet been determined. In this study, we observed that the xylose concentration in macrophages increased during Salmonella infection. Moreover, there was an increase in expression of Salmonella xylose catabolic genes (xylA and xylB) and the transcriptional regulatory gene of xylose metabolism (xylR) in macrophages, revealing the possibility of using host-accumulated xylose by Salmonella for intracellular growth. Mutation of either xylAB or xylR reduced Salmonella replication in macrophages and attenuated the colonization of mouse systemic loci (e.g. the liver and spleen), indicating that xylose utilization promotes Salmonella replication within macrophages and systemic infection in mice. Moreover, we found that xylose utilization by intracellular Salmonella was activated by the cAMP-CRP complex upon detection of low glucose levels in the infected macrophages. Collectively, these findings reveal that although the available glucose decreases during infection, Salmonella can use xylose, which accumulates in infected macrophages, as an alternative carbon source to promote intracellular replication and virulence.
Collapse
Affiliation(s)
- Xinyue Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Yuyang Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Houliang Guo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Xiaolin Yan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Shuai Ma
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Bin Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Lingyan Jiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| |
Collapse
|
6
|
Andrews JT, Zhang Z, Prasad GVRK, Huey F, Nazarova EV, Wang J, Ranaraja A, Weinkopff T, Li LX, Mu S, Birrer MJ, Huang SCC, Zhang N, Argüello RJ, Philips JA, Mattila JT, Huang L. Metabolically active neutrophils represent a permissive niche for Mycobacterium tuberculosis. Mucosal Immunol 2024; 17:825-842. [PMID: 38844208 PMCID: PMC11493682 DOI: 10.1016/j.mucimm.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Mycobacterium tuberculosis (Mtb)-infected neutrophils are often found in the airways of patients with active tuberculosis (TB), and excessive recruitment of neutrophils to the lung is linked to increased bacterial burden and aggravated pathology in TB. The basis for the permissiveness of neutrophils for Mtb and the ability to be pathogenic in TB has been elusive. Here, we identified metabolic and functional features of neutrophils that contribute to their permissiveness in Mtb infection. Using single-cell metabolic and transcriptional analyses, we found that neutrophils in the Mtb-infected lung displayed elevated mitochondrial metabolism, which was largely attributed to the induction of activated neutrophils with enhanced metabolic activities. The activated neutrophil subpopulation was also identified in the lung granulomas from Mtb-infected non-human primates. Functionally, activated neutrophils harbored more viable bacteria and displayed enhanced lipid uptake and accumulation. Surprisingly, we found that interferon-γ promoted the activation of lung neutrophils during Mtb infection. Lastly, perturbation of lipid uptake pathways selectively compromised Mtb survival in activated neutrophils. These findings suggest that neutrophil heterogeneity and metabolic diversity are key to their permissiveness for Mtb and that metabolic pathways in neutrophils represent potential host-directed therapeutics in TB.
Collapse
Affiliation(s)
- J Tucker Andrews
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Zijing Zhang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - G V R Krishna Prasad
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Fischer Huey
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Evgeniya V Nazarova
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jocelyn Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ananya Ranaraja
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tiffany Weinkopff
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lin-Xi Li
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Michael J Birrer
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stanley Ching-Cheng Huang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Nan Zhang
- Immunology, Metastasis & Microenvironment Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Rafael J Argüello
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Jennifer A Philips
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA; Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Joshua T Mattila
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lu Huang
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
7
|
Trzebanski S, Kim JS, Larossi N, Raanan A, Kancheva D, Bastos J, Haddad M, Solomon A, Sivan E, Aizik D, Kralova JS, Gross-Vered M, Boura-Halfon S, Lapidot T, Alon R, Movahedi K, Jung S. Classical monocyte ontogeny dictates their functions and fates as tissue macrophages. Immunity 2024; 57:1225-1242.e6. [PMID: 38749446 DOI: 10.1016/j.immuni.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/29/2023] [Accepted: 04/18/2024] [Indexed: 06/14/2024]
Abstract
Classical monocytes (CMs) are ephemeral myeloid immune cells that circulate in the blood. Emerging evidence suggests that CMs can have distinct ontogeny and originate from either granulocyte-monocyte- or monocyte-dendritic-cell progenitors (GMPs or MDPs). Here, we report surface markers that allowed segregation of murine GMP- and MDP-derived CMs, i.e., GMP-Mo and MDP-Mo, as well as their functional characterization, including fate definition following adoptive cell transfer. GMP-Mo and MDP-Mo yielded an equal increase in homeostatic CM progeny, such as blood-resident non-classical monocytes and gut macrophages; however, these cells differentially seeded various other selected tissues, including the dura mater and lung. Specifically, GMP-Mo and MDP-Mo differentiated into distinct interstitial lung macrophages, linking CM dichotomy to previously reported pulmonary macrophage heterogeneity. Collectively, we provide evidence for the existence of two functionally distinct CM subsets in the mouse that differentially contribute to peripheral tissue macrophage populations in homeostasis and following challenge.
