1
|
Tamanna T, Rahman MS. Leveraging immunoinformatics for developing a multi-epitope subunit vaccine against Helicobacter pylori and Fusobacterium nucleatum. J Biomol Struct Dyn 2025; 43:1552-1565. [PMID: 38116749 DOI: 10.1080/07391102.2023.2292295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023]
Abstract
Gastric ulcers caused by Helicobacter pylori and Fusobacterium nucleatum remain a significant global health concern without an established vaccine. In this study, we utilized immunoinformatics methods to design a multi-epitope vaccine targeting these pathogens. Outer membrane proteins from H. pylori and F. nucleatum were scrutinized to identify high antigenic T-cell and B-cell epitopes. The resulting vaccine comprised carefully analyzed and evaluated epitopes, including cytotoxic T-lymphocytes, helper T-lymphocytes, and linear B-lymphocytes epitopes. This vaccine exhibited notable antigenicity, suitable immunogenicity, and demonstrated non-allergenicity and non-toxicity. It displayed favorable physiochemical characteristics and high solubility. In interaction studies, the vaccine exhibited robust binding to toll-like receptor 4 (TLR4). Molecular dynamic simulations revealed cohesive structural integrity and stable attachment. Codon adaptation utilizing Escherichia coli K12 host yielded a vaccine with elevated Codon Adaptation Index (CAI) and optimal GC content. In silico cloning into the pET28+(a) vector demonstrated efficient expression. Immune simulations indicated the vaccine's ability to initiate immune responses in humans, mirroring real-life scenarios. Based on these comprehensive findings, we propose that our developed vaccine has the potential to confer robust immunity against H. pylori and F. nucleatum infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tanjin Tamanna
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
2
|
Invenção MDCV, de Macêdo LS, de Moura IA, Santos LABDO, Espinoza BCF, de Pinho SS, Leal LRS, dos Santos DL, São Marcos BDF, Elsztein C, de Sousa GF, de Souza-Silva GA, Barros BRDS, Cruz LCDO, Maux JMDL, Silva Neto JDC, de Melo CML, Silva AJD, Batista MVDA, de Freitas AC. Design and Immune Profile of Multi-Epitope Synthetic Antigen Vaccine Against SARS-CoV-2: An In Silico and In Vivo Approach. Vaccines (Basel) 2025; 13:149. [PMID: 40006696 PMCID: PMC11861798 DOI: 10.3390/vaccines13020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND The rapid advancement of the pandemic caused by SARS-CoV-2 and its variants reinforced the importance of developing easy-to-edit vaccines with fast production, such as multi-epitope DNA vaccines. The present study aimed to construct a synthetic antigen multi-epitope SARS-CoV-2 to produce a DNA vaccine. METHODS A database of previously predicted Spike and Nucleocapsid protein epitopes was created, and these epitopes were analyzed for immunogenicity, conservation, population coverage, and molecular docking. RESULTS A synthetic antigen with 15 epitopes considered immunogenic, conserved even in the face of variants and that were able to anchor themselves in the appropriate HLA site, together had more than 90% worldwide coverage. A multi-epitope construct was developed with the sequences of these peptides separated from each other by linkers, cloned into the pVAX1 vector. This construct was evaluated in vivo as a DNA vaccine and elicited T CD4+ and T CD8+ cell expansion in the blood and spleen. In hematological analyses, there was an increase in lymphocytes, monocytes, and neutrophils between the two doses. Furthermore, based on histopathological analysis, the vaccines did not cause any damage to the organs analyzed. CONCLUSIONS The present study generated a multi-epitope synthetic vaccine antigen capable of generating antibody-mediated and cellular immune responses.
