1
|
Imyanitov EN, Preobrazhenskaya EV, Mitiushkina NV. Overview on biomarkers for immune oncology drugs. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002298. [PMID: 40135049 PMCID: PMC11933888 DOI: 10.37349/etat.2025.1002298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Although immune checkpoint inhibitors (ICIs) are widely used in clinical oncology, less than half of treated cancer patients derive benefit from this therapy. Both tumor- and host-related variables are implicated in response to ICIs. The predictive value of PD-L1 expression is confined only to several cancer types, so this molecule is not an agnostic biomarker. Highly elevated tumor mutation burden (TMB) caused either by excessive carcinogenic exposure or by a deficiency in DNA repair is a reliable indicator for ICI efficacy, as exemplified by tumors with high-level microsatellite instability (MSI-H). Other potentially relevant tumor-related characteristics include gene expression signatures, pattern of tumor infiltration by immune cells, and, perhaps, some immune-response modifying somatic mutations. Host-related factors have not yet been comprehensively considered in relevant clinical trials. Microbiome composition, markers of systemic inflammation [e.g., neutrophil-to-lymphocyte ratio (NLR)], and human leucocyte antigen (HLA) diversity may influence the efficacy of ICIs. Studies on ICI biomarkers are likely to reveal modifiable tumor or host characteristics, which can be utilized to direct the antitumor immune defense. Examples of the latter approach include tumor priming to immune therapy by cytotoxic drugs and elevation of ICI efficacy by microbiome modification.
Collapse
Affiliation(s)
- Evgeny N. Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
- Department of Medical Genetics, St.-Petersburg State Pediatric Medical University, 194100 St.-Petersburg, Russia
| | - Elena V. Preobrazhenskaya
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
- Department of Medical Genetics, St.-Petersburg State Pediatric Medical University, 194100 St.-Petersburg, Russia
| | - Natalia V. Mitiushkina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
| |
Collapse
|
2
|
Shiota M, Tanegashima T, Tatarano S, Kamoto T, Matsuyama H, Sakai H, Igawa T, Kamba T, Fujimoto N, Yokomizo A, Naito S, Eto M. The effect of human leukocyte antigen genotype on survival in advanced prostate cancer treated with primary androgen deprivation therapy: the KYUCOG-1401-A study. Prostate Cancer Prostatic Dis 2025; 28:193-201. [PMID: 38368501 DOI: 10.1038/s41391-024-00808-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Immune editing, in which human leukocyte antigens (HLA) have critical roles, has been suggested to shape the landscape of human cancer. This study prospectively investigated whether HLA gene zygosity is associated with the prognosis of primary androgen deprivation therapy in advanced prostate cancer. METHODS KYUCOG-1401-A was conducted in conjunction with a prospective clinical trial (KYUCOG-1401). Among the patients enrolled in KYUCOG-1401 and treated with primary androgen deprivation therapy, only Japanese patients were included. HLA genotypes of HLA-A, B, C, DRB1, DQB1, and DPB1 were determined. The effect of divergence of HLA genotypes on time to progression, prostate cancer-specific survival, and overall survival was evaluated. RESULTS Among 127 patients, homozygosity for HLA-DRB1 (HR, 95% CI; 4.05, 1.54-10.7, P = 0.0047) and HLA-DQB1 (HR, 95% CI; 3.75, 1.47-9.58, P = 0.0058) was associated with an increased risk of prostate cancer-specific mortality. Patients with higher HLA evolutionary divergence scores at HLA-DQB1 (HR, 95% CI; 0.90, 0.82-0.97, P = 0.0093) had lower risks of prostate cancer-specific mortality. Androgen-responsive gene sets were upregulated in CD4low and CD8low tumors in the prostate cancer cohort, but not in the bladder and kidney cancer cohorts. CONCLUSIONS This study suggested that the diversity of HLA-II loci including HLA-DRB1 and HLA-DQB1 plays an important role in advanced prostate cancer survival, contributing to improved risk stratification in advanced prostate cancer. Moreover, it was shown that CD4+ T cells play an important role in androgen deprivation therapy, suggesting that immunotherapy targeting CD4+ T cells is promising for prostate cancer.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Tokiyoshi Tanegashima
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shuichi Tatarano
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Toshiyuki Kamoto
- Department of Urology, Faculty of Medicine, Miyazaki University, Miyazaki, Japan
| | - Hideyasu Matsuyama
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Hideki Sakai
- Department of Urology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tsukasa Igawa
- Department of Urology, School of Medicine, Kurume University, Kurume, Japan
| | - Tomomi Kamba
- Department of Urology, Kumamoto University, Kumamoto, Japan
| | - Naohiro Fujimoto
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akira Yokomizo
- Department of Urology, Harasanshin Hospital, Fukuoka, Japan
| | - Seiji Naito
- Department of Urology, Harasanshin Hospital, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Cesano A, Augustin R, Barrea L, Bedognetti D, Bruno TC, Carturan A, Hammer C, Ho WS, Kather JN, Kirchhoff T, Lu RO, McQuade J, Najjar YG, Pietrobon V, Ruella M, Shen R, Soldati L, Spencer C, Betof Warner A, Warren S, Ziv E, Marincola FM. Advances in the understanding and therapeutic manipulation of cancer immune responsiveness: a Society for Immunotherapy of Cancer (SITC) review. J Immunother Cancer 2025; 13:e008876. [PMID: 39824527 PMCID: PMC11749597 DOI: 10.1136/jitc-2024-008876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 12/12/2024] [Indexed: 01/20/2025] Open
Abstract
Cancer immunotherapy-including immune checkpoint inhibition (ICI) and adoptive cell therapy (ACT)-has become a standard, potentially curative treatment for a subset of advanced solid and liquid tumors. However, most patients with cancer do not benefit from the rapidly evolving improvements in the understanding of principal mechanisms determining cancer immune responsiveness (CIR); including patient-specific genetically determined and acquired factors, as well as intrinsic cancer cell biology. Though CIR is multifactorial, fundamental concepts are emerging that should be considered for the design of novel therapeutic strategies and related clinical studies. Recent advancements as well as novel approaches to address the limitations of current treatments are discussed here, with a specific focus on ICI and ACT.
