1
|
Lei L, Chen CY, Wang YF, Guo ZY, Zhang Y. Mangiferin: A natural neuroprotective polyphenol with anti-inflammatory and anti-oxidant properties for depression. Prog Neuropsychopharmacol Biol Psychiatry 2025; 139:111401. [PMID: 40379124 DOI: 10.1016/j.pnpbp.2025.111401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 04/16/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Depression is a severe global health problem accompanied by persistent low mood that harms the physical and mental health of people and places a substantial economic burden on society. Mangiferin (MGF), a natural polyphenol in the traditional Chinese herb Anemarrhena asphodeloides Bge., can improve neuronal damage, memory, and cognitive deficits, implicating the therapeutic potential of MGF for depression. MGF has a unique C-glycosyl and phenolic structure that endows it with multiple biological properties, e.g., anti-oxidant, anti-inflammatory, and anti-mitochondrial dysfunction. However, the pharmacological role of MGF in depression remains unclear. Therefore, this review describes the neuroprotective effects and the antidepressant mechanisms of MGF in preclinical depression studies. MGF ameliorates cognitive deficits in depression and neurodegenerative diseases animal models by reducing amyloid-beta deposition, ameliorating cholinergic dysfunction, and increasing neurotrophic factors. Also, MGF regulates molecular mechanisms in depressed animals mainly through anti-inflammation (by inhibiting NLRP3 inflammasome activation, mitogen-activated protein kinase phosphorylation and its downstream nuclear factor-кB signaling pathway, and indoleamine 2,3-dioxygenase activity), anti-oxidant (by increasing levels of anti-oxidant enzymes and inhibiting lipid peroxidation). Notably, the potential mechanisms of MGF in treating depression by modulating neurotransmission (e.g., glutamate, dopamine, norepinephrine, and serotonin) need to be further explored. It is hoped to explore further the potential molecular mechanisms of MGF's biological activity in depression and provide directions for further clinical applications.
Collapse
Affiliation(s)
- Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhen-Yu Guo
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
2
|
Tiwari PC, Chaudhary MJ, Pal R, Nath R. Role of Nitric Oxide Modulators in Neuroprotective Effects of Mangiferin in 6-Hydroxydopamine-induced Parkinson's Disease in Rats. Ann Neurosci 2024; 31:186-203. [PMID: 39156628 PMCID: PMC11325687 DOI: 10.1177/09727531231184698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/12/2023] [Indexed: 08/20/2024] Open
Abstract
Background Parkinson's disease (PD) is typified by inflammation of dopaminergic neurons leading to the release of various inflammatory mediators. These mediators activate the transcription factor NF-κB, which in turn activates inducible nitric oxide synthase (iNOS), leading to increased inflammation. Purpose This study was intended to study the effect of combination of mangiferin, a specific inhibitor of NF-κB with low-dose nitric oxide (NO) modulators. Methods A total of eight Wistar rats weighing 200-250 g were used in each group. Stereotactic surgery was performed to induce 6-hydroxydopamine (6-OHDA) lesions. The treatment period extended from day 14 to day 42, during which time behavioral tests were performed to evaluate the effects of mangiferin and its combination with NO modulators. On day 42, the brains of the rats were removed for biochemical and molecular analyzes. Results Mangiferin significantly improved locomotor activity and decreased inflammatory chemokines levels in rats with 6-OHDA lesions. Mangiferin therapy decreased myeloperoxidase (MPO) levels and reduced oxidative stress. In particular, caspase-3, caspase-9 and COX-2 activities were significantly reduced after the mangiferin treatment. A combination of 45-µg mangiferin and 10-mg/kg L-NAME showed the greatest improvement in locomotor, behavioral, biochemical, and molecular parameters impaired by 6-OHDA. Conclusion In this study, mangiferin was found to protect rats with 6-OHDA lesions by inhibiting inflammation causing chemokines such as TNF-α and IL-6. Besides, the grouping of iNOS inhibitor L-NAME at a dose of 10 mg/kg with 45-µg mangiferin enhanced the anti-inflammatory and anti-Parkinsonian activity of mangiferin. Consequently, the combination therapy of mangiferin and L-NAME is promising for the treatment of PD. However, clinical trials will be required to evaluate the efficacy of this combination therapy in humans.
Collapse
Affiliation(s)
- Prafulla Chandra Tiwari
- Department of Pharmacology & Therapeutics, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Manju J. Chaudhary
- Department of Physiology, Government Medical College, Tirwa Road, Kannauj, Uttar Pradesh, India
| | - Rishi Pal
- Department of Pharmacology & Therapeutics, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Rajendra Nath
- Department of Pharmacology & Therapeutics, King George’s Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
Dharmapuri G, Kotha AK, Kalangi SK, Reddanna P. Mangiferin, A Naturally Occurring Glucosylxanthone, Induces Apoptosis in Caco-2 Cells In Vitro and Exerts Protective Effects on Acetic Acid-Induced Ulcerative Colitis in Mice through the Regulation of NLRP3. ACS Pharmacol Transl Sci 2024; 7:1270-1277. [PMID: 38751614 PMCID: PMC11091985 DOI: 10.1021/acsptsci.3c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
Inflammatory bowel diseases (IBD), an inflammatory disease, include Crohn's disease and ulcerative colitis. Dysregulated autoimmune response to gut dysbiosis is mainly involved in the pathogenesis of IBD and is triggered by various inciting environmental factors. With its rising prevalence in every continent, IBD has evolved into a global disease, which is on the rise, affecting people of all ages. There is a growing incidence of IBD in the elderly population, as evidenced by epidemiological data. IBD is characterized by an inflammatory process that requires a lifelong treatment. The main challenge in IBD management is the adverse side effects associated with almost all of the currently available drugs. Hence, there is a search for drugs with more efficacy and fewer side effects. Natural products with great structural diversity and ease of modification chemically are being explored, as they were shown to control IBD by safely suppressing pro-inflammatory pathways. The present study aims at understanding the role of mangiferin, a COX-2 inhibitor isolated from tubers of Pueraria tuberosa in the treatment of IBD and colon cancer, in vitro on the Caco-2 human colon cancer cell line and in vivo in the acetic acid-induced IBD mouse model. In the acetic acid-induced colitis model, it prevented the decrease in length of the colon, mucosal erosion, and cellular infiltration in a dose-dependent manner. The expression levels of various pro-inflammatory markers like COX-2, IL1β, TNF-α, INF-γ, IL-6, NLRP3, and caspase-1 were downregulated in an acetic acid-induced mouse model on treatment with mangiferin in a dose dependent manner. Mangiferin also showed anticancer effects on Caco-2 cells by increasing the expression of Fas ligand, Fas receptor, FADD, caspase-8, and caspase-3 proteins, whereas Bid and Bcl-2 proteins showed decreased expression. These data suggest that mangiferin, an inhibitor of COX, induces apoptosis in colon cancer cells in vitro and protects mice from acetic acid-induced colitis in vivo.
Collapse
Affiliation(s)
- Gangappa Dharmapuri
- Department
of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Anil Kumar Kotha
- Department
of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Suresh K. Kalangi
- Department
of Microbiology, Faculty of Allied Health Sciences, SGT University, Gurugram 122505,India
| | - Pallu Reddanna
- Department
of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
4
|
He J, Antonyan L, Zhu H, Ardila K, Li Q, Enoma D, Zhang W, Liu A, Chekouo T, Cao B, MacDonald ME, Arnold PD, Long Q. A statistical method for image-mediated association studies discovers genes and pathways associated with four brain disorders. Am J Hum Genet 2024; 111:48-69. [PMID: 38118447 PMCID: PMC10806749 DOI: 10.1016/j.ajhg.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/04/2023] [Accepted: 11/16/2023] [Indexed: 12/22/2023] Open
Abstract
Brain imaging and genomics are critical tools enabling characterization of the genetic basis of brain disorders. However, imaging large cohorts is expensive and may be unavailable for legacy datasets used for genome-wide association studies (GWASs). Using an integrated feature selection/aggregation model, we developed an image-mediated association study (IMAS), which utilizes borrowed imaging/genomics data to conduct association mapping in legacy GWAS cohorts. By leveraging the UK Biobank image-derived phenotypes (IDPs), the IMAS discovered genetic bases underlying four neuropsychiatric disorders and verified them by analyzing annotations, pathways, and expression quantitative trait loci (eQTLs). A cerebellar-mediated mechanism was identified to be common to the four disorders. Simulations show that, if the goal is identifying genetic risk, our IMAS is more powerful than a hypothetical protocol in which the imaging results were available in the GWAS dataset. This implies the feasibility of reanalyzing legacy GWAS datasets without conducting additional imaging, yielding cost savings for integrated analysis of genetics and imaging.
Collapse
Affiliation(s)
- Jingni He
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lilit Antonyan
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Harold Zhu
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Karen Ardila
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Qing Li
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - David Enoma
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Andy Liu
- Sir Winston Churchill High School, Calgary, AB, Canada; College of Letters and Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Thierry Chekouo
- Department of Mathematics and Statistics, Faculty of Science, University of Calgary, Calgary, AB, Canada; Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Bo Cao
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - M Ethan MacDonald
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada; Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul D Arnold
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Quan Long
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Mathematics and Statistics, Faculty of Science, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
5
|
Chomchoei N, Leelapornpisid P, Tipduangta P, Sangthong P, Papan P, Sirithunyalug B, Samutrtai P. Potential of electro-sprayed purified mangiferin nanoparticles for anti-aging cosmetic applications. RSC Adv 2023; 13:34987-35002. [PMID: 38046636 PMCID: PMC10690135 DOI: 10.1039/d3ra06308a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023] Open
Abstract
The fabrication of mangiferin nanoparticles using an electrospraying technique is a new and promising method for developing nanoparticles with higher efficiency and safety. This study aimed to fabricate mangiferin nanoparticles (MNPs) using cellulose acetate (CA) as a polymer at various parameters using electrospraying. Commercial mangiferin (CM) was purified from 88.46 to 95.71% by a recrystallization method to improve its purity and biological activities and remove any residue. The properties of recrystallized mangiferin (RM) were characterized using DSC, FTIR, X-ray diffraction (XRD) and HPLC. Then its biological activity and proteomics were determined. Proteomics analysis of RM showed that up-regulated proteins were involved in more biological processes than CM. MNPs were fabricated by varying the electrospraying parameters including voltage, the distance between the needle-tip-collector and flow rate. Skin permeation, release and irritation were also evaluated. The results revealed that the average particle size of the MNPs ranged between 295.47 ± 5.58 and 448.87 ± 3.00 nm, and had a smooth spherical morphology in SEM images. The MNPs also showed good potential in antioxidant and anti-aging properties. The encapsulation efficiency of MNPs was determined to be 85.31%. From skin permeation studies of CM, RM, and MNPs, the mangiferin content was found in the stratum corneum and dermis skin layers. Moreover, the MNPs solution had 23.68 ± 0.27% and 11.98 ± 0.13% of mangiferin in the stratum corneum and viable epidermis and dermis, respectively. Additionally, the irritation test by HET-CAM was mild and safe. Therefore, MNPs produced by electrospraying are a promising delivery system for cosmetic/cosmeceutical applications.
Collapse
Affiliation(s)
- Neungreuthai Chomchoei
- PhD Degree Program in Pharmacy, Faculty of Pharmacy, Chiang Mai University Chiang Mai 50200 Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University Chiang Mai 50200 Thailand
| | - Pimporn Leelapornpisid
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University Chiang Mai 50200 Thailand
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University Chiang Mai 50200 Thailand
| | - Pratchaya Tipduangta
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University Chiang Mai 50200 Thailand
| | - Padchanee Sangthong
- Department of Chemistry, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
| | - Phakorn Papan
- Department of Chemistry, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
| | - Busaban Sirithunyalug
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University Chiang Mai 50200 Thailand
| | - Pawitrabhorn Samutrtai
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University Chiang Mai 50200 Thailand
| |
Collapse
|
6
|
Guo YP, Yi P, Shi QQ, Yu RR, Wang JH, Li CY, Wu HQ. Cytotoxic Compounds from Belamcanda chinensis (L.) DC Induced Apoptosis in Triple-Negative Breast Cancer Cells. Molecules 2023; 28:4715. [PMID: 37375271 DOI: 10.3390/molecules28124715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Four compounds (1, 5, 7, and 8) were first isolated from the genus Belamcanda Adans. nom. conserv., and six known compounds (2-4, 6, 9, and 10) were isolated from the rhizome of Belamcanda chinensis (L.) DC. Their structures were confirmed by spectroscopic data. Herein, compounds 1-10 were rhapontigenin, trans-resveratrol, 5,7,4'-trihydroxy-6,3',5'-trimethoxy-isoflavone, irisflorentin, 6-hydroxybiochannin A, iridin S, pinoresinol, 31-norsysloartanol, isoiridogermanal, and iristectorene B, respectively. All compounds were evaluated for their antiproliferative effects against five tumor cell lines (BT549, 4T1, MCF7, MDA-MB-231, and MDA-MB-468). Among them, compound 9 (an iridal-type triterpenoid) showed the highest activity against 4T1 and MDA-MB-468 cells. Further studies displayed that compound 9 inhibited cell metastasis, induced cells cycle arrest in the G1 phase, exhibited significant mitochondrial damage in 4T1 and MDA-MB-468 cells including excess reactive oxygen species, decreased mitochondrial membrane potential, and induced 4T1 and MDA-MB-468 cell apoptosis for the first time. In summary, these findings demonstrate that compound 9 exerts promising potential for triple-negative breast cancer treatment and deserves further evaluation.
