1
|
RNA-Seq Analysis of Protection against Chronic Alcohol Liver Injury by Rosa roxburghii Fruit Juice (Cili) in Mice. Nutrients 2022; 14:nu14091974. [PMID: 35565941 PMCID: PMC9104053 DOI: 10.3390/nu14091974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
Rosa roxburghii Tratt. fruit juice (Cili) is used as a medicinal and edible resource in China due to its antioxidant and hypolipidemic potentials. The efficacy of Cili in protecting alcohol-induced liver injury and its underlying mechanism was investigated. C57BL/6J mice received a Lieber-DeCarli liquid diet containing alcohol to produce liver injury. After the mice were adapted gradually to 5% alcohol, Cili (4 mL and 8 mL/kg/day for 4 weeks) were gavaged for treatment. The serum enzyme activities, triglyceride levels, histopathology and Oil-red O staining were examined. The RNA-Seq and qPCR analyses were performed to determine the protection mechanisms. Cili decreased serum and liver triglyceride levels in mice receiving alcohol. Hepatocyte degeneration and steatosis were improved by Cili. The RNA-Seq analyses showed Cili brought the alcohol-induced aberrant gene pattern towards normal. The qPCR analysis verified that over-activation of CAR and PXR (Cyp2a4, Cyp2b10 and Abcc4) was attenuated by Cili. Cili alleviated overexpression of oxidative stress responsive genes (Hmox1, Gsta1, Gstm3, Nqo1, Gclc, Vldlr, and Cdkn1a), and rescued alcohol-downregulated metabolism genes (Angptl8, Slc10a2, Ces3b, Serpina12, C6, and Selenbp2). Overall, Cili was effective against chronic alcohol liver injury, and the mechanisms were associated with decreased oxidative stress, improved lipid metabolism through modulating nuclear receptor CAR-, PXR-and Nrf2-mediated pathways.
Collapse
|
2
|
Santiesteban-Lores LE, Carneiro MC, Isaac L, Bavia L. Complement System in Alcohol-Associated Liver Disease. Immunol Lett 2021; 236:37-50. [PMID: 34111475 DOI: 10.1016/j.imlet.2021.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022]
Abstract
Innate immunity contributes effectively to the development of Alcohol-Associated liver disease (ALD). Particularly, human studies and murine models of ALD have shown that Complement activation plays an important role during the initial and later stages of ALD. The Complement System may contribute to the pathogenesis of this disease since it has been shown that ethanol-derived metabolic products activate the Complement cascade on liver membranes, leading to hepatocellular damage. However, studies evaluating the plasma levels of Complement proteins in ALD patients present contradictory results in some cases, and do not establish a well-marked role for each Complement component. The impairment of leukocyte chemoattractant activity observed in these patients may contribute to the susceptibility to bacterial infections in the latter stages of the disease. On the other hand, murine models of ALD have provided more detailed insights into the mechanisms that link the Complement System to the pathogenesis of the disease. It has been observed that Classical pathway can be activated via C1q binding to apoptotic cells in the liver and contributes to the development of hepatic inflammation. C3 contributes to the accumulation of triglycerides in the liver and in adipose tissue, while C5 seems to be involved with inflammation and liver injury after chronic ethanol consumption. In this review, we present a compendium of studies evaluating the role of Complement in human and murine models of ALD. We also discuss potential therapies to human ALD, highlighting the use of Complement inhibitors.