Collapse
Affiliation(s)
| | - Ryan Augustin
- University of Pittsburgh Department of Medicine, Pittsburgh, Pennsylvania, USA
- Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Tullia C Bruno
- University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | | | - Winson S Ho
- University of California San Francisco, San Francisco, California, USA
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
| | - Tomas Kirchhoff
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York University Langone Health, New York, NY, USA
| | - Rongze O Lu
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Jennifer McQuade
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yana G Najjar
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | - Marco Ruella
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rhine Shen
- Kite Pharma Inc, Santa Monica, California, USA
| | | | - Christine Spencer
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | | | | | - Elad Ziv
- University of California San Francisco, San Francisco, California, USA
| | | |
Collapse
|
4
|
Garrido MA, Navarro-Ocón A, Ronco-Díaz V, Olea N, Aptsiauri N. Loss of Heterozygosity (LOH) Affecting HLA Genes in Breast Cancer: Clinical Relevance and Therapeutic Opportunities. Genes (Basel) 2024; 15:1542. [PMID: 39766811 PMCID: PMC11675875 DOI: 10.3390/genes15121542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Major histocompatibility complex (MHC) class-I molecules (or Human Leucocyte Antigen class-I) play a key role in adaptive immunity against cancer. They present specific tumor neoantigens to cytotoxic T cells and provoke an antitumor cytotoxic response. The total or partial loss of HLA molecules can inhibit the immune system's ability to detect and destroy cancer cells. Loss of heterozygosity (LOH) is a common irreversible genetic alteration that occurs in the great majority of human tumors, including breast cancer. LOH at chromosome 6, which involves HLA genes (LOH-HLA), leads to the loss of an HLA haplotype and is linked to cancer progression and a weak response to cancer immunotherapy. Therefore, the loss of genes or an entire chromosomal region which are critical for antigen presentation is of particular importance in the search for novel prognostic and clinical biomarkers in breast cancer. Here, we review the role of LOH-HLA in breast cancer, its contribution to an understanding of cancer immune escape and tumor progression, and discuss how it can be targeted in cancer therapy.
Collapse
Affiliation(s)
- María Antonia Garrido
- Radiology Service, Virgen de la Nieves University Hospital, 18014 Granada, Spain; (M.A.G.); (N.O.)
| | - Alba Navarro-Ocón
- Department of Biochemistry, Molecular Biology III and Immunology, School of Medicine, University of Granada, 18016 Granada, Spain; (A.N.-O.); (V.R.-D.)
- Biosanitary Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Víctor Ronco-Díaz
- Department of Biochemistry, Molecular Biology III and Immunology, School of Medicine, University of Granada, 18016 Granada, Spain; (A.N.-O.); (V.R.-D.)
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), 18016 Granada, Spain
| | - Nicolás Olea
- Radiology Service, Virgen de la Nieves University Hospital, 18014 Granada, Spain; (M.A.G.); (N.O.)
- Biosanitary Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
- Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain
- CIBER of Epidemiology and Public Health (CIBERSP), 28034 Madrid, Spain
| | - Natalia Aptsiauri
- Department of Biochemistry, Molecular Biology III and Immunology, School of Medicine, University of Granada, 18016 Granada, Spain; (A.N.-O.); (V.R.-D.)
- Biosanitary Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
| |
Collapse
|
5
|
Abed A, Reid A, Law N, Millward M, Gray ES. HLA-A01 and HLA-B27 Supertypes, but Not HLA Homozygocity, Correlate with Clinical Outcome among Patients with Non-Small Cell Lung Cancer Treated with Pembrolizumab in Combination with Chemotherapy. Cancers (Basel) 2024; 16:3102. [PMID: 39272960 PMCID: PMC11394546 DOI: 10.3390/cancers16173102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
INTRODUCTION Maximal heterozygosity on the human leukocyte antigen (HLA) loci has been found to be associated with improved survival and development of immune-related adverse events (irAEs) among NSCLC patients treated with immunotherapy. Here, we investigated the effect of germline HLA-I/-II on clinical outcomes among NSCLC patients treated with first-line pembrolizumab in combination with chemotherapy. METHOD We prospectively recruited patients with NSCLC who were commencing first-line pembrolizumab in combination with chemotherapy. DNA from white blood cells was used for high-resolution HLA-I/II typing. RESULTS Of the 65 patients recruited, 53 complied with the inclusion criteria. We did not find an association between HLA-I/-II homozygosity and clinical outcome among the studied population. However, the presence of HLA-A01 was associated with unfavourable PFS (HR = 2.32, 95%CI 1.13-4.77, p = 0.022) and worsening OS (HR = 2.86, 95%CI 1.06-7.70, p = 0.038). The presence of HLA-B27 was associated with improved PFS (HR = 0.35, 95%CI 0.18-0.71, p = 0.004) and trends toward improving OS. None of the HLA-I supertypes were associated with the development or worsening of irAEs. CONCLUSIONS The absence of association between genomic HLA-I/-II homozygosity and clinical outcome among patients with advanced NSCLC treated with pembrolizumab in combination with chemotherapy might reflect a diminished role for HLA molecules among patients with low or no PD-L1. HLA-A01 and HLA-B27 might have a role in predicting clinical outcomes among this cohort of patients. Further studies are needed to explore biomarkers for this group of patients.
