1
|
Wan J, Liu H, Wu C, Zhou T, Yang F, Xiao X, Tong S, Wang S. cGAS/STING signalling in macrophages aggravates obliterative bronchiolitis via an IFN-α-dependent mechanism after orthotopic tracheal transplantation in mice. Clin Transl Med 2025; 15:e70323. [PMID: 40292672 PMCID: PMC12035648 DOI: 10.1002/ctm2.70323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/25/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Our previous findings have underscored the role of innate immunity in obliterative bronchiolitis (OB). However, despite the central importance of the cyclic GMP‒AMP synthase (cGAS)/stimulator of interferon genes (STING) signalling pathway in innate immune responses, its specific contribution to OB progression remains largely unexplored. METHODS A murine orthotopic tracheal transplantation model was established to replicate OB pathogenesis. RNA sequencing and single-cell RNA sequencing data were analysed to investigate mechanisms underlying OB. Key molecules of the cGAS/STING pathway were assessed using immunofluorescence staining. Macrophage-specific Sting1 knockout mice were generated to investigate the role of the cGAS/STING pathway in OB. Haematoxylin and eosin staining and Masson's trichrome staining were utilised to evaluate allograft stenosis and fibrosis. Immune cell infiltration and cytokine expression were analysed using immunofluorescence staining and qRT-PCR. Flow cytometry was used to characterise splenic T-cell subsets and assess co-stimulatory molecule expression in macrophages. RESULTS The cGAS/STING pathway was upregulated in macrophages infiltrating allografts. Macrophage-specific Sting1 knockout significantly attenuated alloreactive T-cell responses and alleviated OB. Furthermore, Sting1 deletion reduced the expression of inflammatory marker NOS2, antigen-presenting molecule MHC class II and co-stimulatory molecules (CD80 and CD86) in macrophages. Mechanistically, Sting1 knockout inhibited the production of interferon-α2 (IFN-α2), while the protective effect of macrophage-specific Sting knockout was reversed by IFN-α2 administration. Importantly, STING inhibition enhanced the allograft tolerance-promoting effects of cytotoxic T-lymphocyte-associated antigen 4-Ig (CTLA4-Ig), leading to the preservation of the airway epithelium. CONCLUSIONS Our study demonstrated that cGAS/STING signalling pathway exacerbated allograft rejection in an IFN-α2-dependent manner. These findings provide insights into potential novel strategies for prolonging allograft survival. KEY POINTS cGAS/STING signalling pathway was activated in macrophages infiltrating allografts. cGAS/STING signalling pathway in macrophages exacerbated allograft rejection, promoted antigen-presenting ability of macrophages and enhanced alloreactive T-cell responses in an IFN-α2-dependent manner. STING inhibition potentiated the therapeutic efficacy of CTLA4-Ig in OB.
Collapse
Affiliation(s)
- Junhao Wan
- Department of Thoracic Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hao Liu
- Department of Vascular Surgery, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chuangyan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Fengjing Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoyue Xiao
- Department of Thoracic Surgery, Xiangya HospitalCentral South UniversityChangshaChina
| | - Song Tong
- Department of Thoracic Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Sihua Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
2
|
Xiao J, Meng Z, Lu Y, Nie Z, Liu Y, Yao Z, Zhang Y, Li L. Targeting microglia-Th17 feed-forward loop to suppress autoimmune neuroinflammation. J Neuroinflammation 2025; 22:118. [PMID: 40275354 PMCID: PMC12023695 DOI: 10.1186/s12974-025-03427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Microglia and Th17 cells are the major immunopathogenic cells in multiple sclerosis and its animal model of immune aspects, experimental autoimmune encephalomyelitis (EAE). While studies have highlighted the distinct roles of microglia and Th17 cells in EAE, it remains unclear whether microglia, as potential professional antigen-presenting cells, activate and stabilize the effector program of EAE-pathogenic Th17 cells in vivo; and if so, whether the Th17 could in turn reinforce the active state of the microglia. Our data demonstrate in an array of mouse models, including active/passive-EAE and transgenic mice, a microglia-Th17 feed-forward activation loop drives EAE disease progression through a mechanism dependent on both MHC-II, proinflammatory cytokines, inflammatory chemokines as well as STING→NF-κB pathway in the microglia and effector cytokines produced by the pathogenic Th17 cells. We also captured and identified the molecular properties of the feed-forward loop, which are two-cell entities of microglia-Th17, and proved them as the functional units of antigen presentation and bi-directional activation between the two cell types. Moreover, ACT001, an orphan drug to treat glioblastoma, disrupts this feed-forward activation loop by inhibiting the STING→NF-κB pathway in microglia, thereby alleviating EAE. These findings emphasize the importance of interactions and bi-directional activations between microglia and Th17 in the autoimmune neuroinflammation, and provide rationale for further investigation on ACT001 as therapeutic option for autoimmune inflammatory diseases driven by similar mechanisms.