Collapse
Affiliation(s)
- Ya-Ping Guo
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Peng Yi
- School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen 518060, China
| | - Qi-Qi Shi
- School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen 518060, China
| | - Rui-Rui Yu
- School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen 518060, China
| | - Jin-Hui Wang
- School of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Chen-Yang Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
- School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen 518060, China
| | - Hai-Qiang Wu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
- School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen 518060, China
| |
Collapse
|
7
|
Tiwari PC, Chaudhary MJ, Pal R, Nath R. Effects of mangiferin and its combination with nNOS inhibitor 7‐nitro‐indazole (7‐NI) in 6‐hydroxydopamine (6‐OHDA) lesioned Parkinson's disease rats. Fundam Clin Pharmacol 2022; 36:944-955. [DOI: 10.1111/fcp.12817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/21/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Affiliation(s)
- Prafulla Chandra Tiwari
- Department of Pharmacology and Therapeutics King George's Medical University Lucknow Uttar Pradesh India
| | - Manju J. Chaudhary
- Department of Physiology Government Medical College Kannauj Uttar Pradesh India
| | - Rishi Pal
- Department of Pharmacology and Therapeutics King George's Medical University Lucknow Uttar Pradesh India
| | - Rajendra Nath
- Department of Pharmacology and Therapeutics King George's Medical University Lucknow Uttar Pradesh India
| |
Collapse
|
8
|
Tiwari PC, Chaudhary MJ, Pal R, Kartik S, Nath R. Pharmacological, Biochemical and Immunological Studies on Protective Effect of Mangiferin in 6-Hydroxydopamine (6-OHDA)-Induced Parkinson's Disease in Rats. Ann Neurosci 2022; 28:137-149. [PMID: 35341236 PMCID: PMC8948331 DOI: 10.1177/09727531211051976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/25/2021] [Indexed: 01/24/2023] Open
Abstract
Background: Parkinson’s disease is a neurodegenerative disorder and is marked by
inflammation and death of neurons in the striatum region of the midbrain. It
has been reported that expression of NF-κB increases during Parkinson’s
disease, which promotes oxidative stress, stimulates release of
proinflammatory cytokines, and induces expression of nitric oxide.
Therefore, in this study, we have used mangiferin a specific NF-κB
inhibitor. Mangiferin is a polyphenolic compound traditionally used for its
antioxidant and anti-inflammatory properties. Methods: The study utilized male Wistar rats weighing 200–250 g (56 rats;
n = 8/group). On day “0,” stereotaxic surgery of rats
was done to induce 6-hydroxydopamine lesioning in rats. Coordinates for
substantia nigra were anteroposterior-2 mm, mediolateral-5 mm and
dorsoventral-8.2 mm. After 14 days, those rats which show at least 210
contralateral rotations after administration of apomorphine (0.5 mg/kg S.C.)
were selected for the study and were given treatment for 28 days. On day 28
of treatment, rats were subjected to behavioral studies to evaluate the
effect of mangiferin and their brains were taken out after euthanasia to
perform biochemical, molecular and immunological studies. Results: Treatment with mangiferin significantly improves the key parameters of
locomotor activity and oxidative stress and reduces the parameters of
inflammatory stress. Also, the activity of caspases was reduced. Significant
decrease in activity of both cyclooxygenase 1 and 2 was also observed.
Maximum improvement in all parameters was observed in rats treated with
grouping of mangiferin 45 µg/kg and levodopa 10 mg/kg. Treatment with
levodopa alone has no significant effect on biochemical and molecular
parameters though it significantly improves behavioral parameters. Conclusion: Current treatment of Parkinson’s disease does not target progression of
Parkinson’s disease. Results of this study suggest that mangiferin has
protective effect in hemi-Parkinsonian rats. Therefore, the combination
therapy of mangiferin and levodopa can be helpful in management of
Parkinson’s disease.
Collapse
Affiliation(s)
- Prafulla Chandra Tiwari
- Department of Pharmacology & Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Manju J Chaudhary
- Department of Physiology, Government Medical College, Kannauj, Uttar Pradesh, India
| | - Rishi Pal
- Department of Pharmacology & Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shipra Kartik
- Department of Pharmacology & Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Rajendra Nath
- Department of Pharmacology & Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
9
|
Rodriguez-Gonzalez JC, Hernández-Balmaseda I, Declerck K, Pérez-Novo C, Logie E, Theys C, Jakubek P, Quiñones-Maza OL, Dantas-Cassali G, Carlos Dos Reis D, Van Camp G, Lopes Paz MT, Rodeiro-Guerra I, Delgado-Hernández R, Vanden Berghe W. Antiproliferative, Antiangiogenic, and Antimetastatic Therapy Response by Mangiferin in a Syngeneic Immunocompetent Colorectal Cancer Mouse Model Involves Changes in Mitochondrial Energy Metabolism. Front Pharmacol 2021; 12:670167. [PMID: 34924998 PMCID: PMC8678272 DOI: 10.3389/fphar.2021.670167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022] Open
Abstract
In spite of the current advances and achievements in cancer treatments, colorectal cancer (CRC) persists as one of the most prevalent and deadly tumor types in both men and women worldwide. Drug resistance, adverse side effects and high rate of angiogenesis, metastasis and tumor relapse remain one of the greatest challenges in long-term management of CRC and urges need for new leads of anticancer drugs. We demonstrate that CRC treatment with the phytopharmaceutical mangiferin (MGF), a glucosylxanthone present in Mango tree stem bark and leaves (Mangifera Indica L.), induces dose-dependent tumor regression and decreases lung metastasis in a syngeneic immunocompetent allograft mouse model of murine CT26 colon carcinoma, which increases overall survival of mice. Antimetastatic and antiangiogenic MGF effects could be further validated in a wound healing in vitro model in human HT29 cells and in a matrigel plug implant mouse model. Interestingly, transcriptome pathway enrichment analysis demonstrates that MGF inhibits tumor growth, metastasis and angiogenesis by multi-targeting of mitochondrial oxidoreductase and fatty acid β-oxidation metabolism, PPAR, SIRT, NFκB, Stat3, HIF, Wnt and GP6 signaling pathways. MGF effects on fatty acid β-oxidation metabolism and carnitine palmitoyltransferase 1 (CPT1) protein expression could be further confirmed in vitro in human HT29 colon cells. In conclusion, antitumor, antiangiogenic and antimetastatic effects of MGF treatment hold promise to reduce adverse toxicity and to mitigate therapeutic outcome of colorectal cancer treatment by targeting mitochondrial energy metabolism in the tumor microenvironment.
Collapse
Affiliation(s)
| | | | - Ken Declerck
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Claudina Pérez-Novo
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Emilie Logie
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Claudia Theys
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Patrycja Jakubek
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium.,Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | | | - Geovanni Dantas-Cassali
- Departamento de Farmacología, Instituto de Ciencias Biológicas (ICB), Universidad Federal de Minas Gerais (UFMG), Horizonte, Brazil
| | - Diego Carlos Dos Reis
- Departamento de Farmacología, Instituto de Ciencias Biológicas (ICB), Universidad Federal de Minas Gerais (UFMG), Horizonte, Brazil
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Miriam Teresa Lopes Paz
- Departamento de Farmacología, Instituto de Ciencias Biológicas (ICB), Universidad Federal de Minas Gerais (UFMG), Horizonte, Brazil
| | - Idania Rodeiro-Guerra
- Laboratorio de Farmacología, Instituto de Ciencias del Mar (ICIMAR), CITMA, La Habana, Cuba
| | - René Delgado-Hernández
- Centro de Estudios para las Investigaciones y Evaluaciones Biológicas (CEIEB), Instituto de Farmacia y Alimentos (IFAL), Universidad de La Habana, La Habana, Cuba.,Facultad de Ciencias Naturales y Agropecuarias, Universidat de Santander (UDES), Bucaramanga, Colombia
| | - Wim Vanden Berghe
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| |
Collapse
|
10
|
Silva V, Gil-Martins E, Silva B, Rocha-Pereira C, Sousa ME, Remião F, Silva R. Xanthones as P-glycoprotein modulators and their impact on drug bioavailability. Expert Opin Drug Metab Toxicol 2021; 17:441-482. [PMID: 33283552 DOI: 10.1080/17425255.2021.1861247] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: P-glycoprotein (P-gp) is an important efflux pump responsible for the extruding of many endogenous and exogenous substances out of the cells. P-gp can be modulated by different molecules - including xanthone derivatives - to surpass the multidrug resistance (MDR) phenomenon through P-gp inhibition, or to serve as an antidotal strategy in intoxication scenarios through P-gp induction/activation.Areas covered: This review provides a perspective on P-gp modulators, with particular focus on xanthonic derivatives, highlighting their ability to modulate P-gp expression and/or activity, and the potential impact of these effects on the pharmacokinetics, pharmacodynamics and toxicity of P-gp substrates.Expert opinion: Xanthones, of natural or synthetic origin, are able to modulate P-gp, interfering with its protein synthesis or with its mechanism of action, by decreasing or increasing its efflux capacity. These modulatory effects make the xanthonic scaffold a promising source of new derivatives with therapeutic potential. However, the mechanisms beyond the xanthones-mediated P-gp modulation and the chemical characteristics that make them more potent P-gp inhibitors or inducers/activators are still understudied. Furthermore, a new window of opportunity exists in the neuropathologies field, where xanthonic derivatives with potential to modulate P-gp should be further explored to optimize the prevention/treatment of brain pathologies.
Collapse
Affiliation(s)
- Vera Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Eva Gil-Martins
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Bárbara Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Carolina Rocha-Pereira
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Maria Emília Sousa
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal.,Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Renata Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
Liu T, Song Y, Hu A. Neuroprotective mechanisms of mangiferin in neurodegenerative diseases. Drug Dev Res 2021; 82:494-502. [PMID: 33458836 DOI: 10.1002/ddr.21783] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 11/10/2022]
Abstract
The central nervous system (CNS) regulates and coordinates an extensive array of complex processes requiring harmonious regulation of specific genes. CNS disorders represent a large burden on society and cause enormous disability and economic losses. Traditional Chinese medicine (TCM) has been used for many years in the treatment of neurological illnesses, such as Alzheimer's disease, Parkinson's disease, stroke, and depression, as the combination of TCM and Western medicine has superior therapeutic efficacy and minimal toxic side effects. Mangiferin (MGF) is an active compound of the traditional Chinese herb rhizome anemarrhenae, which has antioxidant, anti-inflammation, anti-lipid peroxidation, immunomodulatory, and anti-apoptotic functions in the CNS. MGF has been demonstrated to have therapeutic effects in CNS diseases through a multitude of mechanisms. This review outlines the latest research on the neuroprotective ability of MGF and the diverse molecular mechanisms involved.