Collapse
Affiliation(s)
| | | | - Lourdes Isaac
- Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Lorena Bavia
- Institute of Biomedical Sciences, University of São Paulo, Brazil.
| |
Collapse
|
3
|
Nguyen HQ, Lee D, Kim Y, Bang G, Cho K, Lee YS, Yeon JE, Lubman DM, Kim J. Label-free quantitative proteomic analysis of serum extracellular vesicles differentiating patients of alcoholic and nonalcoholic fatty liver diseases. J Proteomics 2021; 245:104278. [PMID: 34089894 DOI: 10.1016/j.jprot.2021.104278] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/28/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) are typically asymptomatic and slow-progressing but potentially fatal diseases that are common causes of liver cirrhosis and related complications. Exosomes are nano-sized extracellular vesicles that have been linked to various intercellular communication processes and can carry biological materials reflecting the state and severity of disease. In this study, shotgun proteomic analysis of the protein expression profiles of extracellular vesicles, including exosomes and microvesicles, enriched from human serum samples of 24 patients diagnosed with various fatty liver diseases was performed using liquid chromatography tandem mass spectrometry (LC-MS/MS) followed by protein identification and label-free quantification using the MaxQuant platform. A total of 329 proteins, including 190 previously reported exosome-specific proteins, were identified from four types of liver disease, where significant differences in protein expression were found in apolipoproteins, immunoglobulins, and other previously reported markers of liver disease. Principal component analysis of 61 proteins identified from MaxQuant analysis of the LC-MS/MS data provided a confident differentiation between ALD and NAFLD. SIGNIFICANCE: The current investigation revealed the difference among various types of liver disease using LC-MS/MS of exosomes enriched from human serum samples of 24 patients where the most significantly up-regulation proteins were alpha-2-macroglobulin for alcoholic hepatitis and apolipoprotein C3 for nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Huu-Quang Nguyen
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Dabin Lee
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Yeoseon Kim
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Geul Bang
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Republic of Korea
| | - Kun Cho
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Republic of Korea
| | - Young-Sun Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jong Eun Yeon
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
4
|
Kodidela S, Wang Y, Patters BJ, Gong Y, Sinha N, Ranjit S, Gerth K, Haque S, Cory T, McArthur C, Kumar A, Wan JY, Kumar S. Proteomic Profiling of Exosomes Derived from Plasma of HIV-Infected Alcohol Drinkers and Cigarette Smokers. J Neuroimmune Pharmacol 2019; 15:501-519. [PMID: 31065972 DOI: 10.1007/s11481-019-09853-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
Abuse of alcohol and tobacco could exacerbate HIV pathogenesis by transferring materials through exosomes (small nanovesicles). Exosomes present a stable and accessible source of information concerning the health and/or disease status of patients, which can provide diagnostic and prognostic biomarkers for myriad conditions. Therefore, we aimed to study the specific exosomal proteins that are altered in both HIV-infected subjects and alcohol/tobacco users. Exosomes were isolated from plasma of the following subjects: a) HIV-negative subjects (healthy), b) HIV-positive subjects (HIV), c) HIV-negative alcohol drinkers (drinkers), d) HIV-negative tobacco smokers (smokers), e) HIV-positive drinkers (HIV + drinkers), and f) HIV-positive smokers (HIV + smokers). Quantitative proteomic profiling was then performed from these exosomes. Sixteen proteins were significantly altered in the HIV group, ten in drinkers, four in HIV + drinkers, and fifteen in smokers compared to healthy subjects. Only one protein, fibulin-1 (FBLN1), was significantly altered in HIV + smokers. Interestingly, hemopexin was not significantly altered in drinkers or HIV patients but was significantly altered in HIV + drinkers. Further, our study is the first to show properdin expression in plasma exosomes, which was decreased in HIV + smokers and HIV + drinkers compared to HIV patients. The present findings suggest that hemopexin and properdin show potential as markers for physiological effects that may arise in HIV-infected individuals who abuse alcohol and tobacco. Graphical abstract This study presents a proteomic analysis of plasma-derived exosomes from HIV-infected alcohol drinkers and smokers. Among the proteins altered due to drug-abuse, hemopexin and properdin were of highest significance. These proteins can be potential biomarkers for co-morbid conditions associated with drug abuse in HIV-patients.