Collapse
MESH Headings
- Animals
- Microglia/drug effects
- Microglia/immunology
- Microglia/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Mice
- Mice, Transgenic
- Mice, Inbred C57BL
- Neuroinflammatory Diseases/immunology
- Female
Collapse
Affiliation(s)
- Jun Xiao
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Zihan Meng
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Yao Lu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Zongchang Nie
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Yujie Liu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Zhi Yao
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China.
| | - Long Li
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
3
|
Wang X, Wen B, Duan X, Zhang Y, Hu Y, Li H, Shang H, Jing Y. Recent Advances of Type I Interferon on the Regulation of Immune Cells and the Treatment of Systemic Lupus Erythematosus. J Inflamm Res 2025; 18:4533-4549. [PMID: 40182060 PMCID: PMC11967359 DOI: 10.2147/jir.s516195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/18/2025] [Indexed: 04/05/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with multiple organ damage. Several studies have found that, in addition to significant production of autoantibodies, the majority of SLE patients exhibit increased expression of type I interferon (IFN-I) regulated genes (also known as IFN-I traits), and that IFN-I plays a crucial role in the pathogenesis of SLE. In SLE, virtually all immune cells are dysregulated, and most of these aberrant dysregulations are directly or indirectly affected by IFN-I. The mechanism of action of IFN-I in these immune cells is multifaceted. In this review, we focus on the immune cell types that produce IFN-I and are affected by IFN-I in SLE. Importantly, we explore the research progress of related drugs in terms of IFN-I production, itself, and downstream. Here we provide the most up-to-date information on the mechanisms that lead to the pathogenesis of SLE, providing the basis for the development of innovative future therapies and future research directions.
Collapse
Affiliation(s)
- Xiaocui Wang
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, People’s Republic of China
| | - Bin Wen
- Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People’s Republic of China
| | - Xuemei Duan
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, People’s Republic of China
| | - Yunfei Zhang
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, People’s Republic of China
| | - Ying Hu
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, People’s Republic of China
| | - Haonan Li
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, People’s Republic of China
| | - Huifeng Shang
- Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People’s Republic of China
| | - Yukai Jing
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, People’s Republic of China
| |
Collapse
|
4
|
Wang A, Wang Y, Liang R, Li B, Pan F. Improving regulatory T cell-based therapy: insights into post-translational modification regulation. J Genet Genomics 2025; 52:145-156. [PMID: 39357622 DOI: 10.1016/j.jgg.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Regulatory T (Treg) cells are pivotal for maintaining immune homeostasis and play essential roles in various diseases, such as autoimmune diseases, graft-versus-host disease (GVHD), tumors, and infectious diseases. Treg cells exert suppressive function via distinct mechanisms, including inhibitory cytokines, granzyme or perforin-mediated cytolysis, metabolic disruption, and suppression of dendritic cells. Forkhead Box P3 (FOXP3), the characteristic transcription factor, is essential for Treg cell function and plasticity. Cumulative evidence has demonstrated that FOXP3 activity and Treg cell function are modulated by a variety of post-translational modifications (PTMs), including ubiquitination, acetylation, phosphorylation, methylation, glycosylation, poly(ADP-ribosyl)ation, and uncharacterized modifications. This review describes Treg cell suppressive mechanisms and summarizes the current evidence on PTM regulation of FOXP3 and Treg cell function. Understanding the regulatory role of PTMs in Treg cell plasticity and function will be helpful in designing therapeutic strategies for autoimmune diseases, GVHD, tumors, and infectious diseases.
Collapse
Affiliation(s)
- Aiting Wang
- Center for Cancer Immunology Research, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Yanwen Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Fan Pan
- Center for Cancer Immunology Research, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
5
|
Kim GR, Nam KH, Choi JM. Belatacept and regulatory T cells in transplantation: synergistic strategies for immune tolerance and graft survival. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:326-340. [PMID: 39690903 PMCID: PMC11732762 DOI: 10.4285/ctr.24.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024]
Abstract
Calcineurin inhibitors (CNIs) have been a cornerstone in solid organ transplantation for many years; however, their prolonged use is linked to significant adverse effects, most notably nephrotoxicity. Belatacept, a modified version of cytotoxic T lymphocyte antigen-4 immunoglobulin with increased binding affinity for its ligand, has emerged as a viable alternative to traditional CNIs due to its lower toxicity profile. Despite these benefits, belatacept is associated with a higher rate of acute rejection, which presents a challenge for long-term graft survival. This review reevaluates the limitations of belatacept in achieving long-term acceptance of transplants and highlights the importance of regulatory T (Treg) cells in maintaining immune tolerance and preventing graft rejection. Additionally, it discusses the potential benefits of combining therapies that boost Treg cells with belatacept to increase the effectiveness of immunosuppression and improve graft outcomes.
Collapse
Affiliation(s)
- Gil-Ran Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Kyung-Ho Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Korea
| |
Collapse
|
6
|
Jiang S, Zhu L, Xu Y, Liu Z, Cai J, Zhu T, Fan Q, Zhao Z. Subcutaneously transplanted xenogeneic protein recruits treg cells and M2 macrophages to induce browning of inguinal white adipose tissue. Endocrine 2024; 86:631-643. [PMID: 38900356 DOI: 10.1007/s12020-024-03932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE To study whether subcutaneously embedding xenogeneic protein threads or synthetic polymer absorbable threads can improve obesity phenotypes and metabolic conditions, and to further explore its underlying mechanism. METHODS Thirty-six 8-week-old ob/ob mice were randomly allocated to three groups, respectively, receiving catgut embedding, PGA thread embedding or sham treatment bilaterally to the groin. Individual parameters including weight, food intake, and core temperature are recorded and metabolism assessment, energy expenditure analysis, and PET/CT scanning are also performed at fixed timepoints. After surgical incision, the inguinal white adipose tissue was histologically examined and its expression profile was tested and compared among groups 4 weeks and 12 weeks after operation. RESULTS Catgut embedding reduced weight gain and improved metabolic status in ob/ob mice. Browning of bilateral inguinal WAT (white adipose tissue) was induced after catgut embedding, with massive infiltration of Treg cells and M2 macrophages in the tissue slices of fat pads. IL-10 and TGF-β released by Treg cells targeted macrophages and the induced M2 macrophages increased the expression of thermogenic and anti-inflammatory genes in fat. The secretion of catecholamines by polarized M2 macrophages led to the activation of β3-AR-related pathways in adipocytes and the browning of adipose tissue. CONCLUSIONS Abdominal subcutaneous catgut embedding has the potential to combat obesity through the induction of WAT browning mediated by infiltrated Treg cells and macrophages.