Collapse
Affiliation(s)
- Maria da Conceição Viana Invenção
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (M.d.C.V.I.); (L.S.d.M.); (I.A.d.M.); (B.C.F.E.); (S.S.d.P.); (L.R.S.L.); (D.L.d.S.); (B.d.F.S.M.); (C.E.); (A.J.D.S.)
| | - Larissa Silva de Macêdo
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (M.d.C.V.I.); (L.S.d.M.); (I.A.d.M.); (B.C.F.E.); (S.S.d.P.); (L.R.S.L.); (D.L.d.S.); (B.d.F.S.M.); (C.E.); (A.J.D.S.)
| | - Ingrid Andrêssa de Moura
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (M.d.C.V.I.); (L.S.d.M.); (I.A.d.M.); (B.C.F.E.); (S.S.d.P.); (L.R.S.L.); (D.L.d.S.); (B.d.F.S.M.); (C.E.); (A.J.D.S.)
| | - Lucas Alexandre Barbosa de Oliveira Santos
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão 49100-000, Brazil; (L.A.B.d.O.S.); (M.V.d.A.B.)
| | - Benigno Cristofer Flores Espinoza
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (M.d.C.V.I.); (L.S.d.M.); (I.A.d.M.); (B.C.F.E.); (S.S.d.P.); (L.R.S.L.); (D.L.d.S.); (B.d.F.S.M.); (C.E.); (A.J.D.S.)
| | - Samara Sousa de Pinho
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (M.d.C.V.I.); (L.S.d.M.); (I.A.d.M.); (B.C.F.E.); (S.S.d.P.); (L.R.S.L.); (D.L.d.S.); (B.d.F.S.M.); (C.E.); (A.J.D.S.)
| | - Lígia Rosa Sales Leal
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (M.d.C.V.I.); (L.S.d.M.); (I.A.d.M.); (B.C.F.E.); (S.S.d.P.); (L.R.S.L.); (D.L.d.S.); (B.d.F.S.M.); (C.E.); (A.J.D.S.)
| | - Daffany Luana dos Santos
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (M.d.C.V.I.); (L.S.d.M.); (I.A.d.M.); (B.C.F.E.); (S.S.d.P.); (L.R.S.L.); (D.L.d.S.); (B.d.F.S.M.); (C.E.); (A.J.D.S.)
| | - Bianca de França São Marcos
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (M.d.C.V.I.); (L.S.d.M.); (I.A.d.M.); (B.C.F.E.); (S.S.d.P.); (L.R.S.L.); (D.L.d.S.); (B.d.F.S.M.); (C.E.); (A.J.D.S.)
| | - Carolina Elsztein
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (M.d.C.V.I.); (L.S.d.M.); (I.A.d.M.); (B.C.F.E.); (S.S.d.P.); (L.R.S.L.); (D.L.d.S.); (B.d.F.S.M.); (C.E.); (A.J.D.S.)
| | - Georon Ferreira de Sousa
- Laboratory of Immunological and Antitumor Analysis, Keizo Asami Immunopathology Laboratory, Department of Antibiotics, Bioscience Center, Federal University of Pernambuco, Recife 50670-901, Brazil; (G.F.d.S.); (G.A.d.S.-S.); (B.R.d.S.B.); (L.C.d.O.C.); (C.M.L.d.M.)
| | - Guilherme Antonio de Souza-Silva
- Laboratory of Immunological and Antitumor Analysis, Keizo Asami Immunopathology Laboratory, Department of Antibiotics, Bioscience Center, Federal University of Pernambuco, Recife 50670-901, Brazil; (G.F.d.S.); (G.A.d.S.-S.); (B.R.d.S.B.); (L.C.d.O.C.); (C.M.L.d.M.)
| | - Bárbara Rafaela da Silva Barros
- Laboratory of Immunological and Antitumor Analysis, Keizo Asami Immunopathology Laboratory, Department of Antibiotics, Bioscience Center, Federal University of Pernambuco, Recife 50670-901, Brazil; (G.F.d.S.); (G.A.d.S.-S.); (B.R.d.S.B.); (L.C.d.O.C.); (C.M.L.d.M.)
| | - Leonardo Carvalho de Oliveira Cruz
- Laboratory of Immunological and Antitumor Analysis, Keizo Asami Immunopathology Laboratory, Department of Antibiotics, Bioscience Center, Federal University of Pernambuco, Recife 50670-901, Brazil; (G.F.d.S.); (G.A.d.S.-S.); (B.R.d.S.B.); (L.C.d.O.C.); (C.M.L.d.M.)
| | - Julliano Matheus de Lima Maux
- Laboratory of Cytological and Molecular Research, Department of Histology and Embriology, Federal University of Pernambuco, Recife 50670-901, Brazil; (J.M.d.L.M.); (J.d.C.S.N.)