Collapse
Affiliation(s)
- Tingjun Liu
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, PR China
| | - Yuanjian Song
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China.,Department of Genetics, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, China
| | - Ankang Hu
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, PR China
| |
Collapse
|
12
|
Morozkina SN, Nhung Vu TH, Generalova YE, Snetkov PP, Uspenskaya MV. Mangiferin as New Potential Anti-Cancer Agent and Mangiferin-Integrated Polymer Systems-A Novel Research Direction. Biomolecules 2021; 11:79. [PMID: 33435313 PMCID: PMC7827323 DOI: 10.3390/biom11010079] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
For a long time, the pharmaceutical industry focused on natural biologically active molecules due to their unique properties, availability and significantly less side-effects. Mangiferin is a naturally occurring C-glucosylxantone that has substantial potential for the treatment of various diseases thanks to its numerous biological activities. Many research studies have proven that mangiferin possesses antioxidant, anti-infection, anti-cancer, anti-diabetic, cardiovascular, neuroprotective properties and it also increases immunity. It is especially important that it has no toxicity. However, mangiferin is not being currently applied to clinical use because its oral bioavailability as well as its absorption in the body are too low. To improve the solubility, enhance the biological action and bioavailability, mangiferin integrated polymer systems have been developed. In this paper, we review molecular mechanisms of anti-cancer action as well as a number of designed polymer-mangiferin systems. Taking together, mangiferin is a very promising anti-cancer molecule with excellent properties and the absence of toxicity.
Collapse
Affiliation(s)
- Svetlana N. Morozkina
- Institute BioEngineering, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint-Petersburg, Russia; (T.H.N.V.); (P.P.S.); (M.V.U.)
| | - Thi Hong Nhung Vu
- Institute BioEngineering, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint-Petersburg, Russia; (T.H.N.V.); (P.P.S.); (M.V.U.)
| | - Yuliya E. Generalova
- Department of Analytical Chemistry, Faculty of Industrial Technology of Dosage Forms, Saint Petersburg State Chemical Pharmaceutical University, Prof. Popova Street 14A, 197022 Saint-Petersburg, Russia;
| | - Petr P. Snetkov
- Institute BioEngineering, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint-Petersburg, Russia; (T.H.N.V.); (P.P.S.); (M.V.U.)
| | - Mayya V. Uspenskaya
- Institute BioEngineering, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint-Petersburg, Russia; (T.H.N.V.); (P.P.S.); (M.V.U.)
| |
Collapse
|
13
|
Shang HS, Chen CJ, Shih YL, Peng SF, Chen YL, Liu KC, Huang HC, Hsueh SC, Chen KW, Lu HF, Lee MH, Lee MZ, Lu KW. Mangiferin induces immune responses and evaluates the survival rate in WEHI-3 cell generated mouse leukemia in vivo. ENVIRONMENTAL TOXICOLOGY 2021; 36:77-85. [PMID: 32889744 DOI: 10.1002/tox.23013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/23/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Mangiferin is a naturally occurring polyphenol, widely distributed in Thymeraceae families, and presents pharmacological activity, including anti-cancer activities in many human cancer cell lines. Mangiferin has also been reported to affect immune responses; however, no available information concerning the effects of mangiferin on immune reactions in leukemia mice in vivo. In the present study, we investigated the effects of mangiferin on leukemia WEHI-3 cell generated leukemia BLAB/c mice. Overall, the experiments were divided into two parts, one part was immune responses experiment and the other was the survival rate experiment. The immune responses and survival rate study, 40 mice for each part, were randomly separated into five groups (N = 8): Group I was normal animals and groups II-V WEHI-3 cell generated leukemia mice. Group II mice were fed normal diet as a positive control; group III, IV, and V mice received mangiferin at 40, 80, and 120 mg/kg, respectively, by intraperitoneal injection every 2 days for 20 days. Leukocytes cell population, macrophage phagocytosis, and NK cell activities were analyzed by flow cytometry. Isolated splenocytes stimulated with lipopolysaccharide (LPS) and concanavalin A (Con A) were used to determine the proliferation of B and T cells, respectively, and subsequently were analyzed by flow cytometry. Results indicated that mangiferin significantly increased body weight, decreased the liver and spleen weights of leukemia mice. Mangiferin also increased CD3 T-cell and CD19 B cell population but decreased Mac-3 macrophage and CD11b monocyte. Furthermore, mangiferin decreased phagocytosis of macrophages from PBMC and peritoneal cavity at 40, 80, and 120 mg/kg treatment. However, it also increased NK cell activity at 40 and 120 mg/kg treatment. There were no effects on T and B cell proliferation at three examined doses. In survival rate studies, mangiferin significantly elevated survival rate at 40 and 120 mg/kg treatment of leukemia mice in vivo.
Collapse
Affiliation(s)
- Hung-Sheng Shang
- Graduate Institute of Clinical of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chiung-Ju Chen
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Yung-Luen Shih
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yung-Liang Chen
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, Taiwan
| | - Kuo-Ching Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Hsieh-Chou Huang
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
- Department of Anesthesiology and Pain Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Shu-Ching Hsueh
- Division of Hematology and Oncology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Kuo-Wei Chen
- Division of Hematology and Oncology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan
- Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Mei-Hui Lee
- Department of Genetic Counseling Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Ming-Zhe Lee
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Kung-Wen Lu
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
14
|
Therapeutic potential of mangiferin in the treatment of various neuropsychiatric and neurodegenerative disorders. Neurochem Int 2020; 143:104939. [PMID: 33346032 DOI: 10.1016/j.neuint.2020.104939] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/02/2020] [Accepted: 12/12/2020] [Indexed: 12/19/2022]
Abstract
Xanthones are important chemical class of bioactive products that confers therapeutic benefits. Of several xanthones, mangiferin is known to be distributed widely across several fruits, vegetables and medicinal plants. Mangiferin has been shown to exert neuroprotective effects in both in-vitro and in-vivo models. Mangiferin attenuates cerebral infarction, cerebral edema, lipid peroxidation (MDA), neuronal damage, etc. Mangiferin further potentiate levels of endogenous antioxidants to confer protection against the oxidative stress inside the neurons. Mangiferin is involved in the regulation of various signaling pathways that influences the production and levels of proinflammatory cytokines in brain. Mangiferin cosunteracted the neurotoxic effect of amyloid-beta, MPTP, rotenone, 6-OHDA etc and confer protection to neurons. These evidence suggested that the mangiferin may be a potential therapeutic strategy for the treatment of various neurological disorders. The present review demonstrated the pharmacodynamics-pharmacokinetics of mangiferin and neurotherapeutic potential in several neurological disorders with underlying mechanisms.
Collapse
|
15
|
Mangiferin Alleviates Ovalbumin-Induced Allergic Rhinitis via Nrf2/HO-1/NF-κB Signaling Pathways. Int J Mol Sci 2020; 21:ijms21103415. [PMID: 32408566 PMCID: PMC7279452 DOI: 10.3390/ijms21103415] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
Mangiferin (MF), extracted from mango trees, is considered to have anti-inflammatory, anti-apoptotic, and antioxidant effects. However, its effects on allergic rhinitis (AR), remain unclear. We investigated the mechanisms underlying the protective action of MF in ovalbumin (OVA)-induced AR models. AR was induced by OVA challenge in BALB/c mice. Prior to this, MF and dexamethasone were administered. Mice were examined for nasal mucosal inflammation, the generation of allergen-specific cytokine response, and histopathological changes in the nasal mucosa and lung tissue. MF ameliorated nasal symptoms and nasal mucosa inflammation in OVA-induced AR and reduced inflammatory cell infiltration and epithelial disruption in these tissues. MF inhibited the overproduction of Th2/Th17 cytokines and transcription factors. MF downregulated the HO-1/Nrf2 pathways, reduced oxidative stress biomarker levels, and the NF-κB signaling pathways were inhibited. MF exerts protective effects in AR by inhibiting NF-κB and activating HO-1/Nrf2 pathways. MF could be used for the treatment of AR.
Collapse
|
16
|
de Brito TV, Júnior GJD, da Cruz Júnior JS, Silva RO, da Silva Monteiro CE, Franco AX, Vasconcelos DFP, de Oliveira JS, da Silva Costa DV, Carneiro TB, Gomes Duarte AS, de Souza MHLP, Soares PMG, Barbosa ALDR. Gabapentin attenuates intestinal inflammation: Role of PPAR-gamma receptor. Eur J Pharmacol 2020; 873:172974. [PMID: 32027888 DOI: 10.1016/j.ejphar.2020.172974] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/17/2020] [Accepted: 01/29/2020] [Indexed: 02/08/2023]
Abstract
Gabapentin is an anticonvulsant drug that is also used for post-herpetic neuralgia and neuropathic pain. Recently, gabapentin showed anti-inflammatory effect. Nuclear factor kappa B (NFκB) is a regulator of the inflammatory process, and Peroxisome Proliferator-activated Receptor gamma (PPAR-gamma) is an important receptor involved in NFκB regulation. The aim of the present work was to study the potential role of PPAR-gamma receptor in gabapentin-mediated anti-inflammatory effects in a colitis experimental model. We induced colitis in rats using trinitrobenzenosulfonic acid and treated them with gabapentin and bisphenol A dicyldidyl ether (PPAR-gamma inhibitor). Macroscopic lesion scores, wet weight, histopathological analysis, mast cell count, myeloperoxidase, malondialdehyde acid, glutathione, nitrate/nitrite, and interleukin levels in the intestinal mucosa were determined. In addition, western blots were performed to determine the expression of Cyclooxygenase-2 (COX-2) and NFκB; Nitric Oxide Inducible Synthase (iNOS) and Interleukin 1 beta (IL-1β) levels were also determined. Gabapentin was able to decrease all inflammatory parameters macroscopic and microscopic in addition to reducing markers of oxidative stress and cytokines such as IL-1β and Tumor Necrosis Factor alpha (TNF-α) as well as enzymes inducible nitric oxide synthase and cyclooxygenase 2 and inflammatory genic regulator (NFκB). These effect attributed to gabapentin was observed to be lost in the presence of the specific inhibitor of PPAR-gamma. Gabapentin inhibits bowel inflammation by regulating mast cell signaling. Furthermore, it activates the PPAR-gamma receptor, which in turn inhibits the activation of NFκB, and consequently results in reduced activation of inflammatory genes involved in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Tarcisio Vieira de Brito
- LAFFEX - Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, 64202-020, PI, Brazil
| | - Genilson José Dias Júnior
- LAFFEX - Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, 64202-020, PI, Brazil
| | - José Simião da Cruz Júnior
- LAFFEX - Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, 64202-020, PI, Brazil
| | - Renan Oliveira Silva
- Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, 50670-901, Recife, Pernambuco, Brazil
| | | | - Alvaro Xavier Franco
- LEFFAG - Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Daniel Fernando Pereira Vasconcelos
- LAPHIS - Laboratory of Analysis and Histological Processing, Department of Biomedicine, Federal University of Piauí, Parnaíba, 64202-020, PI, Brazil
| | - Jefferson Soares de Oliveira
- Laboratory of Biochemistry and Biology of Microorganisms and Plants (BIOMIC), Federal University of Piauí, Campus Minister Reis Velloso. Av. São Sebastião, 2819, CEP: 64202-020, Parnaíba, Piauí, Brazil
| | - Deiziane Viana da Silva Costa
- NEMPI - Nucleus of Study in Microscopy and Image Processing, Faculty of Medicine, Department of Morphology, Federal University of Ceará, Rua Delmiro de Farias, CEP: 60430270, Fortaleza, Ceará, Brazil
| | - Theides Batista Carneiro
- NEMPI - Nucleus of Study in Microscopy and Image Processing, Faculty of Medicine, Department of Morphology, Federal University of Ceará, Rua Delmiro de Farias, CEP: 60430270, Fortaleza, Ceará, Brazil
| | - Antoniella Souza Gomes Duarte
- NEMPI - Nucleus of Study in Microscopy and Image Processing, Faculty of Medicine, Department of Morphology, Federal University of Ceará, Rua Delmiro de Farias, CEP: 60430270, Fortaleza, Ceará, Brazil
| | | | - Pedro Marcos Gomes Soares
- LEFFAG - Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Federal University of Ceará, Fortaleza, CE, Brazil
| | - André Luiz Dos Reis Barbosa
- LAFFEX - Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, 64202-020, PI, Brazil.
| |
Collapse
|
17
|
Razura-Carmona FF, Pérez-Larios A, González-Silva N, Herrera-Martínez M, Medina-Torres L, Sáyago-Ayerdi SG, Sánchez-Burgos JA. Mangiferin-Loaded Polymeric Nanoparticles: Optical Characterization, Effect of Anti-topoisomerase I, and Cytotoxicity. Cancers (Basel) 2019; 11:E1965. [PMID: 31817789 PMCID: PMC6966478 DOI: 10.3390/cancers11121965] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 01/19/2023] Open
Abstract
Mangiferin is an important xanthone compound presenting various biological activities. The objective of this study was to develop, characterize physicochemical properties, and evaluate the anti-topoisomerase activity of poly(lactic-co-glycolic acid) (PLGA) nanoparticles containing mangiferin. The nanoparticles were developed by the emulsion solvent evaporation method and the optimal formulation was obtained with a response surface methodology (RSM); this formulation showed a mean size of 176.7 ± 1.021 nm with a 0.153 polydispersibility index (PDI) value, and mangiferin encapsulation efficiency was about 55%. The optimal conditions (6000 rpm, 10 min, and 300 μg of mangiferin) obtained 77% and the highest entrapment efficiency (97%). The in vitro release profile demonstrated a gradual release of mangiferin from 15 to 180 min in acidic conditions (pH 1.5). The fingerprint showed a modification in the maximum absorption wavelength of both the polymer and the mangiferin. Results of anti-toposiomerase assay showed that the optimal formulation (MG4, 25 µg/mL) had antiproliferative activity. High concentrations (2500 µg/mL) of MG4 showed non-in vitro cytotoxic effect on BEAS 2B and HEPG2. Finally, this study showed an encapsulation process with in vitro gastric digestion resistance (1.5 h) and without interfering with the metabolism of healthy cells and their biological activity.