Collapse
Affiliation(s)
- Sébastien Trzebanski
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jung-Seok Kim
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Niss Larossi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ayala Raanan
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Daliya Kancheva
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jonathan Bastos
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Montaser Haddad
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Aryeh Solomon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ehud Sivan
- MICC Cell Observatory Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dan Aizik
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Mor Gross-Vered
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sigalit Boura-Halfon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tsvee Lapidot
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ronen Alon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kiavash Movahedi
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steffen Jung
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
8
|
Soni J, Pandey R. Single cell genomics based insights into the impact of cell-type specific microbial internalization on disease severity. Front Immunol 2024; 15:1401320. [PMID: 38835769 PMCID: PMC11148356 DOI: 10.3389/fimmu.2024.1401320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/19/2024] [Indexed: 06/06/2024] Open
Abstract
Host-microbe interactions are complex and ever-changing, especially during infections, which can significantly impact human physiology in both health and disease by influencing metabolic and immune functions. Infections caused by pathogens such as bacteria, viruses, fungi, and parasites are the leading cause of global mortality. Microbes have evolved various immune evasion strategies to survive within their hosts, which presents a multifaceted challenge for detection. Intracellular microbes, in particular, target specific cell types for survival and replication and are influenced by factors such as functional roles, nutrient availability, immune evasion, and replication opportunities. Identifying intracellular microbes can be difficult because of the limitations of traditional culture-based methods. However, advancements in integrated host microbiome single-cell genomics and transcriptomics provide a promising basis for personalized treatment strategies. Understanding host-microbiota interactions at the cellular level may elucidate disease mechanisms and microbial pathogenesis, leading to targeted therapies. This article focuses on how intracellular microbes reside in specific cell types, modulating functions through persistence strategies to evade host immunity and prolong colonization. An improved understanding of the persistent intracellular microbe-induced differential disease outcomes can enhance diagnostics, therapeutics, and preventive measures.
Collapse
Affiliation(s)
- Jyoti Soni
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst PathogEn (INGEN-HOPE) Laboratory, Council of Scientific & Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst PathogEn (INGEN-HOPE) Laboratory, Council of Scientific & Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
9
|
Liu H, Liu YX, Fan W, Fan B. Metformin switches cell death modes to soothe the apical periodontitis via ZBP1. FASEB J 2024; 38:e23549. [PMID: 38446465 DOI: 10.1096/fj.202302073r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/08/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Apical periodontitis (AP) is a disease caused by pathogenic microorganisms and featured with the degradation of periapical hard tissue. Our recent research showed the crucial role of Z-DNA binding protein 1 (ZBP1)-mediated necroptosis and apoptosis in the pathogenesis of AP. However, the specific regulatory mechanisms of ZBP1 in AP are not fully elucidated. It was found that metformin has a regulatory role in cell necroptosis and apoptosis. But whether and how metformin regulates necroptosis and apoptosis through the ZBP1 in the context of AP remains unknown. This study provided evidence that lipopolysaccharide (LPS) promotes the synthesis of left-handed Z-nucleic acids (Z-NA), which in turn activates ZBP1. Knockout of Zbp1 by CRISPR/Cas9 technology significantly reduced LPS-induced necroptosis and apoptosis in vitro. By using Zbp1-knockout mice, periapical bone destruction was alleviated. Moreover, type I interferon induced the expression of interferon-stimulated genes (ISGs), which serve as a major source of Z-NA. In addition, the RNA-editing enzyme Adenosine Deaminase RNA specific 1 (ADAR1) prevented the accumulation of endogenous Z-NA. Meanwhile, metformin suppressed the ZBP1-mediated necroptosis by inhibiting the expression of ZBP1 and the accumulation of ISGs. Metformin also promoted mitochondrial apoptosis, which is critical for the elimination of intracellular bacterial infection. The enhanced apoptosis further promoted the healing of infected apical bone tissues. In summary, these results demonstrated that the recognition of Z-NA by ZBP1 plays an important role in AP pathogenesis. Metformin suppressed ZBP1-mediated necroptosis and promoted apoptosis, thereby contributing to the soothing of inflammation and bone healing in AP.