| | - Jacinto da Costa Silva Neto
- Laboratory of Cytological and Molecular Research, Department of Histology and Embriology, Federal University of Pernambuco, Recife 50670-901, Brazil; (J.M.d.L.M.); (J.d.C.S.N.)
| | - Cristiane Moutinho Lagos de Melo
- Laboratory of Immunological and Antitumor Analysis, Keizo Asami Immunopathology Laboratory, Department of Antibiotics, Bioscience Center, Federal University of Pernambuco, Recife 50670-901, Brazil; (G.F.d.S.); (G.A.d.S.-S.); (B.R.d.S.B.); (L.C.d.O.C.); (C.M.L.d.M.)
| | - Anna Jéssica Duarte Silva
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (M.d.C.V.I.); (L.S.d.M.); (I.A.d.M.); (B.C.F.E.); (S.S.d.P.); (L.R.S.L.); (D.L.d.S.); (B.d.F.S.M.); (C.E.); (A.J.D.S.)
| | - Marcus Vinicius de Aragão Batista
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão 49100-000, Brazil; (L.A.B.d.O.S.); (M.V.d.A.B.)
| | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (M.d.C.V.I.); (L.S.d.M.); (I.A.d.M.); (B.C.F.E.); (S.S.d.P.); (L.R.S.L.); (D.L.d.S.); (B.d.F.S.M.); (C.E.); (A.J.D.S.)
| |
Collapse
|
3
|
Oladipo EK, Akinleye TM, Adeyemo SF, Akinboade MW, Siyanbola KF, Adetunji VA, Arowosegbe OA, Olatunji VK, Adaramola EO, Afolabi HO, Ajani CD, Siyanbola TP, Folakanmi EO, Irewolede BA, Okesanya OJ, Ajani OF, Ariyo OE, Jimah EM, Iwalokun BA, Kolawole OM, Oloke JK, Onyeaka H. mRNA vaccine design for Epstein-Barr virus: an immunoinformatic approach. In Silico Pharmacol 2024; 12:68. [PMID: 39070665 PMCID: PMC11269547 DOI: 10.1007/s40203-024-00244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/14/2024] [Indexed: 07/30/2024] Open
Abstract
Epstein-Barr Virus (EBV), structurally similar to other herpes viruses, possess significant global health challenges as it causes infectious mononucleosis and is also associated with various cancers. Due to this widespread impact, an effective messenger RNA (mRNA) vaccine is paramount to help curb its spread, further underscoring the need for its development. This study, following an immunoinformatic approach, aimed to design a comprehensive mRNA vaccine against the EBV by selecting antigenic proteins, predicting Linear B-cell epitopes, cytotoxic T-cell lymphocyte (CTL) and helper T-cell lymphocyte (HTL) epitopes, and assessing vaccine characteristics. Seventy-nine EBV isolates from diverse geographical regions were examined. Additionally, the vaccine construct's physicochemical properties, transmembrane domains, solubility, and secondary structures were analysed. Molecular docking was conducted with Toll-Like Receptor 5 (TLR-5). Population coverage was assessed for selected major histocompatibility complex (MHC) alleles, and immune response was simulated. The result of this study highlighted a vaccine construct with high antigenicity, non-toxicity, and non-allergenicity and possessed favourable physicochemical properties. The vaccine's 3D structure is native-like and strongly binds with TLR-5, indicating a solid affinity with TLR-5. The selected MHC alleles provided broad universal population coverage of 89.1%, and the immune simulations suggested a robust and wide-ranging immunogenic response, activating critical immune cells, antibodies, and cytokines. These findings provide a solid foundation for further development and testing of the EBV candidate vaccine, offering potential solutions for combating EBV infections.