Collapse
Affiliation(s)
- Shenglu Jiang
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Lili Zhu
- Taizhou Enze Hospital, Taizhou, China
| | - Yukun Xu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Zhao Liu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jialin Cai
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Tao Zhu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Qing Fan
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Zhenxiong Zhao
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China.
| |
Collapse
|
7
|
Wei C, Huang Q, Zeng F, Ma L, Bai X, Zhu X, Gao H, Qi X. Cyclic guanosine monophosphate-adenosine monophosphate synthetase/stimulator of interferon genes signaling aggravated corneal allograft rejection through neutrophil extracellular traps. Am J Transplant 2024; 24:1583-1596. [PMID: 38648890 DOI: 10.1016/j.ajt.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
The activation of innate immunity following transplantation has been identified as a crucial factor in allograft inflammation and rejection. However, the role of cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)/stimulator of interferon genes (STING) signaling-mediated innate immunity in the pathogenesis of allograft rejection remains unclear. Utilizing a well-established murine model of corneal transplantation, we demonstrated increased expression of cGAS and STING in rejected-corneal allografts compared with syngeneic (Syn) and normal (Nor) corneas, along with significant activation of the cGAS/STING pathway, as evidenced by the enhanced phosphorylation of TANK-binding kinase 1and interferon regulatory factor 3. Pharmacological and genetic inhibition of cGAS/STING signaling markedly delayed corneal transplantation rejection, resulting in prolonged survival time and reduced inflammatory infiltration. Furthermore, we observed an increase in the formation of neutrophil extracellular traps (NETs) in rejected allografts, and the inhibition of NET formation through targeting peptidylarginine deiminase 4 and DNase I treatment significantly alleviated immune rejection and reduced cGAS/STING signaling activity. Conversely, subconjunctival injection of NETs accelerated corneal transplantation rejection and enhanced the activation of the cGAS/STING pathway. Collectively, these findings demonstrate that NETs contribute to the exacerbation of allograft rejection via cGAS/STING signaling, highlighting the targeting of the NETs/cGAS/STING signaling pathway as a potential strategy for prolonging allograft survival.
Collapse
Affiliation(s)
- Chao Wei
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Shandong First Medical University, Qingdao, Shandong, China
| | - Qing Huang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Shandong First Medical University, Qingdao, Shandong, China
| | - Fanxing Zeng
- Refractive Surgery Center, Guangzhou Huangpu Aier Eye Hospital, Guangzhou, Guangdong, China
| | - Li Ma
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Shandong First Medical University, Qingdao, Shandong, China
| | - Xiaofei Bai
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Shandong First Medical University, Qingdao, Shandong, China
| | - Xuejing Zhu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Medical Department of Qingdao University, Qingdao, Shandong, China
| | - Hua Gao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, School of Ophthalmology, Shandong First Medical University, Jinan, Shandong, China
| | - Xiaolin Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Medical Department of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
8
|
Pu Z, Chen S, Lu Y, Wu Z, Cai Z, Mou L. Exploring the molecular mechanisms of macrophages in islet transplantation using single-cell analysis. Front Immunol 2024; 15:1407118. [PMID: 39267737 PMCID: PMC11391485 DOI: 10.3389/fimmu.2024.1407118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024] Open
Abstract
Background Islet transplantation is a promising treatment for type 1 diabetes that aims to restore insulin production and improve glucose control, but long-term graft survival remains a challenge due to immune rejection. Methods ScRNA-seq data from syngeneic and allogeneic islet transplantation grafts were obtained from GSE198865. Seurat was used for filtering and clustering, and UMAP was used for dimension reduction. Differentially expressed genes were analyzed between syngeneic and allogeneic islet transplantation grafts. Gene set variation analysis (GSVA) was performed on the HALLMARK gene sets from MSigDB. Monocle 2 was used to reconstruct differentiation trajectories, and cytokine signature enrichment analysis was used to compare cytokine responses between syngeneic and allogeneic grafts. Results Three distinct macrophage clusters (Mø-C1, Mø-C2, and Mø-C3) were identified, revealing complex interactions and regulatory mechanisms within macrophage populations. The significant activation of macrophages in allogeneic transplants was marked by the upregulation of allograft rejection-related genes and pathways involved in inflammatory and interferon responses. GSVA revealed eight pathways significantly upregulated in the Mø-C2 cluster. Trajectory analysis revealed that Mø-C3 serves as a common progenitor, branching into Mø-C1 and Mø-C2. Cytokine signature enrichment analysis revealed significant differences in cytokine responses, highlighting the distinct immunological environments created by syngeneic and allogeneic grafts. Conclusion This study significantly advances the understanding of macrophage roles within the context of islet transplantation by revealing the interactions between immune pathways and cellular fate processes. The findings highlight potential therapeutic targets for enhancing graft survival and function, emphasizing the importance of understanding the immunological aspects of transplant acceptance and longevity.