Collapse
Affiliation(s)
- Sunitha Kodidela
- College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN, 38163, USA
| | - Yujie Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Road, Shanghai, 201999, China
| | - Benjamin J Patters
- College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN, 38163, USA
| | - Yuqing Gong
- College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN, 38163, USA
| | - Namita Sinha
- College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN, 38163, USA
| | - Sabina Ranjit
- College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN, 38163, USA
| | - Kelli Gerth
- College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN, 38163, USA
| | - Sanjana Haque
- College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN, 38163, USA
| | - Theodore Cory
- College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN, 38163, USA
| | - Carole McArthur
- Department of Oral and Craniofacial Science, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Jim Y Wan
- Division of Biostatistics, Department of Preventive Medicine, University of Tennessee Health Science Center College of Medicine, Memphis, TN, USA
| | - Santosh Kumar
- College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN, 38163, USA.
| |
Collapse
|
5
|
Li C, Zou C, Cui Y, Fu Y, Fang C, Li Y, Li J, Wang W, Xiang H, Li C. Genome-wide epigenetic landscape of pig lincRNAs and their evolution during porcine domestication. Epigenomics 2018; 10:1603-1618. [PMID: 30371096 DOI: 10.2217/epi-2017-0117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM We aimed to identify previously unreported long intergenic noncoding RNAs (lincRNAs) in the porcine liver, an important metabolic tissue, and further illustrate the epigenomic landscapes and the evolution of lincRNAs. MATERIALS & METHODS We used porcine omics data and comprehensively analyzed and identified lincRNAs and their methylation, expression and evolutionary patterns during pig domestication. RESULTS LincRNAs exhibit highly methylated promoter and downstream regions, as well as lower expression levels and higher tissue specificity than protein-coding genes. We identified a batch of lincRNAs with selection signals that are associated with pig domestication, which are more highly expressed in the liver than in other tissues (19:10/8/6/3/2/1/1). Interestingly, the lincRNA linc-sscg1779 and its target gene C6, which is crucial in liver metabolism, are differentially expressed during pig domestication. CONCLUSION Although they may originate from noisy transcripts, lincRNAs may be subjected to artificial selection. This phenomenon implies the functional importance of lincRNAs in pig domestication.
Collapse
Affiliation(s)
- Cencen Li
- Key Lab of Agriculture Animal Genetics, Breeding, & Reproduction of Ministry of Education, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Cheng Zou
- Key Lab of Agriculture Animal Genetics, Breeding, & Reproduction of Ministry of Education, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yong Cui
- Guangzhou Key Laboratory of Insect Development Regulation & Application Research, Institute of Insect Science & Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Yuhua Fu
- Key Lab of Agriculture Animal Genetics, Breeding, & Reproduction of Ministry of Education, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chengchi Fang
- Key Lab of Agriculture Animal Genetics, Breeding, & Reproduction of Ministry of Education, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yao Li
- Key Lab of Agriculture Animal Genetics, Breeding, & Reproduction of Ministry of Education, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jingxuan Li
- Key Lab of Agriculture Animal Genetics, Breeding, & Reproduction of Ministry of Education, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wen Wang
- Center for Ecological and Environmental Sciences, Key Laboratory for Space Bioscience & Biotechnology, Northwestern Poly-technical University, Xi'an, 710072, PR China
| | - Hui Xiang
- Guangzhou Key Laboratory of Insect Development Regulation & Application Research, Institute of Insect Science & Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Changchun Li
- Key Lab of Agriculture Animal Genetics, Breeding, & Reproduction of Ministry of Education, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
6
|