Collapse
Affiliation(s)
- Elijah Kolawole Oladipo
- Laboratory of Molecular Biology, Immunology and Bioinformatics, Department of Microbiology, Adeleke University, Ede, Osun State Nigeria
- Genomics Unit, Helix Biogen Institute, Ogbomosho, Oyo State Nigeria
| | - Temitope Michael Akinleye
- Genomics Unit, Helix Biogen Institute, Ogbomosho, Oyo State Nigeria
- Department of Anatomy and Advanced Research Center for Tumor Immunology, Inje University College of Medicine, 75 Bokji-ro, Busanjin-gu, Busan, 47392 Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | - Olalekan John Okesanya
- Faculty of Medicine, Department of Public Health and Maritime Transport, Laboratory of Hygiene and Epidemiology, University of Thessaly, Papakyriazi 22, Larissa, 41222 Greece
| | - Olumide Faith Ajani
- African Centre for Disease Control and Prevention (African CDC), Addis Ababa, Ethiopia
| | - Olumuyiwa Elijah Ariyo
- Department of Medicine, Infectious Diseases and Tropical Medicine Unit, Federal Teaching Hospital, Ido-Ekiti, Ekiti State Nigeria
| | | | - Bamidele Abiodun Iwalokun
- Molecular Biology and Biotechnology Department, Nigerian Institute of Medical Research, Lagos, Nigeria
| | | | - Julius Kola Oloke
- Department of Natural Science, Precious Cornerstone, Ibadan, 200132 Nigeria
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
4
|
Oladipo EK, Ojo TO, Olufemi SE, Irewolede BA, Adediran DA, Abiala AG, Hezekiah OS, Idowu AF, Oladeji YG, Ikuomola MO, Olayinka AT, Akanbi GO, Idowu UA, Olubodun OA, Odunlami FD, Ogunniran JA, Akinro OP, Adegoke HM, Folakanmi EO, Usman TA, Oladokun EF, Oluwasanya GJ, Awobiyi HO, Oluwasegun JA, Akintibubo SA, Jimah EM. Proteome based analysis of circulating SARS-CoV-2 variants: approach to a universal vaccine candidate. Genes Genomics 2023; 45:1489-1508. [PMID: 37548884 DOI: 10.1007/s13258-023-01426-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 07/09/2023] [Indexed: 08/08/2023]
Abstract
The discovery of the first infectious variant in Wuhan, China, in December 2019, has posed concerns over global health due to the spread of COVID-19 and subsequent variants. While the majority of patients experience flu-like symptoms such as cold and fever, a small percentage, particularly those with compromised immune systems, progress from mild illness to fatality. COVID-19 is caused by a RNA virus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our approach involved utilizing immunoinformatic to identify vaccine candidates with multiple epitopes and ligand-binding regions in reported SARS-CoV-2 variants. Through analysis of the spike glycoprotein, we identified dominant epitopes for T-cells and B-cells, resulting in a vaccine construct containing two helper T-cell epitopes, six cytotoxic T-cell epitopes, and four linear B-cell epitopes. Prior to conjugation with adjuvants and linkers, all epitopes were evaluated for antigenicity, toxicity, and allergenicity. Additionally, we assessed the vaccine Toll-Like Receptors complex (2, 3, and 4). The vaccine construct demonstrated antigenicity, non-toxicity, and non-allergenicity, thereby enabling the host to generate antibodies with favorable physicochemical characteristics. Furthermore, the 3D structure of the B-cell construct exhibited a ProSA-web z-score plot with a value of -1.71, indicating the reliability of the designed structure. The Ramachandran plot analysis revealed that 99.6% of the amino acid residues in the vaccine subunit were located in the high favored observation region, further establishing its strong candidacy as a vaccination option.
Collapse
Affiliation(s)
- Elijah Kolawole Oladipo
- Department of Microbiology, Laboratory of Molecular Biology, Immunology and Informatics, Adeleke University, Ede, Osun State, Nigeria.
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria.