Collapse
Affiliation(s)
- Afaf Abed
- Centre for Precision Health, Edith Cowan University, Joondalup, WA 6027, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
- School of Medicine, University of Western Australia, Crawley, WA 6009, Australia
| | - Anna Reid
- Centre for Precision Health, Edith Cowan University, Joondalup, WA 6027, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Ngie Law
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
| | - Michael Millward
- School of Medicine, University of Western Australia, Crawley, WA 6009, Australia
| | - Elin S Gray
- Centre for Precision Health, Edith Cowan University, Joondalup, WA 6027, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
6
|
Cao XY, Zhou HF, Liu XJ, Li XB. Human leukocyte antigen evolutionary divergence as a novel risk factor for donor selection in acute lymphoblastic leukemia patients undergoing haploidentical hematopoietic stem cell transplantation. Front Immunol 2024; 15:1440911. [PMID: 39229273 PMCID: PMC11369896 DOI: 10.3389/fimmu.2024.1440911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/01/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction The human leukocyte antigen (HLA) evolutionary divergence (HED) reflects immunopeptidome diversity and has been shown to predict the response of tumors to immunotherapy. Its impact on allogeneic hematopoietic stem cell transplantation (HSCT) is controversial in different studies. Methods In this study, we retrospectively analyzed the clinical impact of class I and II HED in 225 acute lymphoblastic leukemia patients undergoing HSCT from related haploidentical donors. The HED for recipient, donor, and donor-recipient pair was calculated based on Grantham distance, which accounts for variations in the composition, polarity, and volume of each amino acid within the peptide-binding groove of two HLA alleles. The median value of HED scores was used as a cut-off to stratify patients with high or low HED. Results The class I HED for recipient (R_HEDclass I) showed the strongest association with cumulative incidence of relapse (12.2 vs. 25.0%, P = 0.00814) but not with acute graft-versus-host disease. The patients with high class II HED for donor-recipient (D/R_HEDclass II) showed a significantly higher cumulative incidence of severe aGVHD than those with low D/R_HEDclass II (24.0% vs. 6.1%, P = 0.0027). Multivariate analysis indicated that a high D/R_HEDclass II was an independent risk factor for the development of severe aGVHD (P = 0.007), and a high R_HEDclass I had a more than two-fold reduced risk of relapse (P = 0.028). However, there was no discernible difference in overall survival (OS) or disease-free survival (DFS) for patients with high or low HED, which was inconsistent with the previous investigation. Discussion While the observation are limited by the presented single center retrospective cohort, the results show that HED has poor prognostic value in OS or DFS, as well as the associations with relapse and aGVHD. In haploidentical setting, class II HED for donor-recipient pair (D/R_HEDclass II) is an independent and novel risk factor for finding the best haploidentical donor, which could potentially influence clinical practice if verified in larger cohorts.
Collapse
Affiliation(s)
- Xing-Yu Cao
- Department of Bone Marrow Transplant, Hebei Yanda Lu Daopei Hospital, Langfang, China
- Department of Bone Marrow Transplant, Beijing Lu Daopei Hospital, Beijing, China
| | - Hai-Fei Zhou
- Beijing BFR Gene Diagnostics Co., Ltd, Beijing, China
| | - Xiang-Jun Liu
- Beijing BFR Gene Diagnostics Co., Ltd, Beijing, China
| | - Xiao-Bo Li
- Beijing BFR Gene Diagnostics Co., Ltd, Beijing, China
| |
Collapse
|
7
|
Ding XH, Xiao Y, Chen F, Liu CL, Fu T, Shao ZM, Jiang YZ. The HLA-I landscape confers prognosis and antitumor immunity in breast cancer. Brief Bioinform 2024; 25:bbae151. [PMID: 38602320 PMCID: PMC11007120 DOI: 10.1093/bib/bbae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/12/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
Breast cancer is a highly heterogeneous disease with varied subtypes, prognoses and therapeutic responsiveness. Human leukocyte antigen class I (HLA-I) shapes the immunity and thereby influences the outcome of breast cancer. However, the implications of HLA-I variations in breast cancer remain poorly understood. In this study, we established a multiomics cohort of 1156 Chinese breast cancer patients for HLA-I investigation. We calculated four important HLA-I indicators in each individual, including HLA-I expression level, somatic HLA-I loss of heterozygosity (LOH), HLA-I evolutionary divergence (HED) and peptide-binding promiscuity (Pr). Then, we evaluated their distribution and prognostic significance in breast cancer subtypes. We found that the four breast cancer subtypes had distinct features of HLA-I indicators. Increased expression of HLA-I and LOH were enriched in triple-negative breast cancer (TNBC), while Pr was relatively higher in hot tumors within TNBCs. In particular, a higher Pr indicated a better prognosis in TNBCs by regulating the infiltration of immune cells and the expression of immune molecules. Using the matched genomic and transcriptomic data, we found that mismatch repair deficiency-related mutational signature and pathways were enriched in low-Pr TNBCs, suggesting that targeting mismatch repair deficiency for synthetic lethality might be promising therapy for these patients. In conclusion, we presented an overview of HLA-I indicators in breast cancer and provided hints for precision treatment for low-Pr TNBCs.