Collapse
Affiliation(s)
- Hui Liu
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yu-Xuan Liu
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Fan
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bing Fan
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Li T, Xu B, Li W, Cheng X, Tantai W, Zheng H, Zhao L, Li N, Han C. Allosteric inhibitor of SHP2 enhances macrophage endocytosis and bacteria elimination by increasing caveolae activation and protects against bacterial sepsis. Pharmacol Res 2024; 201:107096. [PMID: 38320736 DOI: 10.1016/j.phrs.2024.107096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
The uncontrolled bacterial infection-induced cytokine storm and sequential immunosuppression are commonly observed in septic patients, which indicates that the activation of phagocytic cells and the efficient and timely elimination of bacteria are crucial for combating bacterial infections. However, the role of dysregulated immune cells and their disrupted function in sepsis remains unclear. Here, we found that macrophages exhibited the impaired endocytosis capabilities in sepsis by Single-cell RNA sequencing and bulk RNA sequencing. Caveolae protein Caveolin-1 (Cav-1) of macrophages was inactivated by SHP2 rapidly during Escherichia coli (E.coli) infection. Allosteric inhibitor of SHP2 effectively maintains Cav-1 phosphorylation to enhance macrophage to endocytose and eliminate bacteria. Additionally, TLR4 endocytosis of macrophage was also enhanced upon E.coli infection by SHP099, inducing an increased and rapidly resolved inflammatory response. In vivo, pretreatment or posttreatment with inhibitor of SHP2 significantly reduced the bacterial burden in organs and mortality of mice subjected E.coli infection or CLP-induced sepsis. The cotreatment of inhibitor of SHP2 with an antibiotic conferred complete protection against mortality in mice. Our findings suggest that Cav-1-mediated endocytosis and bacterial elimination may play a critical role in the pathogenesis of sepsis, highlighting inhibitor of SHP2 as a potential therapeutic agent for sepsis.
Collapse
Affiliation(s)
- Tianliang Li
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| | - Bing Xu
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Wenqian Li
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaotao Cheng
- Suzhou Jizhi Medical Corporation, Jiangsu 215400, China
| | - Wenjing Tantai
- Department of Histology and Embryology and Shanghai Key Laboratory of Cell Engineering, Naval Medical University, Shanghai 200433, China
| | - Haiyan Zheng
- Department of Emergency, Dongfang Hospital, Tongji University, Shanghai 200210, China
| | - Liming Zhao
- Department of Emergency, Dongfang Hospital, Tongji University, Shanghai 200210, China.
| | - Nan Li
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China.
| | - Chaofeng Han
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China; Department of Histology and Embryology and Shanghai Key Laboratory of Cell Engineering, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
11
|
Kou T, Kang L, Zhang B, Li J, Zhao B, Zeng W, Hu X. RBP-J regulates homeostasis and function of circulating Ly6C lo monocytes. eLife 2024; 12:RP88135. [PMID: 38407952 PMCID: PMC10942619 DOI: 10.7554/elife.88135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Notch-RBP-J signaling plays an essential role in the maintenance of myeloid homeostasis. However, its role in monocyte cell fate decisions is not fully understood. Here, we showed that conditional deletion of transcription factor RBP-J in myeloid cells resulted in marked accumulation of blood Ly6Clo monocytes that highly expressed chemokine receptor CCR2. Bone marrow transplantation and parabiosis experiments revealed a cell-intrinsic requirement of RBP-J for controlling blood Ly6CloCCR2hi monocytes. RBP-J-deficient Ly6Clo monocytes exhibited enhanced capacity competing with wildtype counterparts in blood circulation. In accordance with alterations of circulating monocytes, RBP-J deficiency led to markedly increased population of lung tissues with Ly6Clo monocytes and CD16.2+ interstitial macrophages. Furthermore, RBP-J deficiency-associated phenotypes could be genetically corrected by further deleting Ccr2 in myeloid cells. These results demonstrate that RBP-J functions as a crucial regulator of blood Ly6Clo monocytes and thus derived lung-resident myeloid populations, at least in part through regulation of CCR2.
Collapse
Affiliation(s)
- Tiantian Kou
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life Sciences, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Lan Kang
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Bin Zhang
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Jiaqi Li
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Wenwen Zeng
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life Sciences, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life Sciences, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| |
Collapse
|
12
|
Deng L, Wang S. Colonization resistance: the role of gut microbiota in preventing Salmonella invasion and infection. Gut Microbes 2024; 16:2424914. [PMID: 39514544 PMCID: PMC11552263 DOI: 10.1080/19490976.2024.2424914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The human gastrointestinal tract is colonized by a complex microbial ecosystem, the gut microbiota, which is pivotal in maintaining host health and mediating resistance to diseases. This review delineates colonization resistance (CR), a critical defensive mechanism employed by the gut microbiota to safeguard against pathogenic bacterial invasions, notably by Salmonella. We detail the mechanisms through which the gut microbiota impedes Salmonella colonization, including nutrient competition, production of antimicrobial peptides, synthesis of microbial-derived metabolites, and modulation of the host immune response. Additionally, we examine how dietary interventions can influence these mechanisms, thereby augmenting the protective role of the gut microbiota. The review also discusses the sophisticated strategies utilized by Salmonella to overcome these microbial defenses. A thorough understanding of these complex interactions between microbial symbionts and pathogens is crucial for the development of innovative therapeutic strategies that enhance CR, aiming to prevent or treat microbial infections effectively.