| | - Taiwo Ooreoluwa Ojo
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Seun Elijah Olufemi
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | | | - Daniel Adewole Adediran
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Asegunloluwa Grace Abiala
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oluwaseun Samuel Hezekiah
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Akindele Felix Idowu
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Yinmi Gabriel Oladeji
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Microbiology, Obafemi Awolowo University, Ile Ife, Osun State, Nigeria
| | - Mary Omotoyinbo Ikuomola
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Adenike Titilayo Olayinka
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Gideon Oluwamayowa Akanbi
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Pure and Applied Biology, Microbiology Unit, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Usman Abiodun Idowu
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Pure and Applied Biology, Microbiology Unit, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Odunola Abimbola Olubodun
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Folusho Daniel Odunlami
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - James Akinwumi Ogunniran
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Omodamola Paulina Akinro
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Pure and Applied Biology, Microbiology Unit, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Hadijat Motunrayo Adegoke
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Computational Biophysical Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Elizabeth Oluwatoyin Folakanmi
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | | | - Elizabeth Folakemi Oladokun
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Pure and Applied Biology, Microbiology Unit, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | | | | | - Jerry Ayobami Oluwasegun
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Samuel Adebowale Akintibubo
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Pure and Applied Biology, Microbiology Unit, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | | |
Collapse
|
5
|
Devarakonda Y, Reddy MVNJ, Neethu RS, Chandran A, Syal K. Multi epitope vaccine candidate design against Streptococcus pneumonia. J Biomol Struct Dyn 2023; 41:12654-12667. [PMID: 36636838 DOI: 10.1080/07391102.2023.2167123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023]
Abstract
Streptococcus pneumonia, the causative agent of sepsis, meningitis and pneumonia, is held responsible for causing invasive diseases predominantly in children along with adults from both developing and developed countries. The available vaccines coverage in the context of different serotypes is limited and emergence of non-vaccine serotypes could further emerge as a threat in future. Advanced immunoinformatics tools have been used for developing a multi epitope subunit vaccine. In the current study we have subjected these four surface antigenic proteins Ply, PsaA, PspA and PspK to construct vaccine designs. We have predicted different B-cell and T-cell epitopes by using NetCTL 1.2, IEDB (Immune Epitope Databases) and ABCpred. An adjuvant (griselimycin) has been added to the vaccine construct sequence in order to improve its immunogenicity. The vaccine construct has been evaluated for its antigenicity, allergenicity, toxicity and different physio-chemical properties. The bioinformatic tools have been used for prediction, refinement and validation of the 3 D structure. Further, the vaccine structure has been docked with a toll-like receptor (TLR-4) by ClusPro 2.0. In conclusion, the proposed multi-epitope vaccine designs could potentially activate both humoral and cellular immune responses and has a potential to be a vaccine candidate against S.pneumoniae, and requires experimental validation for ensuring immunogenicity and safety profile.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yogeshwar Devarakonda
- Department of Biological Sciences, Center for Genetics and Molecular Microbiology, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad, India
| | - M V N Janaradhan Reddy
- Department of Biological Sciences, Center for Genetics and Molecular Microbiology, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad, India
| | - R S Neethu
- Department of Biological Sciences, Center for Genetics and Molecular Microbiology, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad, India
| | - Aneesh Chandran
- Department of Biotechnology and Microbiology, Kannur University, Kannur, India
| | - Kirtimaan Syal
- Department of Biological Sciences, Center for Genetics and Molecular Microbiology, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad, India
| |
Collapse
|
6
|
Sharun K, Tiwari R, Yatoo MI, Natesan S, Megawati D, Singh KP, Michalak I, Dhama K. A comprehensive review on pharmacologic agents, immunotherapies and supportive therapeutics for COVID-19. NARRA J 2022; 2:e92. [PMID: 38449903 PMCID: PMC10914132 DOI: 10.52225/narra.v2i3.92] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/06/2022] [Indexed: 03/08/2024]
Abstract
The emergence of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected many countries throughout the world. As urgency is a necessity, most efforts have focused on identifying small molecule drugs that can be repurposed for use as anti-SARS-CoV-2 agents. Although several drug candidates have been identified using in silico method and in vitro studies, most of these drugs require the support of in vivo data before they can be considered for clinical trials. Several drugs are considered promising therapeutic agents for COVID-19. In addition to the direct-acting antiviral drugs, supportive therapies including traditional Chinese medicine, immunotherapies, immunomodulators, and nutritional therapy could contribute a major role in treating COVID-19 patients. Some of these drugs have already been included in the treatment guidelines, recommendations, and standard operating procedures. In this article, we comprehensively review the approved and potential therapeutic drugs, immune cells-based therapies, immunomodulatory agents/drugs, herbs and plant metabolites, nutritional and dietary for COVID-19.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Mohd I. Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Senthilkumar Natesan