Collapse
Affiliation(s)
- Francisco Fabian Razura-Carmona
- Tecnológico Nacional de México/I.T. Tepic, Laboratorio Integran de Investigación en Alimentos, Lagos del Country, Tepic CP 63175, Nayarit, Mexico; (F.F.R.-C.); (S.G.S.-A.)
| | - Alejandro Pérez-Larios
- Division of Agricultural Sciences and Engineering, University Center of the Altos, University of Guadalajara, Tepatitlán de Morelos CP 47620, Jalisco, Mexico;
| | - Napoleón González-Silva
- Division of Agricultural Sciences and Engineering, University Center of the Altos, University of Guadalajara, Tepatitlán de Morelos CP 47620, Jalisco, Mexico;
| | - Mayra Herrera-Martínez
- Instituto de Farmacobiología, Universidad de la Cañada, Teotitlán de Flores Magón CP 68540, Oaxaca, Mexico;
| | - Luis Medina-Torres
- Facultad de Química, Universidad Nacional Autónoma de México, México D.F. CP 04510, Mexico;
| | - Sonia Guadalupe Sáyago-Ayerdi
- Tecnológico Nacional de México/I.T. Tepic, Laboratorio Integran de Investigación en Alimentos, Lagos del Country, Tepic CP 63175, Nayarit, Mexico; (F.F.R.-C.); (S.G.S.-A.)
| | - Jorge Alberto Sánchez-Burgos
- Tecnológico Nacional de México/I.T. Tepic, Laboratorio Integran de Investigación en Alimentos, Lagos del Country, Tepic CP 63175, Nayarit, Mexico; (F.F.R.-C.); (S.G.S.-A.)
| |
Collapse
|
18
|
Garrido-Suárez BB, Garrido G, Piñeros O, Delgado-Hernández R. Mangiferin: Possible uses in the prevention and treatment of mixed osteoarthritic pain. Phytother Res 2019; 34:505-525. [PMID: 31755173 DOI: 10.1002/ptr.6546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022]
Abstract
Osteoarthritis (OA) pain has been proposed to be a mixed pain state, because in some patients, central nervous system factors are superimposed upon the more traditional peripheral factors. In addition, a considerable amount of preclinical and clinical evidence has shown that, accompanying the central neuroplasticity changes and partially driven by a peripheral nociceptive input, a real neuropathic component occurs that are particularly linked to disease severity and progression. Hence, innovative strategies targeting neuroprotection and particularly neuroinflammation to prevent and treat OA pain could be introduced. Mangiferin (MG) is a glucosylxanthone that is broadly distributed in higher plants, such as Mangifera indica L. Previous studies have documented its analgesic, anti-inflammatory, antioxidant, neuroprotective, and immunomodulatory properties. In this paper, we propose its potential utility as a multitargeted compound for mixed OA pain, even in the context of multimodal pharmacotherapy. This hypothesis is supported by three main aspects: the cumulus of preclinical evidence around this xanthone, some preliminary clinical results using formulations containing MG in clinical musculoskeletal or neuropathic pain, and by speculations regarding its possible mechanism of action according to recent advances in OA pain knowledge.
Collapse
Affiliation(s)
- Bárbara B Garrido-Suárez
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Havana, Cuba
| | - Gabino Garrido
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| | - Octavio Piñeros
- Departamento de Investigaciones, Universidad de Santiago de Cali, Cali, Colombia
| | - René Delgado-Hernández
- Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos, Universidad de La Habana, Havana, Cuba
| |
Collapse
|
19
|
Convallatoxin protects against dextran sulfate sodium-induced experimental colitis in mice by inhibiting NF-κB signaling through activation of PPARγ. Pharmacol Res 2019; 147:104355. [DOI: 10.1016/j.phrs.2019.104355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 01/14/2023]
|
20
|
Feng ST, Wang ZZ, Yuan YH, Sun HM, Chen NH, Zhang Y. Mangiferin: A multipotent natural product preventing neurodegeneration in Alzheimer's and Parkinson's disease models. Pharmacol Res 2019; 146:104336. [PMID: 31271846 DOI: 10.1016/j.phrs.2019.104336] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are recognized as the universal neurodegenerative diseases, with the involvement of misfolded proteins pathology, leading to oxidative stress, glial cells activation, neuroinflammation, mitochondrial dysfunction, and cellular apoptosis. Several discoveries indicate that accumulation of pathogenic proteins, i.e. amyloid β (Aβ), the microtubule-binding protein tau, and α-synuclein, are parallel with oxidative stress, neuroinflammation, and mitochondrial dysfunction. Whether the causative factors are misfolded proteins or these pathophysiological changes, leading to neurodegeneration still remain ambiguous. Importantly, directing pharmacological researches towards the prevention of AD and PD seem a promising approach to detect these complicating mechanisms, and provide new insight into therapy for AD and PD patients. Mangiferin (MGF, 2-C-β-D-glucopyranosyl-1, 3, 6, 7-tetrahydroxyxanthone), well-known as a natural product, is detached from multiple plants, including Mangifera indica L. With the structure of C-glycosyl and phenolic moiety, MGF possesses multipotent properties starting from anti-oxidant effects, to the alleviation of mitochondrial dysfunction, neuroinflammation, and cellular apoptosis. In particular, MGF can cross the blood-brain barrier to exert neuronal protection. Different researches implicate that MGF is able to protect the central nervous system from oxidative stress, mitochondrial dysfunction, neuroinflammation, and apoptosis under in vitro and in vivo models. Additional facts support that MGF plays a role in improving the declined memory and cognition of rat models. Taken together, the neuroprotective capacity of MGF may stand out as an agent candidate for AD and PD therapy.
Collapse
Affiliation(s)
- Si-Tong Feng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hong-Mei Sun
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
21
|
Garrido-Suárez BB, Garrido G, Castro-Labrada M, Pardo-Ruíz Z, Bellma Menéndez A, Spencer E, Godoy-Figueiredo J, Ferreira SH, Delgado-Hernández R. Anti-allodynic Effect of Mangiferin in Rats With Chronic Post-ischemia Pain: A Model of Complex Regional Pain Syndrome Type I. Front Pharmacol 2018; 9:1119. [PMID: 30333751 PMCID: PMC6176059 DOI: 10.3389/fphar.2018.01119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/13/2018] [Indexed: 12/29/2022] Open
Abstract
The present study reproduces chronic post-ischemia pain (CPIP), a model of complex regional pain syndrome type I (CRPS-I), in rats to examine the possible transient and long-term anti-allodynic effect of mangiferin (MG); as well as its potential beneficial interactions with some standard analgesic drugs and sympathetic-mediated vasoconstriction and vasodilator agents during the earlier stage of the pathology. A single dose of MG (50 and 100 mg/kg, p.o.) decreased mechanical allodynia 72 h post-ischemia-reperfusion (I/R). MG 100 mg/kg, i.p. (pre- vs. post-drug) increased von Frey thresholds in a yohimbine and naloxone-sensitive manner. Sub-effective doses of morphine, amitriptyline, prazosin, clonidine and a NO donor, SIN-1, in the presence of MG were found to be significantly anti-allodynic. A long-term anti-allodynic effect at 7 and 13 days post-I/R after repeated oral doses of MG (50 and 100 mg/kg) was also observed. Further, MG decreased spinal and muscle interleukin-1β concentration and restored muscle redox status. These results indicate that MG has a transient and long-term anti-allodynic effect in CPIP rats that appears to be at least partially attributable to the opioid and α2 adrenergic receptors. Additionally, its anti-inflammatory and antioxidant mechanisms could also be implicated in this effect. The association of MG with sub-effective doses of these drugs enhances the anti-allodynic effect; however, an isobolographic analysis should be performed to define a functional interaction between them. These findings suggest the possible clinical use of MG in the treatment of CRPS-I in both early sympathetically maintained pain and long-term sympathetically independent pain.
Collapse
Affiliation(s)
- Bárbara B. Garrido-Suárez
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Havana, Cuba
| | - Gabino Garrido
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| | - Marian Castro-Labrada
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Havana, Cuba
| | - Zenia Pardo-Ruíz
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Havana, Cuba
| | - Addis Bellma Menéndez
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Havana, Cuba
| | - Evelyn Spencer
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Havana, Cuba
| | - Jozi Godoy-Figueiredo
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Sergio H. Ferreira
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - René Delgado-Hernández
- Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos, Universidad de La Habana, Havana, Cuba
| |
Collapse
|
22
|
Sarkar P, Bhowmick A, Kalita MC, Banu S. Effects of Resveratrol and Mangiferin on PPARγ and FALDH Gene Expressions in Adipose Tissue of Streptozotocin-Nicotinamide-Induced Diabetes in Rats. J Diet Suppl 2018; 16:659-675. [PMID: 29985711 DOI: 10.1080/19390211.2018.1472714] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Type 2 diabetes (T2D) is characterized by insufficient insulin secretion by the pancreatic beta cells and insulin resistance in liver, skeletal muscle, and white adipose tissue. Adipose tissue plays a major role in glucose homeostasis and lipid metabolism. Dietary antioxidants such as resveratrol and mangiferin may offer some protection against the early stage of diabetes mellitus. Therefore, an attempt has been made to investigate the effects of resveratrol and mangiferin on biochemical parameters and molecular mechanism of PPARγ and FALDH gene expression in adipose tissue of streptozotocin- (STZ-) nicotinamide- (NA-) induced diabetic rats. Albino Wister rats were randomly divided into five groups: control rats (Group 1), diabetic control rats (Group 2), diabetic rats given resveratrol (40 mg/kg body weight per day; Group 3), diabetic rats given mangiferin (40 mg/kg body weight per day; Group 4), diabetic rats given glibenclamide (0.6 mg/kg body weight per day; Group 5). Serum biochemical parameters-total cholesterol (TC), total triglyceride (TG), low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, glycosylated hemoglobin (HbA1c), urea, and uric acid were analyzed. We found that the oral administration of resveratrol and mangiferin to STZ-NA-induced diabetic rats for 30 days showed the significant protective effect on all the biochemical parameters. A significant reduction in blood glucose and HbA1c levels was observed in rats treated with 40 mg/kg body weight per day of resveratrol or mangiferin. Moreover, both these antioxidants showed significant enhancement of PPARγ and FALDH gene expression in rat adipose tissue compared to control rats.