Collapse
Affiliation(s)
- Xiao-Hong Ding
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Fudan University, Shanghai, 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P.R. China
| | - Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Fudan University, Shanghai, 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P.R. China
| | - Fenfang Chen
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Fudan University, Shanghai, 200032, P.R. China
| | - Cheng-Lin Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Fudan University, Shanghai, 200032, P.R. China
| | - Tong Fu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Fudan University, Shanghai, 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P.R. China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Fudan University, Shanghai, 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P.R. China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Fudan University, Shanghai, 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P.R. China
| |
Collapse
|
8
|
Wang X, Lamberti G, Di Federico A, Alessi J, Ferrara R, Sholl ML, Awad MM, Vokes N, Ricciuti B. Tumor mutational burden for the prediction of PD-(L)1 blockade efficacy in cancer: challenges and opportunities. Ann Oncol 2024:S0923-7534(24)00084-X. [PMID: 38537779 DOI: 10.1016/j.annonc.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/19/2024] [Accepted: 03/19/2024] [Indexed: 05/16/2024] Open
Abstract
Tumor mutational burden (TMB) is a biomarker that measures the number of somatic mutations in a tumor's genome. TMB has emerged as a predictor of response to immune checkpoint inhibitors (ICIs) in various cancer types, and several studies have shown that patients with high TMB have better outcomes when treated with programmed death-ligand 1-based therapies. Recently, the Food and Drug Administration has approved TMB as a companion diagnostic for the use of pembrolizumab in solid tumors. However, despite its potential, the use of TMB as a biomarker for immunotherapy efficacy is limited by several factors. Here we review the limitations of TMB in predicting immunotherapy outcomes in patients with cancer and discuss potential strategies to optimize its use in the clinic.
Collapse
Affiliation(s)
- X Wang
- Harvard T.H. Chan School of Public Health, Boston
| | - G Lamberti
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - A Di Federico
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - J Alessi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - R Ferrara
- University Vita-Salute San Raffaele, Milan; Department of Medical Oncology, IRCCS San Raffaele, Milan, Italy
| | - M L Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston
| | - M M Awad
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - N Vokes
- Department of Thoracic Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, USA
| | - B Ricciuti
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA.
| |
Collapse
|
9
|
de Joode K, Heersche N, Basak EA, Bins S, van der Veldt AAM, van Schaik RHN, Mathijssen RHJ. Review - The impact of pharmacogenetics on the outcome of immune checkpoint inhibitors. Cancer Treat Rev 2024; 122:102662. [PMID: 38043396 DOI: 10.1016/j.ctrv.2023.102662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
The development of immune checkpoint inhibitors (ICIs) has a tremendous effect on the treatment options for multiple types of cancer. Nonetheless, there is a large interpatient variability in response, survival, and the development of immune-related adverse events (irAEs). Pharmacogenetics is the general term for germline genetic variations, which may cause the observed interindividual differences in response or toxicity to treatment. These genetic variations can either be single-nucleotide polymorphisms (SNPs) or structural variants, such as gene deletions, amplifications or rearrangements. For ICIs, pharmacogenetic variation in the human leukocyte antigen molecules has also been studied with regard to treatment outcome. This review presents a summary of the literature regarding the pharmacogenetics of ICI treatment, discusses the most important known genetic variations and offers recommendations on the application of pharmacogenetics for ICI treatment.
Collapse
Affiliation(s)
- Karlijn de Joode
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Niels Heersche
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Department of Clinical Chemistry, Erasmus MC, Erasmus University Hospital, Rotterdam, the Netherlands
| | - Edwin A Basak
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Sander Bins
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Astrid A M van der Veldt
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Department of Radiology & Nuclear Medicine, Erasmus MC, Erasmus University Hospital, Rotterdam, the Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC, Erasmus University Hospital, Rotterdam, the Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| |
Collapse
|
10
|
Jiang T, Jin Q, Wang J, Wu F, Chen J, Chen G, Huang Y, Chen J, Cheng Y, Wang Q, Pan Y, Zhou J, Shi J, Xu X, Lin L, Zhang W, Zhang Y, Liu Y, Fang Y, Feng J, Wang Z, Hu S, Fang J, Shu Y, Cui J, Hu Y, Yao W, Li X, Lin X, Wang R, Wang Y, Shi W, Feng G, Ni J, Mao B, Ren D, Sun H, Zhang H, Chen L, Zhou C, Ren S. HLA-I Evolutionary Divergence Confers Response to PD-1 Blockade plus Chemotherapy in Untreated Advanced Non-Small Cell Lung Cancer. Clin Cancer Res 2023; 29:4830-4843. [PMID: 37449971 DOI: 10.1158/1078-0432.ccr-23-0604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/13/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE PD-1 blockade plus chemotherapy has become the new standard of care in patients with untreated advanced non-small cell lung cancer (NSCLC), whereas predictive biomarkers remain undetermined. EXPERIMENTAL DESIGN We integrated clinical, genomic, and survival data of 427 NSCLC patients treated with first-line PD-1 blockade plus chemotherapy or chemotherapy from two phase III trials (CameL and CameL-sq) and investigated the predictive and prognostic value of HLA class I evolutionary divergence (HED). RESULTS High HED could predict significantly improved objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) in those who received PD-1 blockade plus chemotherapy [in the CameL trial, ORR: 81.8% vs. 53.2%; P = 0.032; PFS: hazard ratio (HR), 0.47; P = 0.012; OS: HR, 0.40; P = 0.014; in the CameL-sq trial, ORR: 89.2% vs. 62.3%; P = 0.007; PFS: HR, 0.49; P = 0.005; OS: HR, 0.38; P = 0.002], but not chemotherapy. In multivariate analysis adjusted for PD-L1 expression and tumor mutation burden, high HED was independently associated with markedly better ORR, PFS, and OS in both trials. Moreover, the joint utility of HED and PD-L1 expression showed better performance than either alone in predicting treatment benefit from PD-1 blockade plus chemotherapy. Single-cell RNA sequencing of 58,977 cells collected from 11 patients revealed that tumors with high HED had improved antigen presentation and T cell-mediated antitumor immunity, indicating an inflamed tumor microenvironment phenotype. CONCLUSIONS These findings suggest that high HED could portend survival benefit in advanced NSCLC treated with first-line PD-1 blockade plus chemotherapy. See related commentary by Dimou, p. 4706.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Qiqi Jin