Collapse
Affiliation(s)
- Zuhui Pu
- Imaging Department, Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
- MetaLife Lab, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
| | - Shujuan Chen
- Department of Endocrinology, Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Ying Lu
- MetaLife Lab, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
| | - Zijing Wu
- MetaLife Lab, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
| | - Zhiming Cai
- BGI Medical Group, Shenzhen, Guangdong, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Lisha Mou
- MetaLife Lab, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
- Department of Endocrinology, Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Wang L, Cao L, Li Z, Shao Z, Chen X, Huang Z, He X, Zheng J, Liu L, Jia XM, Xiao H. ATP-elicited Cation Fluxes Promote Volume-regulated Anion Channel LRRC8/VRAC Transport cGAMP for Antitumor Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:347-361. [PMID: 38847616 DOI: 10.4049/jimmunol.2300812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/20/2024] [Indexed: 07/17/2024]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of IFN genes (STING) pathway is instrumental to antitumor immunity, yet the underlying molecular and cellular mechanisms are complex and still unfolding. A new paradigm suggests that cancer cells' cGAS-synthesized cGAMP can be transferred to tumor-infiltrating immune cells, eliciting STING-dependent IFN-β response for antitumor immunity. Nevertheless, how the tumor microenvironment may shape this process remains unclear. In this study, we found that extracellular ATP, an immune regulatory molecule widely present in the tumor microenvironment, can potentiate cGAMP transfer, thereby boosting the STING signaling and IFN-β response in murine macrophages and fibroblasts. Notably, genetic ablation or chemical inhibition of murine volume-regulation anion channel LRRC8/volume-regulated anion channel (VRAC), a recently identified cGAMP transporter, abolished ATP-potentiated cGAMP transfer and STING-dependent IFN-β response, revealing a crucial role of LRRC8/VRAC in the cross-talk of extracellular ATP and cGAMP. Mechanistically, ATP activation of the P2X family receptors triggered Ca2+ influx and K+ efflux, promoting reactive oxygen species production. Moreover, ATP-evoked K+ efflux alleviated the phosphorylation of VRAC's obligate subunit LRRC8A/SWELL1 on S174. Mutagenesis studies indicated that the phosphorylation of S174 on LRRC8A could act as a checkpoint for VRAC in the steady state and a rheostat of ATP responsiveness. In an MC38-transplanted tumor model, systemically blocking CD39 and ENPP1, hydroxylases of extracellular ATP and cGAMP, respectively, elevated antitumor NK, NKT, and CD8+ T cell responses and restrained tumor growth in mice. Altogether, this study establishes a crucial role of ATP in facilitating LRRC8/VRAC transport cGAMP in the tumor microenvironment and provides new insight into harnessing cGAMP transfer for antitumor immunity.
Collapse
Affiliation(s)
- Li Wang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Limin Cao
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhihong Li
- State Key Laboratory of New Drug and Pharmaceutical process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Zhugui Shao
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, China
| | - Xia Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhicheng Huang
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxiao He
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junke Zheng
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Liu
- State Key Laboratory of New Drug and Pharmaceutical process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Xin-Ming Jia
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Xiao
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
10
|
Muckenhuber M, Mengrelis K, Weijler AM, Steiner R, Kainz V, Buresch M, Regele H, Derdak S, Kubetz A, Wekerle T. IL-6 inhibition prevents costimulation blockade-resistant allograft rejection in T cell-depleted recipients by promoting intragraft immune regulation in mice. Nat Commun 2024; 15:4309. [PMID: 38830846 PMCID: PMC11148062 DOI: 10.1038/s41467-024-48574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
The efficacy of costimulation blockade with CTLA4-Ig (belatacept) in transplantation is limited due to T cell-mediated rejection, which also persists after induction with anti-thymocyte globulin (ATG). Here, we investigate why ATG fails to prevent costimulation blockade-resistant rejection and how this barrier can be overcome. ATG did not prevent graft rejection in a murine heart transplant model of CTLA4-Ig therapy and induced a pro-inflammatory cytokine environment. While ATG improved the balance between regulatory T cells (Treg) and effector T cells in the spleen, it had no such effect within cardiac allografts. Neutralizing IL-6 alleviated graft inflammation, increased intragraft Treg frequencies, and enhanced intragraft IL-10 and Th2-cytokine expression. IL-6 blockade together with ATG allowed CTLA4-Ig therapy to achieve long-term, rejection-free heart allograft survival. This beneficial effect was abolished upon Treg depletion. Combining ATG with IL-6 blockade prevents costimulation blockade-resistant rejection, thereby eliminating a major impediment to clinical use of costimulation blockers in transplantation.
Collapse
Affiliation(s)
- Moritz Muckenhuber
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Konstantinos Mengrelis
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Anna Marianne Weijler
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Romy Steiner
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Verena Kainz
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Marlena Buresch
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Heinz Regele
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Anna Kubetz
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Yasumizu Y, Takeuchi D, Morimoto R, Takeshima Y, Okuno T, Kinoshita M, Morita T, Kato Y, Wang M, Motooka D, Okuzaki D, Nakamura Y, Mikami N, Arai M, Zhang X, Kumanogoh A, Mochizuki H, Ohkura N, Sakaguchi S. Single-cell transcriptome landscape of circulating CD4 + T cell populations in autoimmune diseases. CELL GENOMICS 2024; 4:100473. [PMID: 38359792 PMCID: PMC10879034 DOI: 10.1016/j.xgen.2023.100473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 02/17/2024]
Abstract
CD4+ T cells are key mediators of various autoimmune diseases; however, their role in disease progression remains unclear due to cellular heterogeneity. Here, we evaluated CD4+ T cell subpopulations using decomposition-based transcriptome characterization and canonical clustering strategies. This approach identified 12 independent gene programs governing whole CD4+ T cell heterogeneity, which can explain the ambiguity of canonical clustering. In addition, we performed a meta-analysis using public single-cell datasets of over 1.8 million peripheral CD4+ T cells from 953 individuals by projecting cells onto the reference and cataloging cell frequency and qualitative alterations of the populations in 20 diseases. The analyses revealed that the 12 transcriptional programs were useful in characterizing each autoimmune disease and predicting its clinical status. Moreover, genetic variants associated with autoimmune diseases showed disease-specific enrichment within the 12 gene programs. The results collectively provide a landscape of single-cell transcriptomes of CD4+ T cell subpopulations involved in autoimmune disease.