Zhao X, Wang L, Zhang H, Zhang D, Zhang Z, Zhang J. Protective effect of artemisinin on chronic alcohol induced-liver damage in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:221-226. [PMID: 28448816 DOI: 10.1016/j.etap.2017.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
The liver disease related to chronic alcohol consumption is one of the leading causes of death for alcoholics. The efficient drug to ameliorate the alcoholic liver injury was needed urgently. The present study was performed to investigate whether artemisinin possessed the protective effect against chronic alcohol consumption. 50 male Kunming mice were divided into 5 groups: control group (C): 10ml/kg saline+10ml/kg saline, alcohol group (A): 10ml/kg 56%(v/v) alcohol+10ml/kg saline, low dose group of artemisinin (L): 10ml/kg 56%(v/v) alcohol+30mg/kg/day artemisinin, medium dose group of artemisinin (M): 10ml/kg 56%(v/v) alcohol+60mg/kg/day artemisinin, high dose group of artemisinin (H): 10ml/kg 56%(v/v) alcohol+120mg/kg/day artemisinin. Drugs were given orally every day. The general state of mice was observed and the levels of serum activities of AST and ALT were detected after treatment with drugs for 30days. Besides, the liver weight index was calculated and histopathological analysis was performed. We successfully demonstrated that treatment with high dose of artemisinin significantly decreased the elevated levels of AST (p<0.05) and ALT (p<0.01) in plasma, as well as the liver weight index (p<0.01). The loss of body weight, tissue injury, oedema and inflammatory cell infiltration in the hepatocytes were found in the A group. These symptoms were remarkably alleviated in animals treated with artemisinin. Artemisinin can inhibit the activation of NF-кB and the expression of inflammatory cytokines inducible nitric oxide synthase. Besides, it can also enhance the stability of liver cell membrane, and reduce the damage of liver cell membrane and liver cell. Artemisinin showed a protective effect against chronic alcohol poisoning and it has a great potential for the clinical application to treat the liver injury induced by alcohol.
Collapse
Affiliation(s)
- Xiaoyan Zhao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Liqing Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Hao Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Duoduo Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Zhihao Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Jie Zhang
- Department of Neurology, The Ninth People's Hospital of Chongqing, Chongqing 400700, China.
| |
Collapse
|
7
|
Bavia L, de Castro ÍA, Cogliati B, Dettoni JB, Alves VAF, Isaac L. Complement C5 controls liver lipid profile, promotes liver homeostasis and inflammation in C57BL/6 genetic background. Immunobiology 2016; 221:822-32. [DOI: 10.1016/j.imbio.2016.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 02/06/2023]
|
8
|
C57BL/6 and A/J Mice Have Different Inflammatory Response and Liver Lipid Profile in Experimental Alcoholic Liver Disease. Mediators Inflamm 2015; 2015:491641. [PMID: 26448681 PMCID: PMC4584053 DOI: 10.1155/2015/491641] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/07/2015] [Accepted: 08/31/2015] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD) is an important worldwide public health issue characterized by liver steatosis, inflammation, necrosis, and apoptosis of hepatocytes with eventual development of fibrosis and cirrhosis. Comparison of murine models with different inflammatory responses for ALD is important for an evaluation of the importance of genetic background in the interpretation of ethanol-induced phenotypes. Here, we investigated the role of inflammation and genetic background for the establishment of ALD using two different mouse strains: C57BL/6 (B6) and A/J. B6 and A/J mice were treated with a high fat diet containing ethanol (HFDE) and compared to the controls for 10 weeks. Hepatomegaly and steatohepatitis were similar in B6 and A/J mice, but only A/J mice were resistant to weight gain. On the other hand, HFDE-fed B6 accumulated more triglycerides (TG) and cholesterol and presented more intense cellular infiltrate in the liver when compared to HFDM-fed mice. Liver inflammatory environment was distinct in these two mouse strains. While HFDE-fed B6 produced more liver IL-12, A/J mice increased the TNF-α production. We concluded that mouse genetic background could dictate the intensity of the HFDE-induced liver injury.
