1
|
Prezgot D, Chen M, Leng Y, Gaburici L, Zou S. Automated Machine-Learning-Driven Analysis of Microplastics by TGA-FTIR for Enhanced Identification and Quantification. Anal Chem 2025; 97:8833-8840. [PMID: 40238848 PMCID: PMC12044591 DOI: 10.1021/acs.analchem.4c06775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/21/2025] [Accepted: 04/05/2025] [Indexed: 04/18/2025]
Abstract
Microplastics persist as ubiquitous environmental contaminants, and efficient methods to quantify and identify their presence are essential for assessing their environmental and health impacts. Common identification approaches typically fall under either vibrational spectroscopy or thermoanalytical techniques with thermogravimetric analysis (TGA) coupled with Fourier transform infrared (FTIR) spectroscopy bridging the intersection. Despite its potential, TGA-FTIR remains relatively underutilized for microplastic analysis, even though each thermogram is associated with approximately 200 FTIR spectra that can be rapidly assessed with targeted automated data analysis. This work explores the development of data analysis routines specialized in identifying plastic components from TGA-FTIR. A dedicated spectral library and a matching algorithm were created to identify polymers from their gas-phase FTIR spectra. The approach was further enhanced by utilizing machine learning (ML) classification techniques, including k-nearest neighbor, random forest, support vector classifier, and multilayer perceptron. The performance of these classifiers for complex data sets was evaluated using synthetic data sets generated from the spectral library. ML techniques offered precise and unambiguous identification compared with a custom spectral matching algorithm. By correlating polymer identities with mass loss in the thermogram, this approach combines qualitative insights with semiquantitative analysis, enabling a streamlined assessment of plastic content in samples.
Collapse
Affiliation(s)
- Daniel Prezgot
- Metrology
Research Centre, National Research Council
Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Maohui Chen
- Metrology
Research Centre, National Research Council
Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Yingshu Leng
- Metrology
Research Centre, National Research Council
Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
- Ottawa−Carleton
Institute for Biomedical Engineering, University
of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Liliana Gaburici
- Quantum
and Nanotechnologies Research Centre, National
Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Shan Zou
- Metrology
Research Centre, National Research Council
Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
2
|
Saha U, Jena S, Simnani FZ, Singh D, Choudhury A, Naser SS, Lenka SS, Kirti A, Nandi A, Sinha A, Patro S, Kujawska M, Suar M, Kaushik NK, Ghosh A, Verma SK. The unseen perils of oral-care products generated micro/nanoplastics on human health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117526. [PMID: 39674028 DOI: 10.1016/j.ecoenv.2024.117526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/23/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
The extensive use of plastics in modern dentistry, including oral care products and dental materials, has raised significant concerns due to the increasing evidence of potential harm to human health and the environment caused by the unintentional release of microplastics (MPs) and nanoplastics (NPs). Particles from sources like toothpaste, toothbrushes, orthodontic implants, and denture materials are generated through mechanical friction, pH changes, and thermal fluctuations. These processes cause surface stress, weaken material integrity, and induce wear, posing health risks such as exposure to harmful monomers and additives, while contributing to environmental contamination. MPs/NPs released during dental procedures can be ingested, leading to immune suppression, tissue fibrosis, and systemic toxicities. The gut epithelium absorbs some particles, while others are excreted, entering ecosystems, accumulating through the food chain, and causing ecological damage. Although analytical techniques have advanced in detecting MPs/NPs in oral care products, more robust methods are needed to understand their release mechanisms. This review explores the prevalence of MPs/NPs in dentistry, the mechanisms by which MPs/NPs are released into the oral environment, and their implications for human and ecological health. It underscores the urgency of public awareness and sustainable dental practices to mitigate these risks and promote environmental well-being.