Collapse
Affiliation(s)
- Purabi Sarkar
- Department of Bioengineering and Technology, GUIST, Gauhati University , Assam , India
| | - Ananya Bhowmick
- Department of Bioengineering and Technology, GUIST, Gauhati University , Assam , India
| | | | - Sofia Banu
- Department of Bioengineering and Technology, GUIST, Gauhati University , Assam , India
| |
Collapse
|
23
|
Local administration of mangiferin prevents experimental inflammatory mechanical hyperalgesia through CINC-1/epinephrine/PKA pathway and TNF-α inhibition. Eur J Pharmacol 2018; 830:87-94. [DOI: 10.1016/j.ejphar.2018.04.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/27/2022]
|
24
|
Pal R, Chaudhary MJ, Tiwari PC, Nath R, Pant KK. Pharmacological and biochemical studies on protective effects of mangiferin and its interaction with nitric oxide (NO) modulators in adjuvant-induced changes in arthritic parameters, inflammatory, and oxidative biomarkers in rats. Inflammopharmacology 2018; 27:10.1007/s10787-018-0507-8. [PMID: 29934863 DOI: 10.1007/s10787-018-0507-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/09/2018] [Indexed: 10/28/2022]
Abstract
Current study was designed to evaluate protective effect of mangiferin and its interaction with low dose of nitric oxide (NO) modulators in complete Freund's adjuvant (CFA) inoculated rats. Male wistar rats (200-300 g, n = 8 per group) were used in the study. On day ''0'' of study arthritis was induced in rats by injecting 0.2 ml CFA in sub-planter region of right hind paw of animals. Treatment with methotrexate (5 mg/kg), mangiferin (10-30 mg/kg) alone and in combination with NO modulators was given (i.p.) from days 14 to 28. After 28 days, blood and joint synovial fluid was collected for biochemical analysis and rat paws were excised to estimate MDA and SOD in tissue (paw) homogenates. CFA inoculation significantly increases (1) arthritic index, (2) ankle diameter, (3) paw volume, and (4) serum TNF-α, IL-6, IL-1β, and synovial TNF-α levels (p < 0.001). The serum Th1 (IFN-γ) and Th2 (IL-4) cytokine levels, MDA levels in rat paw tissue homogenates and serum NF-κB levels were also found significantly increased. Significant decrease in serum IL-10 levels and SOD activity was found after CFA inoculation. These CFA-induced arthritic changes, cytokine profile, and oxidative stress markers were significantly reversed by mangiferin (10-30 mg/kg) treatment alone and in combination with L-arginine and L-NAME nitric oxide modulators (p < 0.05). Treatment with methotrexate (5 mg/kg) also significantly reversed these adjuvant changes (p < 0.05). However, effect of methotrexate was less marked as compared to mangiferin (30 mg/kg) alone and in combination with L-NAME (10 mg/kg), but was comparable or slightly better than mangiferin (10 and 20 mg/kg). Thus, on the basis of our findings, we can suggest that interaction of mangiferin with nitric oxide modulators may have therapeutic value for chronic inflammatory disease such as RA.
Collapse
Affiliation(s)
- Rishi Pal
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, UP, 226003, India.
| | - Manju J Chaudhary
- Department of Physiology, Government Medical College, Tirwa Road, Kannauj, UP, India
| | - Prafulla Chandra Tiwari
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, UP, 226003, India
| | - Rajendra Nath
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, UP, 226003, India
| | - Kamlesh Kumar Pant
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, UP, 226003, India
| |
Collapse
|
25
|
Patra N, Dehury N, Pal A, Behera A, Patra S. Preparation and mechanistic aspect of natural xanthone functionalized gold nanoparticle. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:439-445. [PMID: 29853110 DOI: 10.1016/j.msec.2018.04.091] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 03/28/2018] [Accepted: 04/30/2018] [Indexed: 01/31/2023]
Abstract
Herein, a facile scale up and shape variable synthesis of gold nanoparticle (AuNP) and reaction mechanism by natural xanthone derivative (mangiferin) has been reported. Mangiferin (C19H18O11; 1,3,6,7-tetrahydroxyxanthone-C2-β-d-glucoside), a xanthone derivative is isolated from Mangifera indica L. leaves which efficiently reduces Au3+ ions to Au0 and stabilizes the formed AuNP. The structural, optical and plasmonic properties of synthesized AuNP have been investigated through different instrumental techniques like UV-Vis and FTIR spectroscopy, powder XRD, FESEM and TEM analysis. It is observed that variation of the concentration of Au3+ ions and mangiferin has a great effect on controlling size and shape of nanoparticles. The role of reaction temperature is also notable. An interesting observation is that with same concentration ratio of HAuCl4/mangiferin (0.025 mM/0.002%) at the room temperature kidney shaped AuNP is produced, whereas it is spherical at boiling temperature. Moreover, mangiferin allows high scale synthesis of AuNPs (0.025 mM to 10 mM) without changing the particles size and shape. The mechanistic investigation through UV-Vis, FTIR and GCMS analyses reveal the cleavage of glucose unit and oxidation of phenolic OH groups during AuNP formation. Non-toxicity of mangiferin conjugated AuNP on normal human breast cell line (MCF-10A) suggesting its future application as a drug delivery system and other related medicinal purposes.
Collapse
Affiliation(s)
- Nabanita Patra
- School of pharmaceutical sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751030, Odisha, India
| | - Niranjan Dehury
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Jatni 752050, Odisha, India
| | - Abhisek Pal
- School of pharmaceutical sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751030, Odisha, India
| | - Anindita Behera
- School of pharmaceutical sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751030, Odisha, India
| | - Srikanta Patra
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Jatni 752050, Odisha, India.
| |
Collapse
|
26
|
Boshra SA, El-Haddad AE. The protective effects of MPLC isolated glycyrrhizin and mangiferin against brain toxicity in rats. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2162-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Fajri P, Estuningtyas A, Louisa M, Freisleben HJ. The preventive effect of<em> Mangifera foetida</em> L. leaf extract administered simultaneously to excess iron on markers of iron overload in Spraque-Dawley rats. MEDICAL JOURNAL OF INDONESIA 2018. [DOI: 10.13181/mji.v26i4.1829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Background: Recently, there is no agent available for the prevention of iron overload (IO) in thalassemia patients. Previous studies showed that Mangifera foetida L. leaf extracts reduced the levels of iron in IO in vitro and in vivo models. The present study aimed to determine the efficacy of Mangifera foetida L. leaf extract in the prevention of IO induced in rats.Methods: Thirty male Sprague-Dawley rats were divided into 5 groups: control (untreated), IO, 3 treatment groups with leaf extract equivalent to 50, 100, and 200 mg of mangiferin per kg BW. Fe-dextran (15 mg) was administered intraperitoneally twice a week for 4 weeks to all groups except control (IO, DSM50, DSM100, and DSM200). Urine and blood samples were taken before and after treatments. After 4 weeks of treatment, rats were terminated, and samples of spleen, liver, and heart were taken. Ferritin and mangiferin levels and SOD activities were determined in plasma. Iron levels were measured in plasma, urine, and spleen.Results: Experimental IO increased plasma Fe content 4.23 times and plasma ferritin levels 6.9 times vs normal. Mangifera foetida L. leaf extract DSM50 resulted in the highest blood levels of 212 ng mangiferin per mL and moderately, although not significant, prevented increased plasma ferritin levels and IO in organs and protected against oxidative stress.Conclusion: Aqueous Mangifera foetida L. leaf extract may be useful to prevent IO and oxidative stress in thalassemia patients.
Collapse
|
28
|
Mangiferin ameliorates fatty liver via modulation of autophagy and inflammation in high-fat-diet induced mice. Biomed Pharmacother 2017; 96:328-335. [DOI: 10.1016/j.biopha.2017.10.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/16/2017] [Accepted: 10/02/2017] [Indexed: 12/12/2022] Open
|
29
|
El-Sayyad SM, Soubh AA, Awad AS, El-Abhar HS. Mangiferin protects against intestinal ischemia/reperfusion-induced liver injury: Involvement of PPAR-γ, GSK-3β and Wnt/β-catenin pathway. Eur J Pharmacol 2017; 809:80-86. [PMID: 28506911 DOI: 10.1016/j.ejphar.2017.05.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022]
Abstract
AIM Mangiferin (MF), a xanthonoid from Mangifera indica, possesses anti-inflammatory, immunomodulatory, and potent antioxidant effects; however, its protective effect against mesenteric ischemia/reperfusion (I/R)-induced liver injury has not been fully clarified. The study was designed to assess the possible mechanism of action of MF against mesenteric I/R model. MAIN METHODS Male Wister rats were treated with MF (20mg/kg, i.p) or the vehicle for 3 days before I/R, which was induced by clamping the superior mesenteric artery for 30min followed by declamping for 60min. KEY FINDINGS The mechanistic studies revealed that MF protected the 2 organs studied, viz., liver and intestine partly via increasing the content of β-catenin and PPAR-γ along with decreasing that of GSK-3β and the phosphorylated NF-қB-p65. MF antioxidant effect was evidenced by increasing contents of total antioxidant capacity and GST, besides normalizing that of MDA. Regarding the anti-inflammatory effect, MF reduced IL-1β and IL-6, effects that were mirrored on the tissue content of MPO. Moreover, MF possessed anti-apoptotic character evidenced by elevating Bcl-2 content and reducing that of caspase-3. In the serum, intestinal I/R increased the activity of ALT, AST, and creatine kinase. SIGNIFICANCE The intimated protective mechanisms of MF against mesenteric I/R are mediated, partially, by modulation of oxidative stress, inflammation, and apoptosis possibly via the involvement of Wnt/β-catenin/NF-қβ/ PPAR-γ signaling pathways.
Collapse
Affiliation(s)
- Shorouk M El-Sayyad
- Department of Pharmacology & Toxicology, October 6 University,12585 Giza, Egypt
| | - Ayman A Soubh
- Department of Pharmacology & Toxicology, Ahram Canadian University, 12566 Giza, Egypt.
| | - Azza S Awad
- Department of Pharmacology & Toxicology, Ahram Canadian University, 12566 Giza, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology & Toxicology, Cairo University, 11562 Cairo, Egypt
| |
Collapse
|
30
|
Bulugonda RK, Kumar KA, Gangappa D, Beeda H, Philip GH, Muralidhara Rao D, Faisal SM. Mangiferin from Pueraria tuberosa reduces inflammation via inactivation of NLRP3 inflammasome. Sci Rep 2017; 7:42683. [PMID: 28218280 PMCID: PMC5316935 DOI: 10.1038/srep42683] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/17/2017] [Indexed: 12/19/2022] Open
Abstract
Recent reports have demonstrated the role of phyto-constituents in modulating inflammatory responses. Mangiferin isolated from Mangifera indica is known to induce potent anti-oxidative, anti-diabetic and anti-inflammatory activity. However, the molecular mechanism of its anti-inflammatory activity is not properly understood. In this study we have isolated Mangiferin from the tubers of Pueraria tuberosa (PT-Mangiferin) and analysed the mechanism of its potent anti-inflammatory effects in LPS stimulated RAW 264.7 mouse macrophage cell line and in a carrageenan induced air pouch model. PT-Mangiferin was non-toxic to primary cells but showed significant toxicity and apoptotic effect on cancerous cells. It significantly reduced the production of pro-inflammatory mediators (COX-2, iNOS and TNF-α) in LPS stimulated RAW 264.7 cells. Further, it has also reduced the generation of ROS and inhibited LPS induced NF-kB translocation in these cells. Additionally, PT-Mangiferin significantly reduced inflammation in a mouse air pouch model by inhibiting the infiltration of monocytes and neutrophils and reducing the production of cytokines. These effects were mediated via inactivation of NLRP3 inflammasome complex and its downstream signalling molecules. Taken together these results suggest that PT-Mangiferin is potent anti-inflammatory compound that reduces inflammation and holds promise in development of herbal based anti-inflammatory therapeutics in future.
Collapse
Affiliation(s)
| | - Kotha Anil Kumar
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India.,School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - D Gangappa
- School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Harshavardhan Beeda
- Department of Biotechnology, Sri Krishnadevaraya University, Anantapur, India
| | | | | | - Syed M Faisal
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| |
Collapse
|
31
|
Enhancing biopharmaceutical attributes of phospholipid complex-loaded nanostructured lipidic carriers of mangiferin: Systematic development, characterization and evaluation. Int J Pharm 2017; 518:289-306. [DOI: 10.1016/j.ijpharm.2016.12.044] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 12/12/2022]
|
32
|
Exploring and validating physicochemical properties of mangiferin through GastroPlus ® software. Future Sci OA 2017; 3:FSO167. [PMID: 28344830 PMCID: PMC5351510 DOI: 10.4155/fsoa-2016-0055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/01/2016] [Indexed: 01/01/2023] Open
Abstract
AIM Mangiferin (Mgf), a promising therapeutic polyphenol, exhibits poor oral bioavailability. Hence, apt delivery systems are required to facilitate its gastrointestinal absorption. The requisite details on its physicochemical properties have not yet been well documented in literature. Accordingly, in order to have explicit insight into its physicochemical characteristics, the present work was undertaken using GastroPlus™ software. RESULTS Aqueous solubility (0.38 mg/ml), log P (-0.65), Peff (0.16 × 10-4 cm/s) and ability to act as P-gp substrate were defined. Potency to act as a P-gp substrate was verified through Caco-2 cells, while Peff was estimated through single pass intestinal perfusion studies. Characterization of Mgf through transmission electron microscopy, differential scanning calorimetry, infrared spectroscopy and powder x-ray diffraction has also been reported. CONCLUSION The values of physicochemical properties for Mgf reported in the current manuscript would certainly enable the researchers to develop newer delivery systems for Mgf.