Collapse
Affiliation(s)
- Lei Deng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
13
|
Aaes TL, Burgoa Cardás J, Ravichandran KS. Defining solute carrier transporter signatures of murine immune cell subsets. Front Immunol 2023; 14:1276196. [PMID: 38077407 PMCID: PMC10704505 DOI: 10.3389/fimmu.2023.1276196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/13/2023] [Indexed: 12/18/2023] Open
Abstract
Solute carrier (SLC) transporters are membrane-bound proteins that facilitate nutrient transport, and the movement across cellular membranes of various substrates ranging from ions to amino acids, metabolites and drugs. Recently, SLCs have gained increased attention due to their functional linkage to innate immunological processes such as the clearance of dead cells and anti-microbial defense. Further, the druggable nature of these transporters provides unique opportunities for improving outcomes in different immunological diseases. Although the SLCs represent the largest group of transporters and are often identified as significant hits in omics data sets, their role in immunology has been insufficiently explored. This is partly due to the absence of tools that allow identification of SLC expression in particular immune cell types and enable their comparison before embarking on functional studies. In this study, we used publicly available RNA-Seq data sets to analyze the transcriptome in adaptive and innate immune cells, focusing on differentially and highly expressed SLCs. This revealed several new insights: first, we identify differentially expressed SLC transcripts in phagocytes (macrophages, dendritic cells, and neutrophils) compared to adaptive immune cells; second, we identify new potential immune cell markers based on SLC expression; and third, we provide user-friendly online tools for researchers to explore SLC genes of interest (and the rest of the genes as well), in three-way comparative dot plots among immune cells. We expect this work to facilitate SLC research and comparative transcriptomic studies across different immune cells.
Collapse
Affiliation(s)
- Tania Løve Aaes
- Department of Biomedical Molecular Biology, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Unit for Cell Clearance in Health and Disease, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Javier Burgoa Cardás
- Department of Biomedical Molecular Biology, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Unit for Cell Clearance in Health and Disease, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Kodi S. Ravichandran
- Department of Biomedical Molecular Biology, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Unit for Cell Clearance in Health and Disease, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
14
|
Ben-Arosh H, Avraham R. Tissue-specific macrophage immunometabolism. Curr Opin Immunol 2023; 84:102369. [PMID: 37473458 DOI: 10.1016/j.coi.2023.102369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023]
Abstract
Macrophages are phagocytic cells distributed across tissues that sustain homeostasis by constantly probing their local environment. Upon perturbations, macrophages rewire their energy metabolism to execute their immune programs. Intensive research in the field of immunometabolism highlights cell-intrinsic immunometabolites such as succinate and itaconate as immunomodulatory signals. A role for cell-extrinsic stimuli now emerges with evidence for signals that shape macrophages' metabolism in a tissue-specific manner. In this review, we will cover macrophage immunometabolism in the gut, a complex metabolic and immunologically active tissue. During homeostasis, gut macrophages are constantly exposed to pro-inflammatory ligands from the microbiota, and in contrast, are balanced by microbiota-derived anti-inflammatory metabolites. Given their extensive metabolic changes during activation, spatial analyses of the tissue will allow the characterization of metabolic niches of macrophage in the gut. Identifying metabolic perturbations of macrophage subsets during chronic inflammation and infection can direct future tissue-specific metabolotherapies.
Collapse
Affiliation(s)
- Hadar Ben-Arosh
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Roi Avraham
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
15
|
Pham TH, Monack DM. Turning foes into permissive hosts: manipulation of macrophage polarization by intracellular bacteria. Curr Opin Immunol 2023; 84:102367. [PMID: 37437470 PMCID: PMC10543482 DOI: 10.1016/j.coi.2023.102367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
Macrophages function as tissue-immune sentinels and mediate key antimicrobial responses against bacterial pathogens. Yet, they can also act as a cellular niche for intracellular bacteria, such as Salmonella enterica, to persist in infected tissues. Macrophages exhibit heterogeneous activation or polarization, states that are linked to differential antibacterial responses and bacteria permissiveness. Remarkably, recent studies demonstrate that Salmonella and other intracellular bacteria inject virulence effectors into the cellular cytoplasm to skew the macrophage polarization state and reprogram these immune cells into a permissive niche. Here, we review mechanisms of macrophage reprogramming by Salmonella and highlight manipulation of macrophage polarization as a shared bacterial pathogenesis strategy. In addition, we discuss how the interplay of bacterial effector mechanisms, microenvironmental signals, and ontogeny may shape macrophage cell states and functions. Finally, we propose ideas of how further research will advance our understanding of macrophage functional diversity and immunobiology.