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiahao Wang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengying Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Jian Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gongyan Chen
- First Ward of Respiratory Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yunchao Huang
- Department of Thoracic Surgery, Yunnan Cancer Hospital and the Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, China
| | - Jianhua Chen
- Department of Medical Oncology-Chest (1), Hunan Cancer Hospital, Changsha, China
| | - Ying Cheng
- Department of Medical Oncology, Jilin Cancer Hospital, Changchun, China
| | - QiMing Wang
- Department of Oncology, Henan Cancer Hospital, Zhengzhou, China
| | - Yueyin Pan
- Department of Chemotherapy Oncology, Anhui Provincial Hospital, Hefei, China
| | - Jianying Zhou
- Respiratory Medicine, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Jianhua Shi
- Internal Medicine Ward 2, Linyi Cancer Hospital, Linyi, China
| | - Xingxiang Xu
- Respiratory Department, The Northern Jiangsu People's Hospital, Yangzhou, China
| | - LiZhu Lin
- Oncology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiping Zhang
- Department of Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China, Medical University, Shenyang, China
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Jifeng Feng
- Department of Thoracic Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zhehai Wang
- Department of Respiratory, Shandong Cancer Hospital and Institute, Jinan, China
| | - Sheng Hu
- Department of Thoracic Oncology, Hubei Cancer Hospital, Wuhan, China
| | - Jian Fang
- The Second Department of Thoracic Oncology, Beijing Cancer Hospital, Beijing, China
| | - Yongqian Shu
- Department of Oncology, Jiangsu Province Hospital, Nanjing, China
| | - Jiuwei Cui
- Department of Medical Oncology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Yi Hu
- Oncology Department, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Wenxiu Yao
- Department of Thoracic Oncology, Sichuan Provincial Cancer Hospital, Chengdu, China
| | - Xingya Li
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Lin
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Rui Wang
- Department of Medical Oncology, Anhui Chest Hospital, Hefei, China
| | - Yongsheng Wang
- Department of Thoracic Medical Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Shi
- Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals, China
| | - Gaohua Feng
- Department of Pulmonary and Critical Care Medicine, Zhangjiagang Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Jun Ni
- Department of Pulmonary and Critical Care Medicine, Zhangjiagang Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Beibei Mao
- Genecast Biotechnology Co., Ltd, Jiangsu Province, China
| | - Dandan Ren
- Genecast Biotechnology Co., Ltd, Jiangsu Province, China
| | - Huaibo Sun
- Genecast Biotechnology Co., Ltd, Jiangsu Province, China
| | - Henghui Zhang
- Genecast Biotechnology Co., Ltd, Jiangsu Province, China
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; School of Oncology, Capital Medical University, Beijing, China
| | - Luonan Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Gusev A. Germline mechanisms of immunotherapy toxicities in the era of genome-wide association studies. Immunol Rev 2023; 318:138-156. [PMID: 37515388 PMCID: PMC11472697 DOI: 10.1111/imr.13253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
Cancer immunotherapy has revolutionized the treatment of advanced cancers and is quickly becoming an option for early-stage disease. By reactivating the host immune system, immunotherapy harnesses patients' innate defenses to eradicate the tumor. By putatively similar mechanisms, immunotherapy can also substantially increase the risk of toxicities or immune-related adverse events (irAEs). Severe irAEs can lead to hospitalization, treatment discontinuation, lifelong immune complications, or even death. Many irAEs present with similar symptoms to heritable autoimmune diseases, suggesting that germline genetics may contribute to their onset. Recently, genome-wide association studies (GWAS) of irAEs have identified common germline associations and putative mechanisms, lending support to this hypothesis. A wide range of well-established GWAS methods can potentially be harnessed to understand the etiology of irAEs specifically and immunotherapy outcomes broadly. This review summarizes current findings regarding germline effects on immunotherapy outcomes and discusses opportunities and challenges for leveraging germline genetics to understand, predict, and treat irAEs.
Collapse
Affiliation(s)
- Alexander Gusev
- Division of Population Sciences, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Division of Genetics, Brigham & Women's Hospital, Boston, Massachusetts, USA
- The Broad Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
Lin R, Chen X, Su F, Wang H, Han B, Chen Y, Zhang C, Ma M. The germline HLA-A02B62 supertype is associated with a PD-L1-positive tumour immune microenvironment and poor prognosis in stage I lung cancer. Heliyon 2023; 9:e18948. [PMID: 37600368 PMCID: PMC10432705 DOI: 10.1016/j.heliyon.2023.e18948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Background Germline HLA class I molecule supertypes are shown to correlate with response to anti-PD-1 therapy. Here, we investigate the significance of germline HLA-A and HLA-B supertypes in tumour microenvironment of non-small-cell lung cancer. Methods Totally 278 NSCLC patients were collected retrospectively. HLA genotyping was conducted using next-generation sequencing. The evaluation of tumour-infiltrating lymphocytes was performed by multiplex immunohistochemistry assay. Correlations among HLA supertypes, tumour infiltrating lymphocytes, and clinicopathological characteristics were assessed. Results HLA-A03 and HLA-B62 were the supertypes with the highest proportions, at 69.1% and 52.2%, respectively. HLA-A02 or HLA-B62, but not HLA-A03, associated with higher PD-L1+ tumour and stromal cells levels, CD68+ cells, and CD68+PD-L1+ cells. Patients with both HLA-A02 and HLA-B62 supertypes displayed significantly higher PD-L1+ cells, CD68+ cells, and CD8+ cells levels than patients with other supertypes (P = 0.0301, P = 0.0479, P = 0.0192). These cells collectively constitute a hot but immunosuppressive tumour microenvironment. Accordingly, patients with both HLA-A02 and HLA-B62 supertypes had short progression-free survival after surgery (HR = 2.27, P = 0.0373). Conclusions The HLA-A02B62 supertype could serve as a possible indicator of poor prognosis in early-stage lung cancer. However, it may also act as a favorable prognostic factor for immunotherapy, given its association with a PD-L1-positive tumour microenvironment.