Collapse
Affiliation(s)
- Yoshiaki Yasumizu
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | - Daiki Takeuchi
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Faculty of Medicine, Osaka University, Osaka, Japan
| | - Reo Morimoto
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yusuke Takeshima
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tatsusada Okuno
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Makoto Kinoshita
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takayoshi Morita
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuhiro Kato
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Min Wang
- Clinical Immunology Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Daisuke Motooka
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan; Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan; Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yamami Nakamura
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Norihisa Mikami
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masaya Arai
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Atsushi Kumanogoh
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Center for Infectious Diseases for Education and Research, Osaka University, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | - Naganari Ohkura
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Department of Frontier Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Shimon Sakaguchi
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Department of Experimental Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
12
|
Silva RCMC, Travassos LH, Dutra FF. The dichotomic role of single cytokines: Fine-tuning immune responses. Cytokine 2024; 173:156408. [PMID: 37925788 DOI: 10.1016/j.cyto.2023.156408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Cytokines are known for their pleiotropic effects. They can be classified by their function as pro-inflammatory, such as tumor necrosis factor (TNF), interleukin (IL) 1 and IL-12, or anti-inflammatory, like IL-10, IL-35 and transforming growth factor β (TGF-β). Though this type of classification is an important simplification for the understanding of the general cytokine's role, it can be misleading. Here, we discuss recent studies that show a dichotomic role of the so-called pro and anti-inflammatory cytokines, highlighting that their function can be dependent on the microenvironment and their concentrations. Furthermore, we discuss how the back-and-forth interplay between cytokines and immunometabolism can influence the dichotomic role of inflammatory responses as an important target to complement cytokine-based therapies.
Collapse
Affiliation(s)
| | - Leonardo Holanda Travassos
- Laboratório de Receptores e Sinalização intracelular, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil
| | - Fabianno Ferreira Dutra
- Laboratório de Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Fueyo-González F, Vilanova G, Ningoo M, Marjanovic N, González-Vera JA, Orte Á, Fribourg M. Small-molecule TIP60 inhibitors enhance regulatory T cell induction through TIP60-P300 acetylation crosstalk. iScience 2023; 26:108491. [PMID: 38094248 PMCID: PMC10716589 DOI: 10.1016/j.isci.2023.108491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/12/2023] [Accepted: 11/14/2023] [Indexed: 12/29/2023] Open
Abstract
Foxp3 acetylation is essential to regulatory T (Treg) cell stability and function, but pharmacologically increasing it remains an unmet challenge. Here, we report that small-molecule compounds that inhibit TIP60, an acetyltransferase known to acetylate Foxp3, unexpectedly increase Foxp3 acetylation and Treg induction. Utilizing a dual experimental/computational approach combined with a newly developed FRET-based methodology compatible with flow cytometry to measure Foxp3 acetylation, we unraveled the mechanism of action of these small-molecule compounds in murine and human Treg induction cell cultures. We demonstrate that at low-mid concentrations they activate TIP60 to acetylate P300, a different acetyltransferase, which in turn increases Foxp3 acetylation, thereby enhancing Treg cell induction. These results reveal a potential therapeutic target relevant to autoimmunity and transplant.
Collapse
Affiliation(s)
- Francisco Fueyo-González
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Guillermo Vilanova
- LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona Spain
| | - Mehek Ningoo
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nada Marjanovic
- Deparment of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan A. González-Vera
- Deparment of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nanoscopy-UGR Laboratory, Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain
| | - Ángel Orte
- Deparment of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nanoscopy-UGR Laboratory, Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain
| | - Miguel Fribourg
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
14
|
Wang N, Zhou K, Liang Z, Sun R, Tang H, Yang Z, Zhao W, Peng Y, Song P, Zheng S, Xie H. RapaLink-1 outperforms rapamycin in alleviating allogeneic graft rejection by inhibiting the mTORC1-4E-BP1 pathway in mice. Int Immunopharmacol 2023; 125:111172. [PMID: 37951193 DOI: 10.1016/j.intimp.2023.111172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/13/2023]
Abstract
Inhibition of mammalian target of rapamycin (mTOR), which is a component of both mTORC1 and mTORC2, leads to clinical benefits for organ transplant recipients. Pathways to inhibit mTOR include strengthening the association of FKBP12-mTOR or competing with ATP at the active site of mTOR, which have been applied to the design of first- and second-generation mTOR inhibitors, respectively. However, the clinical efficacy of these mTOR inhibitors may be limited by side effects, compensatory activation of kinases and attenuation of feedback inhibition of receptor expression. A new generation of mTOR inhibitors possess a core structure similar to rapamycin and covalently link to mTOR kinase inhibitors, resulting in moderate selectivity and potent inhibition of mTORC1. Since the immunosuppressive potential of this class of compounds remains unknown, our goal is to examine the therapeutic efficacy of a third-generation mTOR inhibitor in organ transplantation. In this study, RapaLink-1 outperformed rapamycin in inhibiting T-cell proliferation and significantly prolonged graft survival time. Mechanistically, the ameliorated rejection induced by RapaLink-1 is associated with a reduction in p-4E-BP1 in T cells, resulting in an elevation in Treg cells alongside a decline in Th1 and Th17 cells. For the first time, these studies demonstrate the effectiveness of third-generation mTOR inhibitors in inhibiting allograft rejection, highlighting the potential of this novel class of mTOR inhibitors for further investigation.