Collapse
Affiliation(s)
- Trung Hm Pham
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Denise M Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
16
|
Teh YC, Chooi MY, Chong SZ. Behind the monocyte's mystique: uncovering their developmental trajectories and fates. DISCOVERY IMMUNOLOGY 2023; 2:kyad008. [PMID: 38567063 PMCID: PMC10917229 DOI: 10.1093/discim/kyad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/11/2023] [Accepted: 07/17/2023] [Indexed: 04/04/2024]
Abstract
Monocytes are circulating myeloid cells that are derived from dedicated progenitors in the bone marrow. Originally thought of as mere precursors for the replacement of tissue macrophages, it is increasingly clear that monocytes execute distinct effector functions and may give rise to monocyte-derived cells with unique properties from tissue-resident macrophages. Recently, the advent of novel experimental approaches such as single-cell analysis and fate-mapping tools has uncovered an astonishing display of monocyte plasticity and heterogeneity, which we believe has emerged as a key theme in the field of monocyte biology in the last decade. Monocyte heterogeneity is now recognized to develop as early as the progenitor stage through specific imprinting mechanisms, giving rise to specialized effector cells in the tissue. At the same time, monocytes must overcome their susceptibility towards cellular death to persist as monocyte-derived cells in the tissues. Environmental signals that preserve their heterogenic phenotypes and govern their eventual fates remain incompletely understood. In this review, we will summarize recent advances on the developmental trajectory of monocytes and discuss emerging concepts that contributes to the burgeoning field of monocyte plasticity and heterogeneity.
Collapse
Affiliation(s)
- Ye Chean Teh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ming Yao Chooi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
17
|
Heyman O, Yehezkel D, Ciolli Mattioli C, Blumberger N, Rosenberg G, Solomon A, Hoffman D, Bossel Ben-Moshe N, Avraham R. Paired single-cell host profiling with multiplex-tagged bacterial mutants reveals intracellular virulence-immune networks. Proc Natl Acad Sci U S A 2023; 120:e2218812120. [PMID: 37399397 PMCID: PMC10334762 DOI: 10.1073/pnas.2218812120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/24/2023] [Indexed: 07/05/2023] Open
Abstract
Encounters between host cells and intracellular bacterial pathogens lead to complex phenotypes that determine the outcome of infection. Single-cell RNA sequencing (scRNA-seq) is increasingly used to study the host factors underlying diverse cellular phenotypes but has limited capacity to analyze the role of bacterial factors. Here, we developed scPAIR-seq, a single-cell approach to analyze infection with a pooled library of multiplex-tagged, barcoded bacterial mutants. Infected host cells and barcodes of intracellular bacterial mutants are both captured by scRNA-seq to functionally analyze mutant-dependent changes in host transcriptomes. We applied scPAIR-seq to macrophages infected with a library of Salmonella Typhimurium secretion system effector mutants. We analyzed redundancy between effectors and mutant-specific unique fingerprints and mapped the global virulence network of each individual effector by its impact on host immune pathways. ScPAIR-seq is a powerful tool to untangle bacterial virulence strategies and their complex interplay with host defense strategies that drive infection outcome.
Collapse
Affiliation(s)
- Ori Heyman
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Dror Yehezkel
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Camilla Ciolli Mattioli
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Neta Blumberger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Gili Rosenberg
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Aryeh Solomon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Dotan Hoffman
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Noa Bossel Ben-Moshe
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Roi Avraham
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| |
Collapse
|
18
|
Ehrhardt K, Becker AL, Grassl GA. Determinants of persistent Salmonella infections. Curr Opin Immunol 2023; 82:102306. [PMID: 36989589 DOI: 10.1016/j.coi.2023.102306] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/29/2023]
Abstract
Persistent bacterial infections constitute an enormous challenge for public health. Amongst infections with other bacteria, infections with typhoidal and nontyphoidal Salmonella enterica serovars can result in long-term infections of the human and animal host. Persistent infections that are asymptomatic are difficult to identify and thus can serve as a silent reservoir for transmission. Symptomatic persistent infections are often difficult to treat as they harbor a combination of antibiotic-tolerant and antibiotic-resistant bacteria and boost the spread of genetic antibiotic resistance. In the last couple of years, the field has made some major progress in understanding the role of persisters, their reservoirs as well as their interplay with host factors in persistent Salmonella infections.