Collapse
Affiliation(s)
- Ruijiang Lin
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaohua Chen
- Department of Radiotherapy, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Fei Su
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hongbin Wang
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Biao Han
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanhui Chen
- Genecast Precision Medicine Technology Institute, Beijing, China
| | - Cuixiang Zhang
- Genecast Precision Medicine Technology Institute, Beijing, China
| | - Minjie Ma
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
13
|
Chen YX, Wang ZX, Jin Y, Zhao Q, Liu ZX, Zuo ZX, Ju HQ, Cui C, Yao J, Zhang Y, Li M, Feng J, Tian L, Xia XJ, Feng H, Yao S, Wang FH, Li YH, Wang F, Xu RH. An immunogenic and oncogenic feature-based classification for chemotherapy plus PD-1 blockade in advanced esophageal squamous cell carcinoma. Cancer Cell 2023; 41:919-932.e5. [PMID: 37059106 DOI: 10.1016/j.ccell.2023.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/18/2022] [Accepted: 03/22/2023] [Indexed: 04/16/2023]
Abstract
Although chemotherapy plus PD-1 blockade (chemo+anti-PD-1) has become the standard first-line therapy for advanced esophageal squamous cell carcinoma (ESCC), reliable biomarkers for this regimen are lacking. Here we perform whole-exome sequencing on tumor samples from 486 patients of the JUPITER-06 study and develop a copy number alteration-corrected tumor mutational burden that depicts immunogenicity more precisely and predicts chemo+anti-PD-1 efficacy. We identify several other favorable immunogenic features (e.g., HLA-I/II diversity) and risk oncogenic alterations (e.g., PIK3CA and TET2 mutation) associated with chemo+anti-PD-1 efficacy. An esophageal cancer genome-based immuno-oncology classification (EGIC) scheme incorporating these immunogenic features and oncogenic alterations is established. Chemo+anti-PD-1 achieves significant survival improvements in EGIC1 (immunogenic feature-favorable and oncogenic alteration-negative) and EGIC2 (either immunogenic feature-favorable or oncogenic alteration-negative) subgroups, but not the EGIC3 subgroup (immunogenic feature-unfavorable and oncogenic alteration-positive). Thus, EGIC may guide future individualized treatment strategies and inform mechanistic biomarker research for chemo+anti-PD-1 treatment in patients with advanced ESCC.
Collapse
Affiliation(s)
- Yan-Xing Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China; Bioinformatics Platform, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zi-Xian Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Ying Jin
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Qi Zhao
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China; Bioinformatics Platform, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ze-Xian Liu
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China; Bioinformatics Platform, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zhi-Xiang Zuo
- Bioinformatics Platform, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Huai-Qiang Ju
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chengxu Cui
- Cancer Hospital Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Jun Yao
- The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471000, China
| | - Yanqiao Zhang
- Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Mengxia Li
- Army Medical Center of PLA, Chongqing 400042, China
| | - Jifeng Feng
- Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Lin Tian
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiao-Jun Xia
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hui Feng
- Shanghai Junshi Biosciences, Shanghai 200126, China; TopAlliance Biosciences, Rockville, MD 20850, USA
| | - Sheng Yao
- Shanghai Junshi Biosciences, Shanghai 200126, China; TopAlliance Biosciences, Rockville, MD 20850, USA
| | - Feng-Hua Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yu-Hong Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Feng Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China.
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China.
| |
Collapse
|
14
|
Merli P, Crivello P, Strocchio L, Pinto RM, Algeri M, Del Bufalo F, Pagliara D, Becilli M, Carta R, Gaspari S, Galaverna F, Quagliarella F, Boz G, Catanoso ML, Boccieri E, Troiano M, Fleischhauer K, Andreani M, Locatelli F. Human leukocyte antigen evolutionary divergence influences outcomes of paediatric patients and young adults affected by malignant disorders given allogeneic haematopoietic stem cell transplantation from unrelated donors. Br J Haematol 2023; 200:622-632. [PMID: 36385618 DOI: 10.1111/bjh.18561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022]
Abstract
High genetic heterogeneity in the human leukocyte antigen (HLA) increases the likelihood of efficient immune response to pathogens and tumours. As measure of HLA diversity, HLA evolutionary divergence (HED) has been shown to predict the response of tumours to immunotherapy and haematopoietic stem cell transplantation (HSCT) in adults. We retrospectively investigated the association of HED with outcomes of 153 paediatric/young adults patients, treated for malignant disorders with HSCT from 9-10/10 HLA-matched unrelated donors. HED was calculated as pairwise genetic distance between alleles in patient HLA-A, -B, -C, -DRB1, -DQB1 and -DPB1, using the locus median to stratify patients with 'high' or 'low' HED. Patients with high HED-B and -DRB1 showed significantly improved disease-free survival (DFS), especially when combined (70.8% vs 53.7% p = 0.008). High HED-B + -DRB1 was also associated with improved overall survival (OS) (82.1 vs 66.4% p = 0.014), and concomitant reduction of non-relapse-mortality (5.1% vs 21.1% p = 0.006). The impact on OS and DFS of combined HED-B + -DRB1 was confirmed in multivariate analysis [hazard ratio (HR) 0.39, p = 0.009; and HR 0.45, p = 0.007 respectively]. Only high HED scores for HLA-DPB1 were associated, in univariate analysis, with reduced incidence of relapse (15.9% vs 31.1%, p = 0.03). These results support HED as prognostic marker in allogeneic HSCT and, if confirmed in larger cohorts, would allow its use to inform clinical risk and potentially influence clinical practice.