Collapse
Affiliation(s)
- Ning Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ke Zhou
- Division of Lung Transplantation and Thoracic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhi Liang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ruiqi Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hong Tang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhentao Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Wentao Zhao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yiyang Peng
- College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Penghong Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of Organ Transplantation, State Key Laboratory for The Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province 310003, China.
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of Organ Transplantation, State Key Laboratory for The Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province 310003, China.
| |
Collapse
|
15
|
Zhang Y, Gao X, Gao S, Liu Y, Wang W, Feng Y, Pei L, Sun Z, Liu L, Wang C. Effect of gut flora mediated-bile acid metabolism on intestinal immune microenvironment. Immunology 2023; 170:301-318. [PMID: 37317655 DOI: 10.1111/imm.13672] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/28/2023] [Indexed: 06/16/2023] Open
Abstract
According to reports, gut microbiota and metabolites regulate the intestinal immune microenvironment. In recent years, an increasing number of studies reported that bile acids (BAs) of intestinal flora origin affect T helper cells and regulatory T cells (Treg cells). Th17 cells play a pro-inflammatory role and Treg cells usually act in an immunosuppressive role. In this review, we emphatically summarised the influence and corresponding mechanism of different configurations of lithocholic acid (LCA) and deoxycholic acid (DCA) on intestinal Th17 cells, Treg cells and intestinal immune microenvironment. The regulation of BAs receptors G protein-coupled bile acid receptor 1 (GPBAR1/TGR5) and farnesoid X receptor (FXR) on immune cells and intestinal environment are elaborated. Furthermore, the potential clinical applications above were also concluded in three aspects. The above will help researchers better understand the effects of gut flora on the intestinal immune microenvironment via BAs and contribute to the development of new targeted drugs.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xueyan Gao
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuochen Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Liu
- Department of Radiotherapy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wenkang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yudi Feng
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liping Pei
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lin Liu
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chengzeng Wang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
16
|
Wu Z, Liang J, Zhu S, Liu N, Zhao M, Xiao F, Li G, Yu C, Jin C, Ma J, Sun T, Zhu P. Single-cell analysis of graft-infiltrating host cells identifies caspase-1 as a potential therapeutic target for heart transplant rejection. Front Immunol 2023; 14:1251028. [PMID: 37781362 PMCID: PMC10535112 DOI: 10.3389/fimmu.2023.1251028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Aims Understanding the cellular mechanisms underlying early allograft rejection is crucial for the development of effective immunosuppressant strategies. This study aims to investigate the cellular composition of graft-infiltrating cells during the early rejection stage at a single-cell level and identify potential therapeutic targets. Methods A heterotopic heart transplant model was established using enhanced green fluorescent protein (eGFP)-expressing mice as recipients of allogeneic or syngeneic grafts. At 3 days post-transplant, eGFP-positive cells infiltrating the grafts were sorted and subjected to single-cell RNA-seq analysis. Potential molecular targets were evaluated by assessing graft survival and functions following administration of various pharmacological inhibitors. Results A total of 27,053 cells recovered from syngrafts and allografts were classified into 20 clusters based on expression profiles and annotated with a reference dataset. Innate immune cells, including monocytes, macrophages, neutrophils, and dendritic cells, constituted the major infiltrating cell types (>90%) in the grafts. Lymphocytes, fibroblasts, and endothelial cells represented a smaller population. Allografts exhibited significantly increased proportions of monocyte-derived cells involved in antigen processing and presentation, as well as activated lymphocytes, as compared to syngrafts. Differential expression analysis revealed upregulation of interferon activation-related genes in the innate immune cells infiltrating allografts. Pro-inflammatory polarization gene signatures were also enriched in these infiltrating cells of allografts. Gene profiling and intercellular communication analysis identified natural killer cells as the primary source of interferon-γ signaling, activating inflammatory monocytes that displayed strong signals of major histocompatibility complexes and co-stimulatory molecules. The inflammatory response was also associated with promoted T cell proliferation and activation in allografts during the early transplant stages. Notably, caspase-1 exhibited specific upregulation in inflammatory monocytes in response to interferon signaling. The regulon analysis also revealed a significant enrichment of interferon-related motifs within the transcriptional regulatory network of downstream inflammatory genes including caspase-1. Remarkably, pharmacological inhibition of caspase-1 was shown to reduce immune infiltration, prevent acute graft rejection, and improve cardiac contractile function. Conclusion The single-cell transcriptional profile highlighted the crucial role of caspase-1 in interferon-mediated inflammatory monocytes infiltrating heart transplants, suggesting its potential as a therapeutic target for attenuating rejection.
Collapse
Affiliation(s)
- Zhichao Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
- Department of Thoracic Surgery, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Jialiang Liang
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| | - Shuoji Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| | - Nanbo Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| | - Mingyi Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| | - Fei Xiao
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| | - Guanhua Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| | - Changjiang Yu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| | - Chengyu Jin
- Department of Thoracic Surgery, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Jinshan Ma
- Department of Thoracic Surgery, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Tucheng Sun
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Cassano A, Chong AS, Alegre ML. Tregs in transplantation tolerance: role and therapeutic potential. FRONTIERS IN TRANSPLANTATION 2023; 2:1217065. [PMID: 38993904 PMCID: PMC11235334 DOI: 10.3389/frtra.2023.1217065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/14/2023] [Indexed: 07/13/2024]
Abstract
CD4+ Foxp3+ regulatory T cells (Tregs) are indispensable for preventing autoimmunity, and they play a role in cancer and transplantation settings by restraining immune responses. In this review, we describe evidence for the importance of Tregs in the induction versus maintenance of transplantation tolerance, discussing insights into mechanisms of Treg control of the alloimmune response. Further, we address the therapeutic potential of Tregs as a clinical intervention after transplantation, highlighting engineered CAR-Tregs as well as expansion of donor and host Tregs.