Collapse
Affiliation(s)
- Utsa Saha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Snehasmita Jena
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Shaikh Sheeran Naser
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Sudakshya S Lenka
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Apoorv Kirti
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Swadheena Patro
- Kalinga Institute of Dental Sciences, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, South Korea.
| | - Aishee Ghosh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India; Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India; Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
3
|
Shao K, Zou R, Zhang Z, Mandemaker LDB, Timbie S, Smith RD, Durkin AM, Dusza HM, Meirer F, Weckhuysen BM, Alderete TL, Vermeulen R, Walker DI. Advancements in Assays for Micro- and Nanoplastic Detection: Paving the Way for Biomonitoring and Exposomics Studies. Annu Rev Pharmacol Toxicol 2025; 65:567-585. [PMID: 39270670 DOI: 10.1146/annurev-pharmtox-030424-112828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Although plastic pollution and exposure to plastic-related compounds have received worldwide attention, health risks associated with micro- and nanoplastics (MNPs) are largely unknown. Emerging evidence suggests MNPs are present in human biofluids and tissue, including blood, breast milk, stool, lung tissue, and placenta; however, exposure assessment is limited and the extent of human exposure to MNPs is not well known. While there is a critical need to establish robust and scalable biomonitoring strategies to assess human exposure to MNPs and plastic-related chemicals, over 10,000 chemicals have been linked to plastic manufacturing with no existing standardized approaches to account for even a fraction of these exposures. This review provides an overview of the status of methods for measuring MNPs and associated plastic-related chemicals in humans, with a focus on approaches that could be adapted for population-wide biomonitoring and integration with biological response measures to develop hypotheses on potential health effects of plastic exposures. We also examine the exposure risks associated with the widespread use of chemical additives in plastics. Despite advancements in analytical techniques, there remains a pressing need for standardized measurement protocols and untargeted, high-throughput analysis methods to enable comprehensive MNP biomonitoring to identify key MNP exposures in human populations. This review aims to merge insights into the toxicological effects of MNPs and plastic additives with an evaluation of analytical challenges, advocating for enhanced research methods to fully assess, understand, and mitigate the public health implications of MNPs.
Collapse
Affiliation(s)
- Kuanliang Shao
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA;
| | - Runyu Zou
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zhuoyue Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA;
| | - Laurens D B Mandemaker
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Sarah Timbie
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA;
| | - Ronald D Smith
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA;
| | - Amanda M Durkin
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hanna M Dusza
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Tanya L Alderete
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Roel Vermeulen
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA;
| |
Collapse
|
4
|
Bu W, Cui Y, Jin Y, Wang X, Jiang M, Huang R, Egbobe JO, Zhao X, Tang J. Unmasking the Invisible Threat: Biological Impacts and Mechanisms of Polystyrene Nanoplastics on Cells. TOXICS 2024; 12:908. [PMID: 39771123 PMCID: PMC11728749 DOI: 10.3390/toxics12120908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025]
Abstract
Polystyrene nanoplastics (PS-NPs), a pervasive component of plastic pollution, have emerged as a significant environmental and health threat due to their microscopic size and bioaccumulative properties. This review systematically explores the biological effects and mechanisms of PS-NPs on cellular systems, encompassing oxidative stress, mitochondrial dysfunction, DNA damage, inflammation, and disruptions in autophagy. Notably, PS-NPs induce multiple forms of cell death, including apoptosis, ferroptosis, necroptosis, and pyroptosis, mediated through distinct yet interconnected molecular pathways. The review also highlights various factors that influence the cytotoxicity of PS-NPs, such as particle size, surface modifications, co-exposure with other pollutants, and protein corona formation. These complex interactions underscore the extensive and potentially hazardous impacts of PS-NPs on cellular health. The findings presented here emphasize the need for continued research on the mechanisms underlying PS-NP toxicity and the development of effective strategies for mitigating their effects, thereby informing regulatory frameworks aimed at minimizing environmental and biological risks.
Collapse
Affiliation(s)
- Wenxia Bu
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (W.B.); (Y.C.); (Y.J.); (X.W.); (M.J.); (J.O.E.)
| | - Ye Cui
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (W.B.); (Y.C.); (Y.J.); (X.W.); (M.J.); (J.O.E.)
| | - Yueyuan Jin
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (W.B.); (Y.C.); (Y.J.); (X.W.); (M.J.); (J.O.E.)
| | - Xuehai Wang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (W.B.); (Y.C.); (Y.J.); (X.W.); (M.J.); (J.O.E.)
| | - Mengna Jiang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (W.B.); (Y.C.); (Y.J.); (X.W.); (M.J.); (J.O.E.)