Collapse
Affiliation(s)
- Pietro Merli
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Pietro Crivello
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany
| | - Luisa Strocchio
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Rita Maria Pinto
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Mattia Algeri
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Del Bufalo
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Daria Pagliara
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Marco Becilli
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Roberto Carta
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Stefania Gaspari
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Federica Galaverna
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesco Quagliarella
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giulia Boz
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Maria Luigia Catanoso
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Emilia Boccieri
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Maria Troiano
- Laboratory of Transplant Immunogenetics, Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Katharina Fleischhauer
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany.,German Cancer Consortium, Partner Site Essen/Düsseldorf, Heidelberg, Germany
| | - Marco Andreani
- Laboratory of Transplant Immunogenetics, Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,Catholic University of the Sacred Heart, Department of Life Sciences and Public Health, Rome, Italy
| |
Collapse
|
15
|
Anagnostou V, Landon BV, Medina JE, Forde P, Velculescu VE. Translating the evolving molecular landscape of tumors to biomarkers of response for cancer immunotherapy. Sci Transl Med 2022; 14:eabo3958. [PMID: 36350985 PMCID: PMC9844537 DOI: 10.1126/scitranslmed.abo3958] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapeutics, triggering studies to understand the molecular and cellular wiring of response and resistance. Our increased understanding of the underlying biology of response to ICI has enabled the investigation of tumor-intrinsic and -extrinsic features that may predict therapeutic outcomes. In parallel, liquid biopsy measurements of circulating tumor DNA (ctDNA) can be used to assess real-time molecular responses and guide clinical decisions during ICI. The combination of these approaches provides a deeper understanding of cancer biology, immunoediting, and evolution during ICI and promise to extend the utility of immunotherapies for patients with cancer.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Here, we reviewed the recent breakthroughs in the understanding of predictive biomarkers for immune checkpoint inhibitors (ICI) treatment. RECENT FINDINGS ICI have revolutionized cancer therapy enabling novel therapeutic indications in multiple tumor types and increasing the probability of survival in patients with metastatic disease. However, in every considered tumor types only a minority of patients exhibits clear and lasting benefice from ICI treatment, and due to their unique mechanism of action treatment with ICI is also associated with acute clinical toxicities called immune related adverse events (irAEs) that can be life threatening. The approval of the first ICI drug has prompted many exploratory strategies for a variety of biomarkers and have shown that several factors might affect the response to ICI treatment, including tumors intrinsic factors, tumor microenvironment and tumor extrinsic or systemic factor. Currently, only three biomarkers programmed death-ligand 1 (PD-L1), tumor microenvironment and microsatellite instability had the US Food and Drug Administration-approbation with some limitations. SUMMARY The establishment of valid predictive biomarkers of ICI sensitivity has become a priority to guide patient treatment to maximize the chance of benefit and prevent unnecessary toxicity.
Collapse
|
17
|
Cuppens K, Baas P, Geerdens E, Cruys B, Froyen G, Decoster L, Thomeer M, Maes B. HLA-I diversity and tumor mutational burden by comprehensive next-generation sequencing as predictive biomarkers for the treatment of non-small cell lung cancer with PD-(L)1 inhibitors. Lung Cancer 2022; 170:1-10. [DOI: 10.1016/j.lungcan.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
|
18
|
Integration of tumor extrinsic and intrinsic features associates with immunotherapy response in non-small cell lung cancer. Nat Commun 2022; 13:4053. [PMID: 35831288 PMCID: PMC9279502 DOI: 10.1038/s41467-022-31769-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/01/2022] [Indexed: 12/20/2022] Open
Abstract
The efficacy of immune checkpoint blockade (ICB) varies greatly among metastatic non-small cell lung cancer (NSCLC) patients. Loss of heterozygosity at the HLA-I locus (HLA-LOH) has been identified as an important immune escape mechanism. However, despite HLA-I disruptions in their tumor, many patients have durable ICB responses. Here we seek to identify HLA-I-independent features associated with ICB response in NSCLC. We use single-cell profiling to identify tumor-infiltrating, clonally expanded CD4+ T cells that express a canonical cytotoxic gene program and NSCLC cells with elevated HLA-II expression. We postulate cytotoxic CD4+ T cells mediate anti-tumor activity via HLA-II on tumor cells and augment HLA-I-dependent cytotoxic CD8+ T cell interactions to drive ICB response in NSCLC. We show that integrating tumor extrinsic cytotoxic gene expression with tumor mutational burden is associated with longer time to progression in a real-world cohort of 123 NSCLC patients treated with ICB regimens, including those with HLA-LOH. Some cancer patients with impaired HLA-I still respond to immunotherapy. Here the authors combine a cytotoxic gene signature from CD4+ and CD8+ T cells with tumor mutational burden to predict immunotherapy response in NSCLC patients, including those with HLA-LOH.