Collapse
|
33
|
Gururaja GM, Mundkinajeddu D, Kumar AS, Dethe SM, Allan JJ, Agarwal A. Evaluation of Cholesterol-lowering Activity of Standardized Extract of Mangifera indica in Albino Wistar Rats. Pharmacognosy Res 2017; 9:21-26. [PMID: 28250649 PMCID: PMC5330098 DOI: 10.4103/0974-8490.199770] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Cholesterol lowering activity of Mangifera indica L. has been determined by earlier researchers and kernel, leaf and bark have shown significant activity. However, the specific cholesterol lowering activity of leaf methanol extract has not been determined. MATERIALS AND METHODS The present study involved evaluation of cholesterol lowering potential of methanol extract of M. indica leaves using high cholesterol diet model in albino Wistar rats. The acute oral toxicity at a dose of 5000 mg/ kg body weight was also determined in female albino Wistar rats. Phytoconstituents Iriflophenone 3-C-β-D-glucoside and mangiferin were quantified in methanol extracts of different varieties of mango leaves using high performance liquid chromatography. RESULTS AND DISCUSSION Significant cholesterol lowering activity was observed with methanol extract of M. indica leaves, at dose of 90 mg/kg body weight in rats and it was also found to be safe at dose of 5000 mg/kg rat body. Iriflophenone 3-C-β-D-glucoside and mangiferin were found to be in the range of 1.2 to 2.8% w/w and 3.9 to 4.6% w/w, respectively which along with 3 β taraxerol and other sterols could be contributing to the cholesterol lowering activity of mango leaves extract. CONCLUSIONS The phytosterols rich extract of Mangifera indica leaves is a good source of nutraceutical ingredient that have the potential to lower serum cholesterol levels. SUMMARY The Mangifera indica leaves methanolic extract showed significant cholesterol lowering activity in high cholesterol diet induced hypercholesterolaemia model in rats when evaluated at a dose of 90 mg/kg rat body weight. The extract was found to contain Iriflophenone 3-C-β-D-glucoside and mangiferin which along with 3 β taraxerol and other sterols could be contributing to the cholesterol lowering activity.
Collapse
Affiliation(s)
- G M Gururaja
- Research Scholar, Manipal University, Manipal, Bengaluru, Karnataka, India; Natural Remedies R and D Centre, Bengaluru, Karnataka, India
| | | | - A Senthil Kumar
- Natural Remedies R and D Centre, Bengaluru, Karnataka, India
| | | | - J Joshua Allan
- Natural Remedies R and D Centre, Bengaluru, Karnataka, India
| | - Amit Agarwal
- Natural Remedies R and D Centre, Bengaluru, Karnataka, India
| |
Collapse
|
34
|
de Los Monteros-Zuñiga AE, Izquierdo T, Quiñonez-Bastidas GN, Rocha-González HI, Godínez-Chaparro B. Anti-allodynic effect of mangiferin in neuropathic rats: Involvement of nitric oxide-cyclic GMP-ATP sensitive K + channels pathway and serotoninergic system. Pharmacol Biochem Behav 2016; 150-151:190-197. [PMID: 27984097 DOI: 10.1016/j.pbb.2016.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 11/17/2022]
Abstract
The neurobiology of neuropathic pain is caused by injury in the central or peripheral nervous system. Recent evidence points out that mangiferin shows anti-nociceptive effect in inflammatory pain. However, its role in inflammatory and neuropathic pain and the possible mechanisms of action are not yet established. The purpose of this study was to determine the possible anti-allodynic effect of mangiferin in rats with spinal nerve ligation (SNL). Furthermore, we sought to investigate the possible mechanisms of action that contribute to these effects. Mechanical allodynia to stimulation with the von Frey filaments was measured by the up and down method. Intrathecal administration of mangiferin prevented, in a dose-dependent fashion, SNL-induced mechanical allodynia. Mangiferin-induced anti-allodynia was prevented by the intrathecal administration of L-NAME (100μg/rat, non-selective nitric oxide synthase inhibitor), ODQ (10μg/rat, inhibitor of guanylate-cyclase) and glibenclamide (50μg/rat, channel blocker of ATP-sensitive K+ channels). Moreover, methiothepin (30μg/rat, non-selective 5-HT receptor antagonist), WAY-100635 (6μg/rat, selective 5-HT1A receptor antagonist), SB-224289 (5μg/rat, selective 5-HT1B receptor antagonist), BRL-15572 (4μg/rat, selective 5-HT1D receptor antagonist) and SB-659551 (6μg/rat, selective 5-HT5A receptor antagonist), but not naloxone (50μg/rat, non-selective opioid receptor antagonist), were able to prevent mangiferin-induced anti-allodynic effect. These data suggest that the anti-allodynic effect induced by mangiferin is mediated at least in part by the serotoninergic system, involving the activation of 5-HT1A/1B/1D/5A receptors, as well as the nitric oxide-cyclic GMP-ATP-sensitive K+ channels pathway, but not by the opioidergic system, in the SNL model of neuropathic pain in rats.
Collapse
Affiliation(s)
- Antonio Espinosa de Los Monteros-Zuñiga
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, 04960 Mexico, D.F., Mexico
| | - Teresa Izquierdo
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, 04960 Mexico, D.F., Mexico
| | - Geovanna Nallely Quiñonez-Bastidas
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, 04960 Mexico, D.F., Mexico
| | - Héctor Isaac Rocha-González
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Miguel Hidalgo, 11340 Mexico, D.F., Mexico
| | - Beatriz Godínez-Chaparro
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, 04960 Mexico, D.F., Mexico.
| |
Collapse
|
35
|
Magcwebeba T, Swart P, Swanevelder S, Joubert E, Gelderblom W. Anti-Inflammatory Effects of Aspalathus linearis and Cyclopia spp. Extracts in a UVB/Keratinocyte (HaCaT) Model Utilising Interleukin-1α Accumulation as Biomarker. Molecules 2016; 21:molecules21101323. [PMID: 27706097 PMCID: PMC6274390 DOI: 10.3390/molecules21101323] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/16/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023] Open
Abstract
Ultraviolet B (UVB) radiation is one of the major predisposing risk factors of skin cancer. The anticancer and photoprotective effects of unoxidized rooibos (Aspalathus linearis) and honeybush (Cyclopia) herbal teas, containing high levels of dihydrochalones and xanthones, respectively, have been demonstrated in skin cancer models in vivo. In the current study, the anti-inflammatory effects of methanol and aqueous extracts of these herbal teas were investigated in a UVB/HaCaT keratinocyte model with intracellular interleukin-1α (icIL-1α) accumulation as a biomarker. Extracts of green tea (Camellia sinensis) served as benchmark. Both extracts of green tea and rooibos, as well as the aqueous extract of C. intermedia, enhanced UVB-induced inhibition of cell viability, proliferation and induction of apoptosis, facilitating the removal of icIL-1α. The underlying mechanisms may involve mitochondrial dysfunction exhibiting pro-oxidant responses via polyphenol-iron interactions. The methanol extracts of honeybush, however, protected against UVB-induced reduction of cell growth parameters, presumably via antioxidant mechanisms that prevented the removal of highly inflamed icIL-1α-containing keratinocytes via apoptosis. The dual antioxidant and/or pro-oxidant role of the polyphenolic herbal tea constituents should be considered in developing preventive strategies against UVB-induced skin carcinogenesis. The indirect removal of UVB damaged keratinocytes by herbal tea extracts via apoptosis may find application in the prevention of photo-induced inflammation.
Collapse
Affiliation(s)
- Tandeka Magcwebeba
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch) 7602, South Africa.
| | - Pieter Swart
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch) 7602, South Africa.
| | - Sonja Swanevelder
- Biostatistics Unit, South African Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa.
| | - Elizabeth Joubert
- Post-Harvest and Wine Technology Division, Agricultural Research Council (Infruitec-Nietvoorbij), Private Bag X5026, Stellenbosch 7599, South Africa.
- Department of Food Science, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch) 7602, South Africa.
| | - Wentzel Gelderblom
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch) 7602, South Africa.
- Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa.
| |
Collapse
|
36
|
Tian X, Gao Y, Xu Z, Lian S, Ma Y, Guo X, Hu P, Li Z, Huang C. Pharmacokinetics of mangiferin and its metabolite-Norathyriol, Part 1: Systemic evaluation of hepatic first-pass effect in vitro and in vivo. Biofactors 2016; 42:533-544. [PMID: 27130074 DOI: 10.1002/biof.1291] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/21/2016] [Indexed: 12/17/2022]
Abstract
Mangiferin (MGF), a glucoside of xanthone existing in phytomedicines and food, is increasingly attracting attention on diabetes treatment, while the underlying mechanism leading to its low oral bioavailability is unclear. Norathyriol (NTR), an active metabolite with hypoglycemic activity and its exposure after MGF dosing remains unclear. Hence, a rapid and sensitive LC-MS/MS method was established and validated to determine MGF and NTR and applied in the PK study in rats. Correspondingly, the in vitro experiments on temperature-dependent uptake, and MGF metabolism in hepatocyte and enterobacteria samples were performed. Results revealed that hepatic first-pass effect slightly contributed to the poor bioavailability of MGF, based on the MGF exposure in portal vein plasma was nearly similar to that in systemic plasma, and the MGF accumulation in the liver was limited, so was that of NTR. Correspondingly, the in vitro study revealed the MGF uptake was mainly dependent on poor passive transport, possibly leading to its limited hepatic metabolism and accumulation. Moreover, the NTR exposure remained considerably low (Cmax < 3 ng/mL, AUCNTR /AUCMGF < 3%) in plasma after single MGF dosing, corresponding to its tiny proportion (0.1%) of MGF in MGF-incubated enterobacteria samples. However, given the low generation and elimination rates of NTR, NTR might accumulate in plasma and exert effects after repeated MGF dosing, although requires further study. This work is the first systemic study on PK profiles of MGF and NTR in vitro and in vivo, which is important for the interpretation on the poor bioavailability and pharmacodynamics of MGF. © 2016 BioFactors, 42(5):533-544, 2016.
Collapse
Affiliation(s)
- Xiaoting Tian
- Modernization of traditional Chinese medicine, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yu Gao
- Modernization of traditional Chinese medicine, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Zhou Xu
- College of life and environmental sciences, Shanghai Normal University, Shanghai, People's Republic of China
| | - Shan Lian
- Department of pharmacy ,Harbin University of Commerce, Harbin, People's Republic of China
| | - Yuanjie Ma
- Department of pharmacy ,Harbin University of Commerce, Harbin, People's Republic of China
| | - Xiaozhen Guo
- Modernization of traditional Chinese medicine, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Pei Hu
- Modernization of traditional Chinese medicine, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Zhixiong Li
- Modernization of traditional Chinese medicine, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, People's Republic of China.
| | - Chenggang Huang
- Modernization of traditional Chinese medicine, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, People's Republic of China.
| |
Collapse
|
37
|
Núñez Selles AJ, Daglia M, Rastrelli L. The potential role of mangiferin in cancer treatment through its immunomodulatory, anti-angiogenic, apoptopic, and gene regulatory effects. Biofactors 2016; 42:475-491. [PMID: 27219221 DOI: 10.1002/biof.1299] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/01/2016] [Accepted: 05/02/2016] [Indexed: 12/13/2022]
Abstract
Mangiferin (1,3,6,7-tetrahydroxyxanthone-C2-β-D-glucoside) is a natural bioactive xanthonoid that can be found in many plant species, among which the mango tree (Mangifera indica L), a plant widely used in the traditional medicinal, is one of its primary sources. The use of mangiferin for cancer treatment has attracted the attention of research groups around the World. Single administration of mangiferin or in combination with known anticancer chemicals has shown the potential benefits of this molecule in lung, brain, breast, cervix, and prostate cancers, and leukemia. Mangiferin mechanisms of action against cancer cells through in vitro, ex vivo, or in vivo models are discussed besides its antioxidant and anti-inflammatory properties. Nevertheless, pharmaceutical development and, therefore, clinical trials on cancer targets are still lacking. © 2016 BioFactors, 42(5):475-491, 2016.