Collapse
|
19
|
Ng LG, Liu Z, Kwok I, Ginhoux F. Origin and Heterogeneity of Tissue Myeloid Cells: A Focus on GMP-Derived Monocytes and Neutrophils. Annu Rev Immunol 2023; 41:375-404. [PMID: 37126421 DOI: 10.1146/annurev-immunol-081022-113627] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Myeloid cells are a significant proportion of leukocytes within tissues, comprising granulocytes, monocytes, dendritic cells, and macrophages. With the identification of various myeloid cells that perform separate but complementary functions during homeostasis and disease, our understanding of tissue myeloid cells has evolved significantly. Exciting findings from transcriptomics profiling and fate-mapping mouse models have facilitated the identification of their developmental origins, maturation, and tissue-specific specializations. This review highlights the current understanding of tissue myeloid cells and the contributing factors of functional heterogeneity to better comprehend the complex and dynamic immune interactions within the healthy or inflamed tissue. Specifically, we discuss the new understanding of the contributions of granulocyte-monocyte progenitor-derived phagocytes to tissue myeloid cell heterogeneity as well as the impact of niche-specific factors on monocyte and neutrophil phenotype and function. Lastly, we explore the developing paradigm of myeloid cell heterogeneity during inflammation and disease.
Collapse
Affiliation(s)
- Lai Guan Ng
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China;
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore; ,
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Biopolis, Singapore; ,
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Biopolis, Singapore; ,
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institut Gustave Roussy, INSERM U1015, Villejuif, France
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore
| |
Collapse
|
20
|
Avraham R. Untangling Cellular Host-Pathogen Encounters at Infection Bottlenecks. Infect Immun 2023; 91:e0043822. [PMID: 36939328 PMCID: PMC10112260 DOI: 10.1128/iai.00438-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Bacterial pathogens can invade the tissue and establish a protected intracellular niche at the site of invasion that can spread locally (e.g., microcolonies) or to systemic sites (e.g., granulomas). Invasion of the tissue and establishment of intracellular infection are rare events that are difficult to study in the in vivo setting but have critical clinical consequences, such as long-term carriage, reinfections, and emergence of antibiotic resistance. Here, I discuss Salmonella interactions with its host macrophage during early stages of infection and their critical role in determining infection outcome. The dynamics of host-pathogen interactions entail highly heterogenous host immunity, bacterial virulence, and metabolic cross talk, requiring in vivo analysis at single-cell resolution. I discuss models and single-cell approaches that provide a global understanding of the establishment of a protected intracellular niche within the tissue and the host-pathogen landscape at infection bottlenecks during early stages of infection. Studying cellular host-pathogen interactions in vivo can improve our knowledge of the trajectory of infection between the initial inoculation with a dose of pathogens and the appearance of symptoms of disease.
Collapse
Affiliation(s)
- Roi Avraham
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
21
|
Zhao Q, Gong Z, Wang J, Fu L, Zhang J, Wang C, Miron RJ, Yuan Q, Zhang Y. A Zinc- and Calcium-Rich Lysosomal Nanoreactor Rescues Monocyte/Macrophage Dysfunction under Sepsis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205097. [PMID: 36596693 PMCID: PMC9951326 DOI: 10.1002/advs.202205097] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/05/2022] [Indexed: 05/31/2023]
Abstract
Sepsis is a dysregulation of the immune response to pathogens and has high morbidity and mortality worldwide. However, the unclear mapping and course of dysregulated immune cells currently hinders the development of advanced therapeutic strategies to treat sepsis. Here, evidence is provided using single-cell RNA sequencing from peripheral blood mononuclear cells in sepsis that pathogens attacking monocytes/macrophages disrupt their immune function. The results reveal an enormous decline in monocytes/macrophages in sepsis and chart the evolution of their impaired phagocytosis (Pha) capabilities. Inspired by these findings, nanoparticles, named "Alpha-MOFs," are developed that target dysfunctional monocytes/macrophages to actively (A) lift (L) Pha by the release of lysosome-sensitive ions from a mineralized metal-organic framework (MOF). Alpha-MOFs have good stability and biosafety in peripheral blood and efficiently targeted monocytes/macrophages. They also release calcium and zinc ions into monocyte/macrophage lysosomes to promote the Pha and degradation of bacteria. Taken together, these results suggest that Alpha-MOFs rescue monocytes/macrophages dysfunction and effectively improve their survival rate during sepsis.