Collapse
|
9
|
Mechanism of action involved in the hepatoprotective activities of methanol extract of Cassytha filiformis L. aerial parts in CCl4-induced liver damage. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s00580-014-1997-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Rezvani R, Smith J, Lapointe M, Marceau P, Tchernof A, Cianflone K. Complement receptors C5aR and C5L2 are associated with metabolic profile, sex hormones, and liver enzymes in obese women pre- and postbariatric surgery. J Obes 2014; 2014:383102. [PMID: 24796007 PMCID: PMC3984800 DOI: 10.1155/2014/383102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Obesity is associated with metabolic dysfunction with sex differences and chronic, low-grade inflammation.We proposed that hepatic expression of immune complement C3 related receptors (C3aR, C5aR, and C5L2) would be associated with pre- or postmenopausal status and metabolic profile in severely obese women. We hypothesized that C5L2/C5aR ratio, potentially influencing the ASP/C5L2 metabolic versus C5a/C5aR immune response, would predict metabolic profiles after weight loss surgery. MATERIALS AND METHODS Fasting plasma (hormone, lipid, and enzyme analysis) and liver biopsies (RT-PCR gene expression) were obtained from 91 women during surgery. RESULTS Hepatic C5L2 mRNA expression was elevated in pre- versus postmenopausal women (P < 0.01) and correlated positively with circulating estradiol, estrone, ApoB, ApoA1, ApoA1/B, waist circumference, age, and LDL-C (all P < 0.05).While plasma ASP was lower in pre- versus postmenopausal women (P < 0.01), the hepatic C5L2/C5aR mRNA ratio was increased (P < 0.001) and correlated positively with estrone (P < 0.01) and estradiol (P < 0.001) and negatively with circulating ApoB and liver enzymes ALT, AST, and GGT (all P < 0.05). Over 12 months postoperatively, liver enzymes in low C5L2/C5aR mRNA ratio group remained higher (ALP and ALT, P < 0.05, AST and GGT, P < 0.001 2-way-ANOVA). CONCLUSION C5L2-C5aR association with other mediators including estrogens may contribute to hepatic metabolic and inflammatory function.
Collapse
Affiliation(s)
- Reza Rezvani
- Centre de Recherche de l'Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Y4332, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Jessica Smith
- Centre de Recherche de l'Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Y4332, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Marc Lapointe
- Centre de Recherche de l'Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Y4332, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Picard Marceau
- Centre de Recherche de l'Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Y4332, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Andre Tchernof
- Centre de Recherche de l'Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Y4332, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Katherine Cianflone
- Centre de Recherche de l'Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Y4332, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
- *Katherine Cianflone:
| |
Collapse
|
11
|
The role of the complement system in metabolic organs and metabolic diseases. Semin Immunol 2013; 25:47-53. [PMID: 23684628 DOI: 10.1016/j.smim.2013.04.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/13/2013] [Indexed: 12/20/2022]
Abstract
Emerging evidence points to a close crosstalk between metabolic organs and innate immunity in the course of metabolic disorders. In particular, cellular and humoral factors of innate immunity are thought to contribute to metabolic dysregulation of the adipose tissue or the liver, as well as to dysfunction of the pancreas; all these conditions are linked to the development of insulin resistance and diabetes mellitus. A central component of innate immunity is the complement system. Interestingly, the classical view of complement as a major system of host defense that copes with infections is changing to that of a multi-functional player in tissue homeostasis, degeneration, and regeneration. In the present review, we will discuss the link between complement and metabolic organs, focusing on the pancreas, adipose tissue, and liver and the diverse effects of complement system on metabolic disorders.
Collapse
|
12
|
Cohen JI, Chen X, Nagy LE. Redox signaling and the innate immune system in alcoholic liver disease. Antioxid Redox Signal 2011; 15:523-34. [PMID: 21126203 PMCID: PMC3118704 DOI: 10.1089/ars.2010.3746] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of alcoholic liver disease (ALD) is a complex process involving both parenchymal and nonparenchymal cells resident in the liver. Although the mechanisms for ALD are not completely understood, it is clear that increased oxidative stress, and activation of the innate immune system are essential elements in the pathophysiology of ALD. Oxidative stress from ethanol exposure results from increased generation of reactive oxygen species and decreased hepatocellular antioxidant activity, including changes in the thioredoxin/peroxiredoxin family of proteins. Both cellular and circulating components of the innate immune system are activated by exposure to ethanol. For example, ethanol exposure enhances toll-like receptor-4 (TLR-4)-dependent cytokine expression by Kupffer cells, likely due, at least in part, to dysregulation of redox signaling. Similarly, complement activation in response to ethanol leads to increased production of the anaphylatoxins, C3a and C5a, and activation C3a receptor and C5a receptor. Complement activation thus contributes to increased inflammatory cytokine production and can influence redox signaling. Here we will review recent progress in understanding the interactions between oxidative stress and innate immunity in ALD. These data illustrate that ethanol-induced oxidative stress and activation of the innate immune system interact dynamically during ethanol exposure, exacerbating ethanol-induced liver injury.