Collapse
Affiliation(s)
- Alberto J Núñez Selles
- National Evangelic University, Research Division, Paseo De Los Periodistas 54, Santo Domingo, Dominican Republic
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Luca Rastrelli
- Dipartimento Di Farmacia, Università Degli Studi Di Salerno, via Giovanni Paolo II, Fisciano, Italy.
| |
Collapse
|
38
|
Fomenko EV, Chi Y. Mangiferin modulation of metabolism and metabolic syndrome. Biofactors 2016; 42:492-503. [PMID: 27534809 PMCID: PMC5077701 DOI: 10.1002/biof.1309] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/21/2016] [Accepted: 06/05/2016] [Indexed: 12/17/2022]
Abstract
The recent emergence of a worldwide epidemic of metabolic disorders, such as obesity and diabetes, demands effective strategy to develop nutraceuticals or pharmaceuticals to halt this trend. Natural products have long been and continue to be an attractive source of nutritional and pharmacological therapeutics. One such natural product is mangiferin (MGF), the predominant constituent of extracts of the mango plant Mangifera indica L. Reports on biological and pharmacological effects of MGF increased exponentially in recent years. MGF has documented antioxidant and anti-inflammatory effects. Recent studies indicate that it modulates multiple biological processes involved in metabolism of carbohydrates and lipids. MGF has been shown to improve metabolic abnormalities and disorders in animal models and humans. This review focuses on the recently reported biological and pharmacological effects of MGF on metabolism and metabolic disorders. © 2016 BioFactors, 42(5):492-503, 2016.
Collapse
Affiliation(s)
| | - Yuling Chi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|
39
|
Gupta M, Kaur G. Aqueous extract from the Withania somnifera leaves as a potential anti-neuroinflammatory agent: a mechanistic study. J Neuroinflammation 2016; 13:193. [PMID: 27550017 PMCID: PMC4994385 DOI: 10.1186/s12974-016-0650-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/03/2016] [Indexed: 12/11/2022] Open
Abstract
Background Microglial-mediated neuroinflammation is a key factor underlying the pathogenesis of various neurodegenerative diseases and also an important target for the development of the neuroinflammation-targeted therapeutics. Conventionally, the nonsteroidal anti-inflammatory drugs (NSAIDs) are prescribed, but they are associated with long-term potential risks. Natural products are the cornerstone of modern therapeutics, and Ashwagandha is one such plant which is well known for its immunomodulatory properties in Ayurveda. Methods The current study was aimed to investigate the anti-neuroinflammatory potential of Ashwagandha (Withania somnifera) leaf water extract (ASH-WEX) and one of its active chloroform fraction (fraction IV (FIV)) using β-amyloid and lipopolysaccharide (LPS)-stimulated primary microglial cells and BV-2 microglial cell line. Iba-1 and α-tubulin immunocytochemistry was done to study the LPS- and β-amyloid-induced morphological changes in microglial cells. Inflammatory molecules (NFkB, AP1), oxidative stress proteins (HSP 70, mortalin), apoptotic markers (Bcl-xl, PARP), cell cycle regulatory proteins (PCNA, Cyclin D1), and MHC II expression were analyzed by Western blotting. Mitotracker and CellRox Staining, Sandwich ELISA, and Gelatin Zymography were done to investigate ROS, pro-inflammatory cytokines, and matrix metalloproteinase production, respectively. Ashwagandha effect on microglial proliferation, migration, and its apoptosis-inducing potential was studied by cell cycle analysis, migration assay, and Annexin-V FITC assay, respectively. Results ASH-WEX and FIV pretreatment was seen to suppress the proliferation of activated microglia by causing cell cycle arrest at Go/G1 and G2/M phase along with decrease in cell cycle regulatory protein expression such as PCNA and Cyclin D1. Inhibition of microglial activation was revealed by their morphology and downregulated expression of microglial activation markers like MHC II and Iba-1. Both the extracts attenuated the TNF-α, IL-1β, IL-6, RNS, and ROS production via downregulating the expression of inflammatory proteins like NFkB and AP1. ASH-WEX and FIV also restricted the migration of activated microglia by downregulating metalloproteinase expression. Controlled proliferation rate was also accompanied by apoptosis of activated microglia. ASH-WEX and FIV were screened and found to possess Withaferin A and Withanone as active phytochemicals. Conclusions The current data suggests that ASH-WEX and FIV inhibit microglial activation and migration and may prove to be a potential therapeutic candidate for the suppression of neuroinflammation in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Muskan Gupta
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
40
|
Agustini FD, Arozal W, Louisa M, Siswanto S, Soetikno V, Nafrialdi N, Suyatna F. Cardioprotection mechanism of mangiferin on doxorubicin-induced rats: Focus on intracellular calcium regulation. PHARMACEUTICAL BIOLOGY 2016; 54:1289-1297. [PMID: 26440532 DOI: 10.3109/13880209.2015.1073750] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CONTEXT The molecular mechanism of doxorubicin (DOX) cardiotoxicity involves overproduction of free radicals that leads to intracellular calcium dysregulation and apoptosis. Mangiferin (MGR), a naturally occurring glucosylxanthone, has antioxidant and cardioprotective properties. However, its cardioprotection mechanism has yet to be revealed. OBJECTIVE This study determines whether the cardioprotective effect of MGR is caused by its effect on intracellular calcium regulation. MATERIALS AND METHODS Male Sprague-Dawley rats were induced by DOX intraperitoneally with a total dose of 15 mg/kg bw. MGR was given orally at the doses of 30 and 60 mg/kg bw/d for seven consecutive weeks. The parameters examined were mRNA expression levels of proinflammatory cytokine gene (TNF-α), calcium regulatory gene (SERCA2a) and proapoptotic genes (caspase-9 and caspase-12), as well as cytosolic and mitochondrial calcium levels. RESULTS Treatment with MGR at 60 mg/kg bw/d significantly decreased the mRNA expression levels of TNF-α by 44.55% and caspase-9 by 52.79%, as well as the cytosolic calcium level by 24.15% (p < 0.05). SERCA2a and caspase-12 expressions were only slightly affected (27.27% increase and 24.85% decrease for SERCA2a and caspase-12, respectively, p > 0.05). Meanwhile, MGR 30 mg/kg bw/d gave insignificant results in all parameters. DISCUSSION AND CONCLUSION MGR protected against DOX-induced cardiac inflammation and apoptosis via down-regulation of proapoptotic and proinflammatory gene expressions, upregulation of SERCA2a gene expression, and normalization of cytosolic calcium level. Thus, the cardioprotective effect of MGR is at least in part due to the regulation of intracellular calcium homeostasis.
Collapse
Affiliation(s)
| | - Wawaimuli Arozal
- b Department of Pharmacology and Therapeutics , Faculty of Medicine, Universitas Indonesia , Central Jakarta , Indonesia
| | - Melva Louisa
- b Department of Pharmacology and Therapeutics , Faculty of Medicine, Universitas Indonesia , Central Jakarta , Indonesia
| | | | - Vivian Soetikno
- b Department of Pharmacology and Therapeutics , Faculty of Medicine, Universitas Indonesia , Central Jakarta , Indonesia
| | - Nafrialdi Nafrialdi
- b Department of Pharmacology and Therapeutics , Faculty of Medicine, Universitas Indonesia , Central Jakarta , Indonesia
| | - Franciscus Suyatna
- b Department of Pharmacology and Therapeutics , Faculty of Medicine, Universitas Indonesia , Central Jakarta , Indonesia
| |
Collapse
|
41
|
Abstract
Of late, several biologically active antioxidants from natural products have been investigated by the researchers in order to combat the root cause of carcinogenesis, in other words, oxidative stress. Mangiferin, a therapeutically active C-glucosylated xanthone, is extracted from pulp, peel, seed, bark and leaf of Mangifera indica. These polyphenols of mangiferin exhibit antioxidant properties and tend to decrease the oxygen-free radicals, thereby reducing the DNA damage. Indeed, its capability to modulate several key inflammatory pathways undoubtedly helps in stalling the progression of carcinogenesis. The current review article emphasizes an updated account on the patents published on the chemopreventive action of mangiferin, apoptosis induction made on various cancer cells, along with proposed antioxidative activities and patent mapping of other important therapeutic properties. Considering it as promising polyphenol, this paper would also summarize the diverse molecular targets of mangiferin.
Collapse
|
42
|
Kshirsagar PR, Gaikwad NB, Panda S, Hegde HV, Pai SR. Reverse Phase-ultra Flow Liquid Chromatography-diode Array Detector Quantification of Anticancerous and Antidiabetic Drug Mangiferin from 11 Species of Swertia from India. Pharmacogn Mag 2016; 12:S32-6. [PMID: 27041855 PMCID: PMC4791996 DOI: 10.4103/0973-1296.176105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background: Genus Swertia is valued for its great medicinal potential, mainly Swertia chirayita (Roxb. ex Fleming) H. Karst. is used in traditional medicine for a wide range of diseases. Mangiferin one of xanthoids is referred with enormous pharmacological potentials. Objective: The aim of the study was to quantify and compare the anticancerous and antidiabetic drug mangiferin from 11 Swertia species from India. The study also evaluates hierarchical relationships between the species based on mangiferin content using multivariate analysis. Materials and Methods: The reverse phase-ultra flow liquid chromatography-diode array detector analyses was performed and chromatographic separation was achieved on a Lichrospher 100, C18e (5 μm) column (250–4.6 mm). Mobile phase consisting of 0.2% triethylamine (pH-4 with O-phosphoric acid) and acetonitrile (85:15) was used for separation with injection volume 20 μL and detection wave length at 257 nm. Results: Results indicated that concentration of mangiferin has been found to vary largely between Swertia species collected from different regions. Content of mangiferin was found to be highest in Swertia minor compared to other Swertia species studied herein from the Western Ghats and Himalayan region also. The same was also evident in the multivariate analysis, wherein S. chirayita, S. minor and Swertia paniculata made a separate clade. Conclusion: Conclusively, the work herein provides insights of mangiferin content from 11 Swertia species of India and also presents their hierarchical relationships. To best of the knowledge this is the first report of higher content of mangiferin from any Swertia species. SUMMARY The present study quantifies and compares mangiferin in 11 species of Swertia from India. The study also evaluates hierarchical relationships between the species based on mangiferin content using multivariate analysis. The mangiferin content was highest in S. minor compared to the studied Swertia species. To the best of our knowledge this is the first report of higher content of mangiferin from Swertia species.