Collapse
Affiliation(s)
- Alexandra Cassano
- Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Anita S. Chong
- Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Maria-Luisa Alegre
- Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
18
|
Eskandari SK, Allos H, Safadi JM, Sulkaj I, Sanders JSF, Cravedi P, Ghobrial IM, Berger SP, Azzi JR. Type I interferons augment regulatory T cell polarization in concert with ancillary cytokine signals. FRONTIERS IN TRANSPLANTATION 2023; 2:1149334. [PMID: 38993887 PMCID: PMC11235373 DOI: 10.3389/frtra.2023.1149334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/24/2023] [Indexed: 07/13/2024]
Abstract
In the transplant community, research efforts exploring endogenous alternatives to inducing tolerogenic allo-specific immune responses are much needed. In this regard, CD4 + FoxP3+ regulatory T cells (Tregs) are appealing candidates due to their intrinsic natural immunosuppressive qualities. To date, various homeostatic factors that dictate Treg survival and fitness have been elucidated, particularly the non-redundant roles of antigenic CD3ζ/T-cell-receptor, co-stimulatory CD28, and cytokine interleukin (IL-)2 dependent signaling. Many of the additional biological signals that affect Tregs remain to be elucidated, however, especially in the transplant context. Previously, we demonstrated an unexpected link between type I interferons (IFNs) and Tregs in models of multiple myeloma (MM)-where MM plasmacytes escaped immunological surveillance by enhancing type I IFN signaling and precipitating upregulated Treg responses that could be overturned with specific knockdown of type I IFN signaling. Here, we elaborated on these findings by assessing the role of type I IFN signaling (IFN-α and -β) on Treg homeostasis within an alloimmune context. Specifically, we studied the induction of Tregs from naïve CD4 T cells. Using in vitro and in vivo models of murine skin allotransplantation, we found that type I IFN indeed spatiotemporally enhanced the polarization of naïve CD4 T cells into FoxP3+ Tregs. Notably, however, this effect was not independent of, and rather co-dependent on, ancillary cytokine signals including IL-2. These findings provide evidence for the relevance of type I IFN pathway in modulating FoxP3+ Treg responses and, by extension, stipulate an additional means of facilitating Treg fitness via type I IFNs.
Collapse
Affiliation(s)
- Siawosh K. Eskandari
- Transplantation Research Center, Division of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hazim Allos
- Transplantation Research Center, Division of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jenelle M. Safadi
- Transplantation Research Center, Division of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ina Sulkaj
- Transplantation Research Center, Division of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Jan S. F. Sanders
- Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Paolo Cravedi
- Translational Transplant Research Center, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Irene M. Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Stefan P. Berger
- Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jamil R. Azzi
- Transplantation Research Center, Division of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
D'Amico F, Skarmoutsou E, Libra M. Coevolutionary analysis of Forkhead box protein P3 and its physical binary interactors E3 ubiquitin-protein ligase CHIP, Zfp-90, and nuclear receptor ROR-α. Proteins 2023. [PMID: 36964925 DOI: 10.1002/prot.26491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/30/2022] [Accepted: 03/13/2023] [Indexed: 03/27/2023]
Abstract
Forkhead box protein P3 (FOXP3) is known to orchestrate the development and maintenance of T regulatory cells, a cell population specialized in immune suppression and peripheral immune tolerance. FOXP3 activity is fine-tuned through its interaction with several protein-binding partners. By using IntAct database, we retrieved three physical binary interactors: E3 ubiquitin-protein ligase CHIP, Zfp-90, and nuclear receptor ROR-α. Coevolution clusters between FOXP3 and its interactors were identified with the use of iBIS2 algorithm, the iterative version of BIS/BIS2. Most of the coevolving pairs came from some species of monotremes and marsupials, as well as from a group of bats, thus suggesting that protein interactions of FOXP3 with its partners may be changed and/or modulated during mammalian speciation. Furthermore, our analysis would suggest the occurrence of a determinant role of FOXP3 in suppressing pregnancy alloreactions in placental mammals. Similarly, FOXP3, through its interaction with different protein interaction mechanisms, would explain the unique control of inflammatory response to infections in bats. By identifying several inter-protein clusters between the different protein pairs, our findings may provide a guide for new therapeutic approaches to modulate T regulatory suppression and/or enhance immune tolerance.
Collapse
Affiliation(s)
- Fabio D'Amico
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
20
|
Skartsis N, Muller YD, Ferreira LMR. Regulatory T cell homeostasis: Requisite signals and implications for clinical development of biologics. Clin Immunol 2023; 246:109201. [PMID: 36470337 PMCID: PMC12066019 DOI: 10.1016/j.clim.2022.109201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/28/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Novel biologics are currently being tested in clinical trials for the treatment of autoimmune diseases and the prevention of transplant allograft rejection. Their premise is to deliver highly efficient immunosuppression while minimizing side-effects, as they specifically target inflammatory mediators involved in the dysregulation of the immune system. However, the pleiotropism of soluble mediators and cell-to-cell interactions with potential to exert both proinflammatory and regulatory influences on the outcome of the immune response can lead to unpredictable results. Predicting responses to biologic drugs requires mechanistic understanding of the cell type-specific effect of immune mediators. Elucidation of the central role of regulatory T cells (Treg), a small subset of T cells dedicated to immune homeostasis, in preventing the development of auto- and allo-immunity has provided a deeper understanding of the signaling pathways that govern immune tolerance. This review focuses on the requisite signals that promote Treg homeostasis and discusses the anticipated outcomes of biologics targeting these signals. Our goal is to inform and facilitate the design of cell-specific biologics that thwart T effector cells (Teff) while promoting Treg function for the treatment of autoimmune diseases and the prevention of transplant rejection.