Collapse
Affiliation(s)
- Jessica I Cohen
- Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
13
|
Gao B, Seki E, Brenner DA, Friedman S, Cohen JI, Nagy L, Szabo G, Zakhari S. Innate immunity in alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol 2011; 300:G516-25. [PMID: 21252049 PMCID: PMC3774265 DOI: 10.1152/ajpgi.00537.2010] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/12/2011] [Indexed: 02/06/2023]
Abstract
Excessive alcohol consumption is a leading cause of chronic liver disease in the Western world. Alcohol-induced hepatotoxicity and oxidative stress are important mechanisms contributing to the pathogenesis of alcoholic liver disease. However, emerging evidence suggests that activation of innate immunity involving TLR4 and complement also plays an important role in initiating alcoholic steatohepatitis and fibrosis, but the role of adaptive immunity in the pathogenesis of alcoholic liver disease remains obscure. Activation of a TLR4-mediated MyD88-independent (TRIF/IRF-3) signaling pathway in Kupffer cells contributes to alcoholic steatohepatitis, whereas activation of TLR4 signaling in hepatic stellate cells promotes liver fibrosis. Alcohol consumption activates the complement system in the liver by yet unidentified mechanisms, leading to alcoholic steatohepatitis. In contrast to activation of TLR4 and complement, alcohol consumption can inhibit natural killer cells, another important innate immunity component, contributing to alcohol-mediated acceleration of viral infection and liver fibrosis in patients with chronic viral hepatitis. Understanding of the role of innate immunity in the pathogenesis of alcoholic liver disease may help us identify novel therapeutic targets to treat this disease.
Collapse
Affiliation(s)
- Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Gyamfi MA, Wan YJY. Pathogenesis of alcoholic liver disease: the role of nuclear receptors. Exp Biol Med (Maywood) 2010; 235:547-60. [PMID: 20463294 DOI: 10.1258/ebm.2009.009249] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ethanol consumption causes fatty liver, which can lead to inflammation, fibrosis, cirrhosis and even liver cancer. The molecular mechanisms by which ethanol exerts its damaging effects are extensively studied, but not fully understood. It is now evident that nuclear receptors (NRs), including retinoid x receptor alpha and peroxisome proliferator-activated receptors, play key roles in the regulation of lipid homeostasis and inflammation during the pathogenesis of alcoholic liver disease (ALD). Given their pivotal roles in physiological processes, NRs represent potential therapeutic targets for the treatment and prevention of numerous metabolic and lipid-related diseases including ALD. This review summarizes the factors that contribute to ALD and the molecular mechanisms of ALD with a focus on the role of NRs.