Abbreviations used: LOD: Limit of detection, LOQ: Limit of quantification, RP-UFLC-DAD: Reverse phase-ultra flow liquid chromatography-diode array detector, RSD: Relative standard deviation, SAN: Swertia angustifolia, SAP: Swertia angustifolia var. pulchella, SBI: S. bimaculata, SCH: S. chirayita, SCO: S. corymbosa, SDE: S. densifolia, SDI: S. dialatata, SLA: S. lawii, SMI: S. minor; SNE: S. nervosa, and SPA: S. paniculata
Collapse
Affiliation(s)
- Parthraj R Kshirsagar
- Department of Botany, Shivaji University, Kolhapur, Maharashtra, India; Herbal Medicine, Tissue Culture Division, Regional Medical Research Centre, Indian Council of Medical Research, Nehru Nagar, Belagavi, Karnataka, India; Plant Biotechnology and Tissue Culture Division, Regional Medical Research Centre, Indian Council of Medical Research, Nehru Nagar, Belagavi, Karnataka, India
| | - Nikhil B Gaikwad
- Department of Botany, Shivaji University, Kolhapur, Maharashtra, India
| | - Subhasis Panda
- Department of Botany, Darjeeling Government College, Darjeeling, West Bengal, India
| | - Harsha V Hegde
- Herbal Medicine, Tissue Culture Division, Regional Medical Research Centre, Indian Council of Medical Research, Nehru Nagar, Belagavi, Karnataka, India; Plant Biotechnology and Tissue Culture Division, Regional Medical Research Centre, Indian Council of Medical Research, Nehru Nagar, Belagavi, Karnataka, India
| | - Sandeep R Pai
- Plant Biotechnology and Tissue Culture Division, Regional Medical Research Centre, Indian Council of Medical Research, Nehru Nagar, Belagavi, Karnataka, India
| |
Collapse
|
43
|
Wang X, Sun Y, Zhao Y, Ding Y, Zhang X, Kong L, Li Z, Guo Q, Zhao L. Oroxyloside prevents dextran sulfate sodium-induced experimental colitis in mice by inhibiting NF-κB pathway through PPARγ activation. Biochem Pharmacol 2016; 106:70-81. [PMID: 26947454 DOI: 10.1016/j.bcp.2016.02.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/26/2016] [Indexed: 01/12/2023]
Abstract
Oroxyloside, as a metabolite of oroxylin A, may harbor various beneficial bioactivities which have rarely been reported in the previous studies. Here we established the dextran sulfate sodium (DSS)-induced experimental colitis and evaluated the anti-inflammatory effect of oroxyloside in vivo. As a result, oroxyloside attenuated DSS-induced body weight loss, colon length shortening and colonic pathological damage. Furthermore, oroxyloside inhibited inflammatory cell infiltration and decreased myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) activities as well. The production of pro-inflammatory cytokines in serum and colon was also significantly reduced by oroxyloside. We unraveled the underlying mechanisms that oroxyloside inhibited NF-κB pathway by activating Peroxisome Proliferator-Activated Receptor γ (PPARγ) to attenuate DSS-induced colitis. Moreover, we investigated the anti-inflammatory effect and mechanisms of oroxyloside in the mouse macrophage cell line RAW264.7 and bone marrow derived macrophages (BMDM). Oroxyloside decreased several LPS-induced inflammatory cytokines, including IL-1β, IL-6 and TNF-α in RAW264.7 and BMDM. We also found that oroxyloside inhibited LPS-induced activation of NF-κB signaling pathway via activating PPARγ in RAW 264.7 and BMDM. Docking study showed that oroxyloside could bind with PPARγ. GW9662, the inhibitor of PPARγ, and PPARγ siRNA transfection blocked the effect of oroxyloside on PPARγ activation. Our study suggested that oroxyloside prevented DSS-induced colitis by inhibiting NF-κB pathway through PPARγ activation. Therefore, oroxyloside may be a promising and effective agent for inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Xiaoping Wang
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Yang Sun
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Yue Zhao
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Youxiang Ding
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Xiaobo Zhang
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Zhiyu Li
- School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Qinglong Guo
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.
| | - Li Zhao
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
44
|
Suman RK, Mohanty IR, Maheshwari U, Borde MK, Deshmukh YA. Natural dipeptidyl peptidase-IV inhibitor mangiferin mitigates diabetes- and metabolic syndrome-induced changes in experimental rats. Diabetes Metab Syndr Obes 2016; 9:261-72. [PMID: 27621658 PMCID: PMC5010077 DOI: 10.2147/dmso.s109599] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Mangiferin (MNG) is known to possess antidiabetic and antioxidant activity. However, there is no experimental evidence presently available in the literature with regard to its ameliorating effects on diabetes mellitus coexisting with metabolic syndrome. OBJECTIVE The present study was designed to evaluate the protective effects of MNG on various components of metabolic syndrome with diabetes as an essential component. MATERIAL AND METHODS Adult Wistar rats were fed high-fat diets for 10 weeks and challenged with streptozotocin (40 mg/kg) at week three (high-fat diabetic control group). After the confirmation of metabolic syndrome in the setting of diabetes, MNG 40 mg/kg was orally fed to these rats from the fourth to tenth week. RESULTS The treatment with MNG showed beneficial effects on various components of metabolic syndrome, such as reduced dyslipidemia (decreased triglyceride, total cholesterol, low-density lipoprotein cholesterol, and increased high-density lipoprotein cholesterol) and diabetes mellitus (reduced blood glucose and glycosylated hemoglobin). In addition, an increase in serum insulin, C-peptide, and homeostasis model assessment-β and a reduction in homeostasis model assessment of insulin resistance-IR were observed in MNG-treated group compared with high-fat diabetic control group. MNG was also found to be cardioprotective (reduction in creatine phosphokinase-MB levels, atherogenic index, high-sensitivity C-reactive protein). Reduction in serum dipeptidyl peptidase-IV levels in the MNG-treated group correlated with improvement in insulin resistance and enhanced β-cell function. CONCLUSION The present study has demonstrated antidiabetic, hypolipidemic, and cardioprotective effects of MNG in the setting of diabetes with metabolic syndrome. Thus, MNG has the potential to be developed as a natural alternative to synthetic dipeptidyl peptidase-IV inhibitors beneficial in this comorbid condition.
Collapse
Affiliation(s)
- Rajesh Kumar Suman
- Department of Pharmacology
- Correspondence: Rajesh Kumar Suman, Department of Pharmacology, MGM Medical College, Sector 01, Kamothe, Navi Mumbai 410209, India, Mob +91 9699072649, Email
| | | | - Ujwala Maheshwari
- Department of Pathology, MGM Medical College, Kamothe, Navi Mumbai, India
| | | | | |
Collapse
|
45
|
Gururaja GM, Mundkinajeddu D, Dethe SM, Sangli GK, Abhilash K, Agarwal A. Cholesterol esterase inhibitory activity of bioactives from leaves of Mangifera indica L. Pharmacognosy Res 2015; 7:355-62. [PMID: 26692750 PMCID: PMC4660515 DOI: 10.4103/0974-8490.159578] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: In the earlier studies, methanolic extract of Mangifera indica L leaf was exhibited hypocholesterol activity. However, the bioactive compounds responsible for the same are not reported so far. Objective: To isolate the bioactive compounds with hypocholesterol activity from the leaf extract using cholesterol esterase inhibition assay which can be used for the standardization of extract. Materials and Methods: The leaf methanolic extract of M. indica (Sindoora variety) was partitioned with ethyl acetate and chromatographed on silica gel to yield twelve fractions and the activity was monitored by using cholesterol esterase inhibition assay. Active fractions were re-chromatographed to yield individual compounds. Results and Discussion: A major compound mangiferin present in the extract was screened along with other varieties of mango leaves for cholesterol esterase inhibition assay. However, the result indicates that compounds other than mangiferin may be active in the extract. Invitro pancreatic cholesterol esterase inhibition assay was used for bioactivity guided fractionation (BAGF) to yield bioactive compound for standardization of extract. Bioactivity guided fractionation afford the active fraction containing 3b-taraxerol with an IC50 value of 0.86μg/ml. Conclusion: This study demonstrates that M. indica methanol extract of leaf have significant hypocholesterol activity which is standardized with 3b-taraxerol, a standardized extract for hypocholesterol activity resulted in development of dietary supplement from leaves of Mangifera indica.
Collapse
Affiliation(s)
- G M Gururaja
- Research Scholar, Manipal University, Manipal, India ; R & D Centre, Natural Remedies Pvt Ltd, Bengaluru, India
| | | | | | | | - K Abhilash
- R & D Centre, Natural Remedies Pvt Ltd, Bengaluru, India
| | - Amit Agarwal
- R & D Centre, Natural Remedies Pvt Ltd, Bengaluru, India
| |
Collapse
|
46
|
Fu Y, Liu H, Song C, Zhang F, Liu Y, Wu J, Wen X, Liang C, Ma K, Li L, Zhang X, Shao X, Sun Y, Du Y, Song Y. Mangiferin regulates cognitive deficits and heme oxygenase-1 induced by lipopolysaccharide in mice. Int Immunopharmacol 2015; 29:950-956. [DOI: 10.1016/j.intimp.2015.10.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/16/2015] [Accepted: 10/29/2015] [Indexed: 02/04/2023]
|
47
|
Belamcandae chinensis rhizoma – a review of phytochemistry and bioactivity. Fitoterapia 2015; 107:1-14. [DOI: 10.1016/j.fitote.2015.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/28/2015] [Accepted: 08/30/2015] [Indexed: 01/12/2023]
|
48
|
Wang J, Nie Y, Li Y, Hou Y, Zhao W, Deng J, Wang PG, Bai G. Identification of target proteins of mangiferin in mice with acute lung injury using functionalized magnetic microspheres based on click chemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10013-10021. [PMID: 26488336 DOI: 10.1021/acs.jafc.5b04439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Prevention of the occurrence and development of inflammation is a vital therapeutic strategy for treating acute lung injury (ALI). Increasing evidence has shown that a wealth of ingredients from natural foods and plants have potential anti-inflammatory activity. In the present study, mangiferin, a natural C-glucosyl xanthone that is primarily obtained from the peels and kernels of mango fruits and the bark of the Mangifera indica L. tree, alleviated the inflammatory responses in lipopolysaccharide (LPS)-induced ALI mice. Mangiferin-modified magnetic microspheres (MMs) were developed on the basis of click chemistry to capture the target proteins of mangiferin. Mass spectrometry and molecular docking identified 70 kDa heat-shock protein 5 (Hspa5) and tyrosine 3-monooxygenase (Ywhae) as mangiferin-binding proteins. Furthermore, an enzyme-linked immunosorbent assay (ELISA) indicated that mangiferin exerted its anti-inflammatory effect by binding Hspa5 and Ywhae to suppress downstream mitogen-activated protein kinase (MAPK) signaling pathways. Thoroughly revealing the mechanism and function of mangiferin will contribute to the development and utilization of agricultural resources from M. indica L.
Collapse
Affiliation(s)
- Jiajia Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University , Tianjin 300071, People's Republic of China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University , Beijing 100871, People's Republic of China
| | - Yan Nie
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University , Tianjin 300071, People's Republic of China
| | - Yunjuan Li
- Guangxi University of Chinese Medicine , Nanning, Guangxi 530001, People's Republic of China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University , Tianjin 300071, People's Republic of China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University , Beijing 100871, People's Republic of China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University , Tianjin 300071, People's Republic of China
| | - Jiagang Deng
- Guangxi University of Chinese Medicine , Nanning, Guangxi 530001, People's Republic of China
| | - Peng George Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University , Tianjin 300071, People's Republic of China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University , Tianjin 300071, People's Republic of China
| |
Collapse
|
49
|
Mahmoud-Awny M, Attia AS, Abd-Ellah MF, El-Abhar HS. Mangiferin Mitigates Gastric Ulcer in Ischemia/ Reperfused Rats: Involvement of PPAR-γ, NF-κB and Nrf2/HO-1 Signaling Pathways. PLoS One 2015. [PMID: 26196679 PMCID: PMC4509761 DOI: 10.1371/journal.pone.0132497] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mangiferin (MF), a xanthonoid from Mangifera indica, has been proved to have antisecretory and antioxidant gastroprotective effects against different gastric ulcer models; however, its molecular mechanism has not been previously elucidated. Therefore, the aim of this study was to test its modulatory effect on several signaling pathways using the ischemia/reperfusion model for the first time. Animals were treated with MF, omeprazole (OMP), and the vehicle. The mechanistic studies revealed that MF mediated its gastroprotective effect partly via inducing the expression of Nrf2, HO-1 and PPAR-γ along with downregulating that of NF-κB. Surprisingly, the effect of MF, especially the high dose, exceeded that mediated by OMP except for Nrf2. The molecular results were reflected on the biomarkers measured, where the antioxidant effect of MF was manifested by increasing total antioxidant capacity and glutathione, besides normalizing malondialdehyde level. Additionally, MF decreased the I/R-induced nitric oxide elevation, an effect that was better than that of OMP. In the serum, MF, dose dependently, enhanced endothelial nitric oxide synthase, while reduced the inducible isoform. Regarding the anti-inflammatory effect of MF, it reduced serum level of IL-1β and sE-selectin, effects that were mirrored on the tissue level of myeloperoxidase, the neutrophil infiltration marker. In addition, MF possessed an antiapoptotic character evidenced by elevating Bcl-2 level and reducing that of caspase-3 in a dose related order. As a conclusion, the intimated gastroprotective mechanisms of MF are mediated, partially, by modulation of oxidative stress, inflammation and apoptosis possibly via the Nrf2/HO-1, PPAR-γ/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Magdy Mahmoud-Awny
- Department of Pharmacology & Toxicology, October University, Cairo, Egypt
| | - Ahmed S. Attia
- Department of Microbiology & Immunologyology, Cairo University, Cairo, Egypt
| | | | - Hanan Salah El-Abhar
- Department of Pharmacology & Toxicology, Cairo University, Cairo, Egypt
- * E-mail:
| |
Collapse
|
50
|
Mangiferin as chain transfer agent: effect on the molecular weight of poly(methyl methacrylate) and polystyrene. Polym Bull (Berl) 2015. [DOI: 10.1007/s00289-015-1343-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|