Collapse
Affiliation(s)
- Nikolaos Skartsis
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA; Mayo Clinic William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA.
| | - Yannick D Muller
- Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Leonardo M R Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
21
|
Schwarz C, Muckenhuber M, Wekerle T. Optimizing Costimulation Blockade-Based Immunosuppression. KIDNEY360 2022; 3:2005-2007. [PMID: 36591358 PMCID: PMC9802563 DOI: 10.34067/kid.0005652022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Christoph Schwarz
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Moritz Muckenhuber
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Mechanisms of Resistance to CDK4/6 Inhibitors in Hormone Receptor-Positive (HR +) Breast Cancer: Spotlight on Convergent CDK6 Upregulation and Immune Signaling. CURRENT BREAST CANCER REPORTS 2022. [DOI: 10.1007/s12609-022-00461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
23
|
Ni H, Zhang H, Li L, Huang H, Guo H, Zhang L, Li C, Xu JX, Nie CP, Li K, Zhang X, Xia X, Li J. T cell-intrinsic STING signaling promotes regulatory T cell induction and immunosuppression by upregulating FOXP3 transcription in cervical cancer. J Immunother Cancer 2022; 10:jitc-2022-005151. [PMID: 36126994 PMCID: PMC9490630 DOI: 10.1136/jitc-2022-005151] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Stimulator of interferon genes (STING) is an innate immune sensor of cytoplasmic double-stranded DNA originating from microorganisms and host cells. The activation of cytosolic DNA-STING pathway in tumor microenvironments is usually linked to more robust adaptive immune responses to tumors, however the intracellular function of STING in regulatory T cells is largely unknown. In the present study, we aimed to explore the contribution of intracellular STING activation to regulatory T cell induction (iTreg) in cervical cancer (CC) microenvironments. METHODS Blood samples and tumor specimens were obtained from patients with CC. The intratumoral STING, CCL22, CD8 and forkhead box P3 (FOXP3) expression levels were measured by immunohistochemistry. T cell-specific STING conditional knockout mice (CD4-Cre/STINGflox/flox, TKO) were generated, and syngeneic TC-1 tumor model were investigated. The differentiation and molecular regulatory pathway of human and murine iTreg under different treatments were investigated by ex vivo assays, immunoblotting and quantitative PCR. Tumor-associated exosomes (T-EXO) were isolated from CC cell lines and exosomal contents were identified by ELISA and Western blot analysis. The impact of T-EXO on T cell differentiation was tested in in vitro cell culture. RESULTS Increased STING, CCL22 level, FOXP3+ cells but decreased CD8+ cells in tumor tissues predicted poor survival. Tumor-bearing CD4-Cre-STINGflox/flox (TKO) mice displayed slower tumor growth tendencies as well as fewer FOXP3+ cells but higher CD8+ cell proportion in tumor tissues than wild-type (WT) mice. Activating of STING signaling cooperated with T cell receptor, interleukin-2 receptor and transforming growth factor-beta (TGF-β) signals to promote CD4+CD25highFOXP3+ iTreg differentiation from both human and murine CD4+-naïve T cells from WT and IFNAR-/- mice but not TKO or IRF3-/- mice in vitro. Ectopic STING, TBK1 or IRF3 expression promoted iTreg differentiation from human CD4+-naïve T cells. T cell-intrinsic STING activation induced FOXP3 transcription through TBK1-IRF3-mediated SMAD3 and STAT5 phosphorylation independent of interferon-β. In CC, tumor-derived exosomes activated STING signaling in tumor-infiltrated T cells by exosomal TGF-β, cyclic GMP-AMP synthase and 2'-3'-cGAMP, leading to iTreg expansion. CONCLUSIONS These findings highlight a novel mechanism for iTreg expansion mediated by tumor-derived exosome-activated T cell-intrinsic STING signal, and provide a rationale for developing immunotherapeutic strategies targeting STING signal in CC.
Collapse
Affiliation(s)
- Huanhe Ni
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Huanling Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Lin Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - He Huang
- Department of Gynecological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Hui Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Lin Zhang
- Department of Experiment Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Chunwei Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jing-Xiao Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Cai-Ping Nie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Kui Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xiaoshi Zhang
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jiang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China .,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| |
Collapse
|
24
|
Nishiyama N, Nakahashi-Oda C, Shibuya A. Interferon-β promotes the survival and function of induced regulatory T cells. Cytokine 2022; 158:156009. [PMID: 36049243 DOI: 10.1016/j.cyto.2022.156009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/18/2022] [Accepted: 08/13/2022] [Indexed: 11/03/2022]
Abstract
Type I interferons (IFNs) are pleiotropic cytokines and impact various immune cells, including regulatory T cells (Treg cells). The effect of type-I IFNs on the development and function of Treg cells is quite controversial. Here we induced Treg cells (iTreg cells) from naïve CD4+ T cells in vitro in the presence or absence of IFN-β to elucidate its direct effect on the induction of iTreg cells. We found that IFN-β suppressed the proliferation of iTreg cells but enhanced their expression of anti-apoptotic genes Bcl-2 and Mcl-1 during the development of iTreg cells. We also found that IFN-β promoted suppression of conventional T cell proliferation by iTreg cells. These results suggest that IFN-β promotes the survival and immunomodulatory function of iTreg cells.
Collapse
Affiliation(s)
- Nanako Nishiyama
- Department of Immunology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Chigusa Nakahashi-Oda
- Department of Immunology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; R&D Center for Innovative Drug Discovery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; R&D Center for Innovative Drug Discovery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
25
|
Research Highlights. Transplantation 2022. [DOI: 10.1097/tp.0000000000004152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|