| | - Ruiyao Huang
- Department of Clinical Medicine, Nantong University Xinglin College, Nantong 226000, China;
| | - JohnPaul Otuomasiri Egbobe
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (W.B.); (Y.C.); (Y.J.); (X.W.); (M.J.); (J.O.E.)
| | - Xinyuan Zhao
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (W.B.); (Y.C.); (Y.J.); (X.W.); (M.J.); (J.O.E.)
| | - Juan Tang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (W.B.); (Y.C.); (Y.J.); (X.W.); (M.J.); (J.O.E.)
| |
Collapse
|
5
|
Saini N, Pandey G, Sharma A, Pandey K, Kulshrestha V, Awasthi K. Bimetallic PdPt Nanoparticles Decorated PES Membranes for Enhanced H 2 Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24318-24329. [PMID: 39511976 DOI: 10.1021/acs.langmuir.4c02669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Hydrogen separation has significant importance in diverse applications ranging from clean energy production to gas purification. Membrane technology stands out as a low-cost and efficient method to address the purpose. The development of efficient gas-sensitive materials can further bolster the membrane's performance. In this pursuit, bimetallic PdPt nanoparticles were synthesized using a wet chemical approach and were strategically decorated onto poly(ether sulfone) (PES) membranes. The fibrous morphology of the PES membranes provided an ideal platform for the decoration of nanoparticles, promising enhanced gas transport properties. Prior to the attachment of nanoparticles, the membranes were pretreated under UV light to enhance their surface properties and facilitate improved adhesion. The synthesized bimetallic nanoparticles were characterized by using transmission electron microscopy and X-ray photoelectron spectroscopy for their morphological and elemental analysis. Furthermore, the engineered membranes were characterized using various techniques, such as Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy (FESEM) with rigorous scrutiny to ensure a comprehensive understanding of their structural, chemical, and morphological properties. The membranes were examined for their separation performance using pure H2, N2, and CO2 gases, and the results revealed a 30% increment in H2 permeability and 40 and 42% increments in H2/CO2 and H2/N2 selectivity, respectively. These findings confirmed the critical role of tailored material design and synthesis strategies in advancing membrane technologies for H2 separation applications.
Collapse
Affiliation(s)
- Nishel Saini
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017, India
| | - Gaurav Pandey
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017, India
| | - Ankit Sharma
- Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017, India
| | - Kamakshi Pandey
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017, India
- Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017, India
| | - Vaibhav Kulshrestha
- CSIR-Central Salt and Marine Chemical Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar 364002, India
| | - Kamlendra Awasthi
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017, India
| |
Collapse
|
6
|
Nguyen TB, Ho TBC, Chen CW, Chen WH, Bui XT, Hsieh S, Dong CD. Enhancing the degradation of microplastics through combined KMnO 4 oxidation and UV radiation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122942. [PMID: 39427621 DOI: 10.1016/j.jenvman.2024.122942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/04/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
The pervasive issue of microplastics in aquatic environments presents a formidable challenge to traditional water treatment methodologies, including those utilizing KMnO4. This study pioneers advanced oxidation processes (AOPs) method aimed at improving the degradation of PE microplastics by employing a dual treatment strategy that combines KMnO4 oxidation with UV irradiation. Detailed analysis of the surface modifications and chemical functional groups of the treated PE microplastics revealed the establishment of Mn-O-Mn linkages on their surfaces. Weight reductions of 3.9%, 4.9%, and 7.5% were observed for the KMnO4/UVA, KMnO4/UVB, and KMnO4/UVC treatments over seven days, respectively. The emergence of carboxyl and hydroxyl groups played a crucial role in accelerating the degradation process. Notably, the combined application of UVC rays and KMnO4 resulted in the most effective degradation of PE microplastics observed in our study. The process significantly enhanced the formation of MnO2 particles from KMnO4 oxidation, with concentrations ranging from 0.036 to 0.070 mM for KMnO4/UVA, 0.066-0.097 mM for KMnO4/UVB, and 0.086-0.180 mM for KMnO4/UVC. Furthermore, the influence of varying pH levels, KMnO4 concentrations, and different water sources on the degradation efficacy was investigated. The pivotal role of free radicals and reactive manganese species in promoting the degradation of PE microplastics was identified. A comparative evaluation with treatments solely utilizing KMnO4 or UV light highlighted the enhanced effectiveness of the combined approach, demonstrating its potential as an efficient solution for reducing microplastic contamination in aquatic systems.