Collapse
Affiliation(s)
- Maxwell Afari Gyamfi
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, Kansas 66160-7417, USA
| | | |
Collapse
|
15
|
Determination of the key innate genes related to individual variation in carbon tetrachloride-induced hepatotoxicity using a pre-biopsy procedure. Toxicol Appl Pharmacol 2009; 239:55-63. [DOI: 10.1016/j.taap.2009.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 04/21/2009] [Accepted: 05/15/2009] [Indexed: 01/17/2023]
|
16
|
The immunopathogenesis of alcoholic and nonalcoholic steatohepatitis: two triggers for one disease? Semin Immunopathol 2009; 31:359-69. [DOI: 10.1007/s00281-009-0152-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 04/28/2009] [Indexed: 02/08/2023]
|
17
|
Abstract
Many new mechanisms for alcoholic steatosis have been suggested by work reported in the last five years. These include alterations of transcriptional controls of lipid metabolism, better understanding of the effects of abnormal methionine metabolism on the endoplasmic reticulum stress response, unraveling of the basis for sensitization of the Kupffer cell to lipopolysaccharide, a better understanding of the role of cytokines and adipokines in alcoholic liver disease, and implication of the innate immune and complement systems in responses to alcohol. Much of this work has been facilitated by work with knockout mice. Undoubtedly, there are interrelationships among these various pathogenic mechanisms that ultimately will provide a more cohesive picture of how heavy alcohol use deranges hepatic lipid metabolism.
Collapse
Affiliation(s)
- Margaret Sozio
- Indiana University School of Medicine, 545 Barnhill Dr., Indianapolis, IN 46202, USA
| | | |
Collapse
|
18
|
Pritchard MT, McMullen MR, Edward Medof M, Stavitsky A, Nagy LE. Role of Complement in Ethanol-Induced Liver Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008. [DOI: 10.1007/978-0-387-78952-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Bykov I, Junnikkala S, Pekna M, Lindros KO, Meri S. Effect of chronic ethanol consumption on the expression of complement components and acute-phase proteins in liver. Clin Immunol 2007; 124:213-20. [PMID: 17586095 DOI: 10.1016/j.clim.2007.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 04/27/2007] [Accepted: 05/14/2007] [Indexed: 01/10/2023]
Abstract
The complement system can provoke but also participate in the repair of liver injury. Here we investigated by microarray analysis the effect of chronic ethanol consumption on hepatic mRNA expression of complement components and acute-phase proteins in complement C3-deficient (C3(-/-)) and wild-type (C3(+/+)) mice. Up-regulation by ethanol of factor B, C1qA-chain and clusterin but down-regulation of factor H, Masp-2, factor D and the terminal components C6, C8alpha and C9 was seen in both strains. Ethanol up-regulated C2 and down-regulated C4bp only in C3(+/+) mice, while in C3(-/-) mice up-regulation of C1qB-chain and vitronectin was observed. The expression of factor B, C6, C1qB and factor I was lower but that of factor D higher in C3(-/-) than in C3(+/+) mice. Ethanol induced mRNA synthesis of many acute-phase proteins including SPARC and lipocalin-2, but reduced the expression of SAP. The induction of early classical and alternative pathway components and suppression of terminal pathway components and soluble regulators may thus contribute to alcohol-induced liver injury. Lipocalin-2 and SPARC emerge as new candidate markers for early detection of liver damage.
Collapse
Affiliation(s)
- Igor Bykov
- National Public Health Institute, Departments of Mental Health and Alcohol Research, POB 33, 00250 Helsinki, Finland
| | | | | | | | | |
Collapse
|
20
|
Bykov I, Jauhiainen M, Olkkonen VM, Saarikoski ST, Ehnholm C, Junnikkala S, Väkevä A, Lindros KO, Meri S. Hepatic gene expression and lipid parameters in complement C3(-/-) mice that do not develop ethanol-induced steatosis. J Hepatol 2007; 46:907-14. [PMID: 17321001 DOI: 10.1016/j.jhep.2006.11.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 10/24/2006] [Accepted: 11/24/2006] [Indexed: 01/07/2023]
Abstract
BACKGROUND/AIMS Fatty infiltration initiates alcohol-induced liver changes and complement component C3 affects lipid metabolism. We recently observed that ethanol-induced steatosis seen in normal (C3(+/+)) mice was absent in livers of C3-deficient (C3(-/-)) mice. To understand the underlying molecular mechanisms we analyzed lipid parameters and liver gene expression profiles in these mice. METHODS A Western-type high-fat diet with ethanol or carbohydrates (control) was fed for 6 weeks to C3(+/+) and C3(-/-) mice. Serum and liver lipid parameters were analyzed and liver mRNA expression patterns studied by micro-array analysis and RT-PCR. RESULTS In both genotypes ethanol markedly reduced serum cholesterol, apolipoprotein A-I, phospholipid transfer protein activity and hepatic mRNA levels of fatty acid-binding proteins and fatty acid beta-oxidation enzymes. In contrast, exclusively in C3(-/-) mice, ethanol treatment increased serum and liver adiponectin levels but down-regulated transcripts of lipogenic enzymes, adiponectin receptor 2 and adipose differentiation-related protein and up-regulated phospholipase D1. CONCLUSIONS We propose that these ethanol-induced alterations observed exclusively in C3(-/-) mice contribute to protection against fatty infiltration and subsequent inflammatory processes in the liver of these mice. The results suggest important cross-talk between complement factor C3 and lipid regulators in ethanol-induced steatosis.