- Department of Infectious Diseases, Indian Institute of Public Health Gandhinagar, Opp to Airforce station HQ, Gandhinagar, India
| | - Dewi Megawati
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Warmadewa University, Denpasar, Indonesia
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Karam P. Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław, Poland
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
7
|
Salod Z, Mahomed O. Mapping Potential Vaccine Candidates Predicted by VaxiJen for Different Viral Pathogens between 2017-2021-A Scoping Review. Vaccines (Basel) 2022; 10:1785. [PMID: 36366294 PMCID: PMC9695814 DOI: 10.3390/vaccines10111785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 09/29/2023] Open
Abstract
Reverse vaccinology (RV) is a promising alternative to traditional vaccinology. RV focuses on in silico methods to identify antigens or potential vaccine candidates (PVCs) from a pathogen's proteome. Researchers use VaxiJen, the most well-known RV tool, to predict PVCs for various pathogens. The purpose of this scoping review is to provide an overview of PVCs predicted by VaxiJen for different viruses between 2017 and 2021 using Arksey and O'Malley's framework and the Preferred Reporting Items for Systematic Reviews extension for Scoping Reviews (PRISMA-ScR) guidelines. We used the term 'vaxijen' to search PubMed, Scopus, Web of Science, EBSCOhost, and ProQuest One Academic. The protocol was registered at the Open Science Framework (OSF). We identified articles on this topic, charted them, and discussed the key findings. The database searches yielded 1033 articles, of which 275 were eligible. Most studies focused on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), published between 2020 and 2021. Only a few articles (8/275; 2.9%) conducted experimental validations to confirm the predictions as vaccine candidates, with 2.2% (6/275) articles mentioning recombinant protein expression. Researchers commonly targeted parts of the SARS-CoV-2 spike (S) protein, with the frequently predicted epitopes as PVCs being major histocompatibility complex (MHC) class I T cell epitopes WTAGAAAYY, RQIAPGQTG, IAIVMVTIM, and B cell epitope IAPGQTGKIADY, among others. The findings of this review are promising for the development of novel vaccines. We recommend that vaccinologists use these findings as a guide to performing experimental validation for various viruses, with SARS-CoV-2 as a priority, because better vaccines are needed, especially to stay ahead of the emergence of new variants. If successful, these vaccines could provide broader protection than traditional vaccines.
Collapse
Affiliation(s)
- Zakia Salod
- Discipline of Public Health Medicine, University of KwaZulu-Natal, Durban 4051, South Africa
| | | |
Collapse
|
8
|
Bioinformatics, Computational Informatics, and Modeling Approaches to the Design of mRNA COVID-19 Vaccine Candidates. COMPUTATION 2022. [DOI: 10.3390/computation10070117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This article is devoted to applying bioinformatics and immunoinformatics approaches for the development of a multi-epitope mRNA vaccine against the spike glycoproteins of circulating SARS-CoV-2 variants in selected African countries. The study’s relevance is dictated by the fact that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began its global threat at the end of 2019 and since then has had a devastating impact on the whole world. Measures to reduce threats from the pandemic include social restrictions, restrictions on international travel, and vaccine development. In most cases, vaccine development depends on the spike glycoprotein, which serves as a medium for its entry into host cells. Although several variants of SARS-CoV-2 have emerged from mutations crossing continental boundaries, about 6000 delta variants have been reported along the coast of more than 20 countries in Africa, with South Africa accounting for the highest percentage. This also applies to the omicron variant of the SARS-CoV-2 virus in South Africa. The authors suggest that bioinformatics and immunoinformatics approaches be used to develop a multi-epitope mRNA vaccine against the spike glycoproteins of circulating SARS-CoV-2 variants in selected African countries. Various immunoinformatics tools have been used to predict T- and B-lymphocyte epitopes. The epitopes were further subjected to multiple evaluations to select epitopes that could elicit a sustained immunological response. The candidate vaccine consisted of seven epitopes, a highly immunogenic adjuvant, an MHC I-targeting domain (MITD), a signal peptide, and linkers. The molecular weight (MW) was predicted to be 223.1 kDa, well above the acceptable threshold of 110 kDa on an excellent vaccine candidate. In addition, the results showed that the candidate vaccine was antigenic, non-allergenic, non-toxic, thermostable, and hydrophilic. The vaccine candidate has good population coverage, with the highest range in East Africa (80.44%) followed by South Africa (77.23%). West Africa and North Africa have 76.65% and 76.13%, respectively, while Central Africa (75.64%) has minimal coverage. Among seven epitopes, no mutations were observed in 100 randomly selected SARS-CoV-2 spike glycoproteins in the study area. Evaluation of the secondary structure of the vaccine constructs revealed a stabilized structure showing 36.44% alpha-helices, 20.45% drawn filaments, and 33.38% random helices. Molecular docking of the TLR4 vaccine showed that the simulated vaccine has a high binding affinity for TLR-4, reflecting its ability to stimulate the innate and adaptive immune response.