Collapse
Affiliation(s)
- Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Thi-Bao-Chau Ho
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc City, Ho Chi Minh City, 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, 700000, Viet Nam
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung City, 80424, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan.
| |
Collapse
|
7
|
Gagné F, Gauthier M, André C. Plastic Analysis with a Plasmonic Nano-Gold Sensor Coated with Plastic-Binding Peptides. J Xenobiot 2024; 14:690-700. [PMID: 38921649 PMCID: PMC11204973 DOI: 10.3390/jox14020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Contamination with plastics of small dimensions (<1 µm) represents a health concern for many terrestrial and aquatic organisms. This study examined the use of plastic-binding peptides as a coating probe to detect various types of plastic using a plasmon nano-gold sensor. Plastic-binding peptides were selected for polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), and polystyrene (PS) based on the reported literature. Using nAu with each of these peptides to test the target plastics revealed high signal, at 525/630 nm, suggesting that the target plastic limited HCl-induced nAu aggregation. Testing with other plastics revealed some lack of specificity but the signal was always lower than that of the target plastic. This suggests that these peptides, although reacting mainly with their target plastic, show partial reactivity with the other target plastics. By using a multiple regression model, the relative levels of a given plastic could be corrected by the presence of other plastics. This approach was tested in freshwater mussels caged for 3 months at sites suspected to release plastic materials: in rainfall overflow discharges, downstream a largely populated city, and in a municipal effluent dispersion plume. The data revealed that the digestive glands of the mussels contained higher levels of PP, PE, and PET plastic particles at the rainfall overflow and downstream city sites compared to the treated municipal effluent site. This corroborated earlier findings that wastewater treatment could remove nanoparticles, at least in part. A quick and inexpensive screening test for plastic nanoparticles in biological samples with plasmonic nAu-peptides is proposed.
Collapse
Affiliation(s)
- Francois Gagné
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill, Montréal, QC H2Y 2E7, Canada; (M.G.); (C.A.)
| | | | | |
Collapse
|
8
|
Duncan TV, Khan SA, Patri AK, Wiggins S. Regulatory Science Perspective on the Analysis of Microplastics and Nanoplastics in Human Food. Anal Chem 2024; 96:4343-4358. [PMID: 38452774 DOI: 10.1021/acs.analchem.3c05408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Microplastics are increasingly reported, not only in the environment but also in a wide range of food commodities. While studies on microplastics in food abound, the current state of science is limited in its application to regulatory risk assessment by a continued lack of standardized definitions, reference materials, sample collection and preparation procedures, fit-for purpose analytical methods for real-world and environmentally relevant plastic mixtures, and appropriate quality controls. This is particularly the case for nanoplastics. These methodological challenges hinder robust, quantitative exposure assessments of microplastic and nanoplastic mixtures from food consumption. Furthermore, limited toxicological studies on whether microplastics and nanoplastics adversely impact human health are also impeded by methodology challenges. Food safety regulatory agencies must consider both the exposure and the risk of contaminants of emerging concern to ascertain potential harm. Foundational to this effort is access to and application of analytical methods with the capability to quantify and characterize micro- and nanoscale sized polymers in complex food matrices. However, the early stages of method development and application of early stage methods to study the distribution and potential health effects of microplastics and nanoplastics in food have largely been done without consideration of the stringent requirements of methods to inform regulatory activities. We provide regulatory science perspectives on the state of knowledge regarding the occurrence of microplastics and nanoplastics in food and present our general approach for developing, validating, and implementing analytical methods for regulatory purposes.
Collapse
Affiliation(s)
- Timothy V Duncan
- Division of Food Processing Science and Technology, Office of Food Safety, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Bedford Park, Illinois 60501, United States
| | - Sadia Afrin Khan
- Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland 20740, United States
| | - Anil K Patri
- Nanotechnology Core Facility, Office of Scientific Coordination, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, Arkansas 72029, United States
| | - Stacey Wiggins
- Division of Seafood Safety, Office of Food Safety, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland 20740, United States
| |
Collapse
|