Collapse
Affiliation(s)
- Qin Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral BiomedicineMinistry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Medical Research InstituteSchool of MedicineWuhan UniversityWuhan430071P. R. China
| | - Zijian Gong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral BiomedicineMinistry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Medical Research InstituteSchool of MedicineWuhan UniversityWuhan430071P. R. China
| | - Jiaolong Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral BiomedicineMinistry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Medical Research InstituteSchool of MedicineWuhan UniversityWuhan430071P. R. China
| | - Liangliang Fu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral BiomedicineMinistry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Medical Research InstituteSchool of MedicineWuhan UniversityWuhan430071P. R. China
| | - Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral BiomedicineMinistry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Medical Research InstituteSchool of MedicineWuhan UniversityWuhan430071P. R. China
| | - Can Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral BiomedicineMinistry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Medical Research InstituteSchool of MedicineWuhan UniversityWuhan430071P. R. China
| | - Richard J. Miron
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral BiomedicineMinistry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Medical Research InstituteSchool of MedicineWuhan UniversityWuhan430071P. R. China
| | - Quan Yuan
- Institute of Chemical Biology and NanomedicineState Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral BiomedicineMinistry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Medical Research InstituteSchool of MedicineWuhan UniversityWuhan430071P. R. China
| |
Collapse
|
22
|
Pham TH, Xue Y, Brewer SM, Bernstein KE, Quake SR, Monack DM. Single-cell profiling identifies ACE + granuloma macrophages as a nonpermissive niche for intracellular bacteria during persistent Salmonella infection. SCIENCE ADVANCES 2023; 9:eadd4333. [PMID: 36608122 PMCID: PMC9821941 DOI: 10.1126/sciadv.add4333] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Macrophages mediate key antimicrobial responses against intracellular bacterial pathogens, such as Salmonella enterica. Yet, they can also act as a permissive niche for these pathogens to persist in infected tissues within granulomas, which are immunological structures composed of macrophages and other immune cells. We apply single-cell transcriptomics to investigate macrophage functional diversity during persistent S. enterica serovar Typhimurium (STm) infection in mice. We identify determinants of macrophage heterogeneity in infected spleens and describe populations of distinct phenotypes, functional programming, and spatial localization. Using an STm mutant with impaired ability to polarize macrophage phenotypes, we find that angiotensin-converting enzyme (ACE) defines a granuloma macrophage population that is nonpermissive for intracellular bacteria, and their abundance anticorrelates with tissue bacterial burden. Disruption of pathogen control by neutralizing TNF is linked to preferential depletion of ACE+ macrophages in infected tissues. Thus, ACE+ macrophages have limited capacity to serve as cellular niche for intracellular bacteria to establish persistent infection.
Collapse
Affiliation(s)
- Trung H. M. Pham
- Department of Microbiology and Immunology, Stanford University, School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuan Xue
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Susan M. Brewer
- Department of Microbiology and Immunology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Kenneth E. Bernstein
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen R. Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Denise M. Monack
- Department of Microbiology and Immunology, Stanford University, School of Medicine, Stanford, CA, USA
| |
Collapse
|
23
|
Tang K, Hou Y, Cheng L, Zhang Y, Li J, Qin Q, Zheng X, Jia X, Zhang C, Zhuang R, Zhang Y, Jin B, Chen L, Ma Y. Increased blood CD226 - inflammatory monocytes with low antigen presenting potential correlate positively with severity of hemorrhagic fever with renal syndrome. Ann Med 2023; 55:2247000. [PMID: 37585670 PMCID: PMC10435008 DOI: 10.1080/07853890.2023.2247000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Hantaan virus (HTNV) infection can cause severe hemorrhagic fever with renal syndrome (HFRS). Inflammatory monocytes (iMOs) are involved in early antiviral responses. Previous studies have found that blood iMOs numbers increase in the acute phase of HFRS. Here, we further identified the phenotypic characteristics of iMOs in HFRS and explored whether phenotypic changes in iMOs were associated with HFRS severity. MATERIALS AND METHODS Blood samples from 85 HFRS patients were used for phenotypic analysis of iMOs by flow cytometry. Plasma HTNV load was determined using RT-PCR. THP-1 cells overexpressing CD226 were used to investigate the effects of CD226 on HLA-DR/DP/DQ and CD80 expression. A mouse model was used to test macrophage phenotype following HTNV infection. RESULTS The proportion of CD226- iMOs in the acute phase of HFRS was 66.83 (35.05-81.72) %, which was significantly higher than that in the convalescent phase (5.32 (1.36-13.52) %) and normal controls (7.39 (1.15-18.11) %) (p < 0.0001). In the acute phase, the proportion of CD226- iMOs increased more in patients with more severe HFRS and correlated positively with HTNV load and negatively with platelet count. Notably, CD226- iMOs expressed lower levels of HLA-DR/DP/DQ and CD80 than CD226+ iMOs, and overexpression CD226 could enhance the expression of HLA-DR/DP/DQ and CD80. In a mouse model, HTNV also induced the expansion of CD226- macrophages, with decreased expression of I-A/I-E and CD80. CONCLUSIONS CD226- iMOs increased during HTNV infection and the decrease in CD226 hampered the expression of HLA-DR/DP/DQ and CD80, which may promote the immune escape of HTNV and exacerbate clinical symptoms.