Collapse
|
19
|
Gunjur A, Manrique‐Rincón AJ, Klein O, Behren A, Lawley TD, Welsh SJ, Adams DJ. 'Know thyself' - host factors influencing cancer response to immune checkpoint inhibitors. J Pathol 2022; 257:513-525. [PMID: 35394069 PMCID: PMC9320825 DOI: 10.1002/path.5907] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionised oncology and are now standard-of-care for the treatment of a wide variety of solid neoplasms. However, tumour responses remain unpredictable, experienced by only a minority of ICI recipients across malignancy types. Therefore, there is an urgent need for better predictive biomarkers to identify a priori the patients most likely to benefit from these therapies. Despite considerable efforts, only three such biomarkers are FDA-approved for clinical use, and all rely on the availability of tumour tissue for immunohistochemical staining or genomic assays. There is emerging evidence that host factors - for example, genetic, metabolic, and immune factors, as well as the composition of one's gut microbiota - influence the response of a patient's cancer to ICIs. Tantalisingly, some of these factors are modifiable, paving the way for co-therapies that may enhance the therapeutic index of these treatments. Herein, we review key host factors that are of potential biomarker value for response to ICI therapy, with a particular focus on the proposed mechanisms for these influences. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ashray Gunjur
- Experimental Cancer Genetics, Wellcome Sanger InstituteHinxtonUK,Olivia Newton‐John Cancer Research InstituteLa Trobe University School of Cancer MedicineHeidelbergAustralia
| | - Andrea J Manrique‐Rincón
- Experimental Cancer Genetics, Wellcome Sanger InstituteHinxtonUK,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of MedicineUniversity of CambridgeCambridgeUK
| | - Oliver Klein
- Olivia Newton‐John Cancer Research InstituteLa Trobe University School of Cancer MedicineHeidelbergAustralia,Department of Medical OncologyAustin HealthHeidelbergAustralia
| | - Andreas Behren
- Olivia Newton‐John Cancer Research InstituteLa Trobe University School of Cancer MedicineHeidelbergAustralia,Department of MedicineUniversity of MelbourneParkvilleAustralia
| | | | - Sarah J Welsh
- Department of SurgeryUniversity of CambridgeCambridgeUK,Cambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger InstituteHinxtonUK
| |
Collapse
|
20
|
Halima A, Vuong W, Chan TA. Next-generation sequencing: unraveling genetic mechanisms that shape cancer immunotherapy efficacy. J Clin Invest 2022; 132:154945. [PMID: 35703181 PMCID: PMC9197511 DOI: 10.1172/jci154945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Immunity is governed by fundamental genetic processes. These processes shape the nature of immune cells and set the rules that dictate the myriad complex cellular interactions that power immune systems. Everything from the generation of T cell receptors and antibodies, control of epitope presentation, and recognition of pathogens by the immunoediting of cancer cells is, in large part, made possible by core genetic mechanisms and the cellular machinery that they encode. In the last decade, next-generation sequencing has been used to dissect the complexities of cancer immunity with potent effect. Sequencing of exomes and genomes has begun to reveal how the immune system recognizes “foreign” entities and distinguishes self from non-self, especially in the setting of cancer. High-throughput analyses of transcriptomes have revealed deep insights into how the tumor microenvironment affects immunotherapy efficacy. In this Review, we discuss how high-throughput sequencing has added to our understanding of how immune systems interact with cancer cells and how cancer immunotherapies work.
Collapse
Affiliation(s)
- Ahmed Halima
- Department of Radiation Oncology, Taussig Cancer Institute, and
| | - Winston Vuong
- Department of Radiation Oncology, Taussig Cancer Institute, and
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Institute, and.,Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, Ohio, USA.,National Center for Regenerative Medicine, Cleveland, Ohio, USA
| |
Collapse
|
21
|
Hammer C, Mellman I. Coming of Age: Human Genomics and the Cancer-Immune Set Point. Cancer Immunol Res 2022; 10:674-679. [PMID: 35471657 PMCID: PMC9306278 DOI: 10.1158/2326-6066.cir-21-1017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/07/2022] [Accepted: 03/15/2022] [Indexed: 01/07/2023]
Abstract
Cancer is largely a disease of the tumor cell genome. As a result, the majority of genetics research in oncology has concentrated on the role of tumor somatic mutations, as well as inherited risk variants, in disease susceptibility and response to targeted treatments. The advent and success of cancer immunotherapies, however, have opened new perspectives for the investigation of the role of inherited genetic variation in codetermining outcome and safety. It is increasingly likely that the entirety of germline genetic variation involved in regulating immune responses accounts for a significant fraction of the observed variability in responses to cancer immunotherapies. Although germline genetic data from patients treated with cancer immunotherapies are still scarce, this line of research benefits from a vast body of knowledge derived from studies into autoimmune and infectious disease phenotypes, thus not requiring a start from a blank slate. Here, we discuss how a thorough investigation of genomic variation relevant for individuals' variability in (auto)immune responses can contribute to the discovery of novel treatment approaches and drug targets, and yield predictive biomarkers to stratify cancer patient populations in precision and personalized medicine settings.
Collapse
Affiliation(s)
- Christian Hammer
- Genentech, South San Francisco, California.,Corresponding Author: Christian Hammer, Genentech, Inc., South San Francisco, CA 94080. Phone: 650-452-9622; E-mail:
| | | |
Collapse
|
22
|
Ranti D, Bieber C, Wang YS, Sfakianos JP, Horowitz A. Natural killer cells: unlocking new treatments for bladder cancer. Trends Cancer 2022; 8:698-710. [DOI: 10.1016/j.trecan.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
|
23
|
Abstract
Human leukocyte antigen (HLA) molecules are critical mediators of anti-tumor immune responses. In this issue of Immunity,Chhibber et al. (2021) challenge previous associations between germline HLA zygosity and immunotherapy outcomes, demonstrating that germline HLA genotypes and diversity alone are not independent biomarkers of anti-PD1 clinical efficacy.
Collapse
Affiliation(s)
- Lavanya Sivapalan
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA,Correspondence:
| |
Collapse
|