Collapse
|
9
|
Meraz M, Vernon-Carter E, Rodriguez E, Alvarez-Ramirez J. A fractal scaling analysis of the SARS-CoV-2 genome sequence. Biomed Signal Process Control 2022; 73:103433. [PMID: 36567677 PMCID: PMC9760973 DOI: 10.1016/j.bspc.2021.103433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/04/2021] [Accepted: 11/28/2021] [Indexed: 12/27/2022]
Abstract
An approach based on fractal scaling analysis to characterize the organization of the SARS-CoV-2 genome sequence was used. The method is based on the detrended fluctuation analysis (DFA) implemented on a sliding window scheme to detect variations of long-range correlations over the genome sequence regions. The nucleotides sequence is mapped in a numerical sequence by using four different assignation rules: amino-keto, purine-pyrimidine, hydrogen-bond and hydrophobicity patterns. The originally reported sequence from Wuhan isolates (Wuhan Hu-1) was considered as a reference to contrast the structure of the 2002-2004 SARS-CoV-1 strain. Long-range correlations, quantified in terms of a scaling exponent, depended on both the mapping rule and the sequence region. Deviations from randomness were attributed to serial correlations or anti-correlations, which can be ascribed to ordered regions of the genome sequence. It was found that the Wuhan Hu-1 sequence was more random than the SARS-CoV-1 sequence, which suggests that the SARS-CoV-2 possesses a more efficient genomic structure for replication and infection. In general, the virus isolated in the early 2020 months showed slight correlation differences with the Wuhan Hu-1 sequence. However, early isolates from India and Italy presented visible differences that led to a more ordered sequence organization. It is apparent that the increased sequence order, particularly in the spike region, endowed some early variants with a more efficient mechanism to spreading, replicating and infecting. Overall, the results showed that the DFA provides a suitable framework to assess long-term correlations hidden in the internal organization of the SARS-CoV-2 genome sequence.
Collapse
Affiliation(s)
- M. Meraz
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Iztapalapa, CDMX 09340, Mexico
| | - E.J. Vernon-Carter
- Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Iztapalapa, CDMX 09340, Mexico
| | - E. Rodriguez
- Departamento de Ingenieria Eléctrica y Computacion, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Iztapalapa, CDMX 09340, Mexico
| | - J. Alvarez-Ramirez
- Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Iztapalapa, CDMX 09340, Mexico,Corresponding author
| |
Collapse
|
10
|
Rowaiye AB, Nwonu EJ, Asala TM, Ogu AC, Bur D, Chukwu C, Oli AN, Agbalalah T. Identifying immunodominant multi-epitopes from the envelope glycoprotein of the Lassa mammarenavirus as vaccine candidate for Lassa fever. Clin Exp Vaccine Res 2022; 11:249-263. [DOI: 10.7774/cevr.2022.11.3.249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | | | - Doofan Bur
- National Biotechnology Development Agency, Abuja, Nigeria
| | | | - Angus Nnamdi Oli
- Department of Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Tarimoboere Agbalalah
- National Biotechnology Development Agency, Abuja, Nigeria
- Department of Anatomy, Baze University, Abuja, Nigeria
| |
Collapse
|
11
|
Mekonnen D, Mengist HM, Jin T. SARS-CoV-2 subunit vaccine adjuvants and their signaling pathways. Expert Rev Vaccines 2022; 21:69-81. [PMID: 34633259 PMCID: PMC8567292 DOI: 10.1080/14760584.2021.1991794] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/07/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Vaccines are the agreed upon weapon against the COVID-19 pandemic. This review discusses about COVID-19 subunit vaccines adjuvants and their signaling pathways, which could provide a glimpse into the selection of appropriate adjuvants for prospective vaccine development studies. AREAS COVERED In the introduction, a brief background about the SARS-CoV-2 pandemic, the vaccine development race and classes of vaccine adjuvants were provided. . The antigen, trial stage, and types of adjuvants were extracted from the included articles and thun assimilated. Finally, the pattern recognition receptors (PRRs), their classes, cognate adjuvants, and potential signaling pathways were comprehended. EXPERT OPINION Adjuvants are unsung heroes of subunit vaccines. The in silico studies are very vital in avoiding several costly trial errors and save much work times. The majority of the (pre)clinical studies are promising. It is encouraging that most of the selected adjuvants are novel. Much emphasis must be paid to the optimal paring of antigen-adjuvant-PRRs for obtaining the desired vaccine effect. A good subunit vaccine/adjuvant is one that has high efficacy, safety, dose sparing, and rapid seroconversion rate and broad spectrum of immune response. In the years to come, COVID-19 adjuvanted subunit vaccines are expected to have superior utility than any other vaccines for various reasons.