Collapse
Affiliation(s)
- Kang Tang
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Yongli Hou
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Linfeng Cheng
- Department of Microbiology, The Fourth Military Medical University, Xi’an, P. R. China
| | - Yusi Zhang
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Juan Li
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Qi Qin
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Xuyang Zheng
- Center for Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, P. R. China
| | - Xiaozhou Jia
- Eighth Hospital of Xi’an, Xi’an, Shaanxi, P. R. China
| | - Chunmei Zhang
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Ran Zhuang
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Yun Zhang
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Boquan Jin
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Lihua Chen
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Ying Ma
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| |
Collapse
|
24
|
Costa VG, Costa SM, Saramago M, Cunha MV, Arraiano CM, Viegas SC, Matos RG. Developing New Tools to Fight Human Pathogens: A Journey through the Advances in RNA Technologies. Microorganisms 2022; 10:2303. [PMID: 36422373 PMCID: PMC9697208 DOI: 10.3390/microorganisms10112303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 09/18/2024] Open
Abstract
A long scientific journey has led to prominent technological advances in the RNA field, and several new types of molecules have been discovered, from non-coding RNAs (ncRNAs) to riboswitches, small interfering RNAs (siRNAs) and CRISPR systems. Such findings, together with the recognition of the advantages of RNA in terms of its functional performance, have attracted the attention of synthetic biologists to create potent RNA-based tools for biotechnological and medical applications. In this review, we have gathered the knowledge on the connection between RNA metabolism and pathogenesis in Gram-positive and Gram-negative bacteria. We further discuss how RNA techniques have contributed to the building of this knowledge and the development of new tools in synthetic biology for the diagnosis and treatment of diseases caused by pathogenic microorganisms. Infectious diseases are still a world-leading cause of death and morbidity, and RNA-based therapeutics have arisen as an alternative way to achieve success. There are still obstacles to overcome in its application, but much progress has been made in a fast and effective manner, paving the way for the solid establishment of RNA-based therapies in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Sandra C. Viegas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (V.G.C.); (S.M.C.); (M.S.); (M.V.C.); (C.M.A.)
| | - Rute G. Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (V.G.C.); (S.M.C.); (M.S.); (M.V.C.); (C.M.A.)
| |
Collapse
|
25
|
Das RN, Tevet Y, Safriel S, Han Y, Moshe N, Lambiase G, Bassi I, Nicenboim J, Brückner M, Hirsch D, Eilam-Altstadter R, Herzog W, Avraham R, Poss KD, Yaniv K. Generation of specialized blood vessels via lymphatic transdifferentiation. Nature 2022; 606:570-575. [PMID: 35614218 PMCID: PMC9875863 DOI: 10.1038/s41586-022-04766-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/14/2022] [Indexed: 01/27/2023]
Abstract
The lineage and developmental trajectory of a cell are key determinants of cellular identity. In the vascular system, endothelial cells (ECs) of blood and lymphatic vessels differentiate and specialize to cater to the unique physiological demands of each organ1,2. Although lymphatic vessels were shown to derive from multiple cellular origins, lymphatic ECs (LECs) are not known to generate other cell types3,4. Here we use recurrent imaging and lineage-tracing of ECs in zebrafish anal fins, from early development to adulthood, to uncover a mechanism of specialized blood vessel formation through the transdifferentiation of LECs. Moreover, we demonstrate that deriving anal-fin vessels from lymphatic versus blood ECs results in functional differences in the adult organism, uncovering a link between cell ontogeny and functionality. We further use single-cell RNA-sequencing analysis to characterize the different cellular populations and transition states involved in the transdifferentiation process. Finally, we show that, similar to normal development, the vasculature is rederived from lymphatics during anal-fin regeneration, demonstrating that LECs in adult fish retain both potency and plasticity for generating blood ECs. Overall, our research highlights an innate mechanism of blood vessel formation through LEC transdifferentiation, and provides in vivo evidence for a link between cell ontogeny and functionality in ECs.
Collapse
Affiliation(s)
- Rudra N. Das
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel, Corresponding Authors Karina Yaniv Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel, , Rudra N. Das Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel,
| | - Yaara Tevet
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Stav Safriel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yanchao Han
- Duke Regeneration Center, Department of Cell Biology, Duke University School of Medicine, Durham, United States, Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, China
| | - Noga Moshe
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Giuseppina Lambiase
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ivan Bassi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Julian Nicenboim
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Matthias Brückner
- University of Muenster and Max Plank Institute for Molecular Biomedicine, Muenster, Germany
| | - Dana Hirsch
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | | | - Wiebke Herzog
- University of Muenster and Max Plank Institute for Molecular Biomedicine, Muenster, Germany
| | - Roi Avraham
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Kenneth D. Poss
- Duke Regeneration Center, Department of Cell Biology, Duke University School of Medicine, Durham, United States
| | - Karina Yaniv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel, Corresponding Authors Karina Yaniv Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel, , Rudra N. Das Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel,
| |
Collapse
|