Collapse
Affiliation(s)
- Daniel Mekonnen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hylemariam Mihiretie Mengist
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Cas Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Cas Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
12
|
Aboudounya MM, Heads RJ. COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation. Mediators Inflamm 2021; 2021:8874339. [PMID: 33505220 PMCID: PMC7811571 DOI: 10.1155/2021/8874339] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
Causes of mortality from COVID-19 include respiratory failure, heart failure, and sepsis/multiorgan failure. TLR4 is an innate immune receptor on the cell surface that recognizes pathogen-associated molecular patterns (PAMPs) including viral proteins and triggers the production of type I interferons and proinflammatory cytokines to combat infection. It is expressed on both immune cells and tissue-resident cells. ACE2, the reported entry receptor for SARS-CoV-2, is only present on ~1-2% of the cells in the lungs or has a low pulmonary expression, and recently, the spike protein has been proposed to have the strongest protein-protein interaction with TLR4. Here, we review and connect evidence for SARS-CoV-1 and SARS-CoV-2 having direct and indirect binding to TLR4, together with other viral precedents, which when combined shed light on the COVID-19 pathophysiological puzzle. We propose a model in which the SARS-CoV-2 spike glycoprotein binds TLR4 and activates TLR4 signalling to increase cell surface expression of ACE2 facilitating entry. SARS-CoV-2 also destroys the type II alveolar cells that secrete pulmonary surfactants, which normally decrease the air/tissue surface tension and block TLR4 in the lungs thus promoting ARDS and inflammation. Furthermore, SARS-CoV-2-induced myocarditis and multiple-organ injury may be due to TLR4 activation, aberrant TLR4 signalling, and hyperinflammation in COVID-19 patients. Therefore, TLR4 contributes significantly to the pathogenesis of SARS-CoV-2, and its overactivation causes a prolonged or excessive innate immune response. TLR4 appears to be a promising therapeutic target in COVID-19, and since TLR4 antagonists have been previously trialled in sepsis and in other antiviral contexts, we propose the clinical trial testing of TLR4 antagonists in the treatment of severe COVID-19. Also, ongoing clinical trials of pulmonary surfactants in COVID-19 hold promise since they also block TLR4.
Collapse
Affiliation(s)
- Mohamed M. Aboudounya
- Department of Cardiology, The Rayne Institute, St Thomas' Hospital, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, UK
| | - Richard J. Heads
- Department of Cardiology, The Rayne Institute, St Thomas' Hospital, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, UK
| |
Collapse
|
13
|
Designing a conserved peptide-based subunit vaccine against SARS-CoV-2 using immunoinformatics approach. In Silico Pharmacol 2021; 9:8. [PMID: 33425647 PMCID: PMC7785481 DOI: 10.1007/s40203-020-00062-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
The widespread of coronavirus (COVID-19) is a new global health crisis that poses a threat to the world. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in bats and was discovered first in Wuhan, Hubei province, China in December 2019. Immunoinformatics and bioinformatics tools were employed for the construction of a multi-epitope subunit vaccine to prevent the diseases. The antigenicity, toxicity and allergenicity of all epitopes used in the construction of the vaccine were predicted and then conjugated with adjuvants and linkers. Vaccine Toll-Like Receptors (2, 3, 4, 8 and 9) complex was also evaluated. The vaccine construct was antigenic, non-toxic and non-allergic, which indicates the vaccines ability to induce antibodies in the host, making it an effective vaccine candidate. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-020-00062-x.
Collapse
|
14
|
Designing multi-epitope subunit vaccine for ocular trachoma infection using Chlamydia trachomatis polymorphic membrane proteins G. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|