Collapse
Affiliation(s)
- Igor Bykov
- National Public Health Institute, Departments of Mental Health and Alcohol Research, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bioinformatics analysis of the early inflammatory response in a rat thermal injury model. BMC Bioinformatics 2007; 8:10. [PMID: 17214898 PMCID: PMC1797813 DOI: 10.1186/1471-2105-8-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Accepted: 01/10/2007] [Indexed: 12/25/2022] Open
Abstract
Background Thermal injury is among the most severe forms of trauma and its effects are both local and systemic. Response to thermal injury includes cellular protection mechanisms, inflammation, hypermetabolism, prolonged catabolism, organ dysfunction and immuno-suppression. It has been hypothesized that gene expression patterns in the liver will change with severe burns, thus reflecting the role the liver plays in the response to burn injury. Characterizing the molecular fingerprint (i.e., expression profile) of the inflammatory response resulting from burns may help elucidate the activated mechanisms and suggest new therapeutic intervention. In this paper we propose a novel integrated framework for analyzing time-series transcriptional data, with emphasis on the burn-induced response within the context of the rat animal model. Our analysis robustly identifies critical expression motifs, indicative of the dynamic evolution of the inflammatory response and we further propose a putative reconstruction of the associated transcription factor activities. Results Implementation of our algorithm on data obtained from an animal (rat) burn injury study identified 281 genes corresponding to 4 unique profiles. Enrichment evaluation upon both gene ontologies and transcription factors, verifies the inflammation-specific character of the selections and the rationalization of the burn-induced inflammatory response. Conducting the transcription network reconstruction and analysis, we have identified transcription factors, including AHR, Octamer Binding Proteins, Kruppel-like Factors, and cell cycle regulators as being highly important to an organism's response to burn response. These transcription factors are notable due to their roles in pathways that play a part in the gross physiological response to burn such as changes in the immune response and inflammation. Conclusion Our results indicate that our novel selection/classification algorithm has been successful in selecting out genes with play an important role in thermal injury. Additionally, we have demonstrated the value of an integrative approach in identifying possible points of intervention, namely the activation of certain transcription factors that govern the organism's response.
Collapse
|
22
|
Bykov I, Junnikkala S, Pekna M, Lindros KO, Meri S. Complement C3 contributes to ethanol-induced liver steatosis in mice. Ann Med 2006; 38:280-6. [PMID: 16754259 DOI: 10.1080/07853890600664608] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND It is becoming increasingly clear that liver steatosis, a typical early consequence of alcohol exposure, sensitizes the liver to more severe inflammatory and fibrotic changes. On the other hand, activation of the key complement component C3, a central player in causing inflammation and tissue damage, is also known to be involved in the regulation of lipid metabolism. This prompted us to study the development of alcoholic liver steatosis in mice lacking C3 (C3-/-). RESULTS Both C3-/- and normal C3+/+ mice were fed a steatosis-promoting high-fat diet with or without ethanol for 6 weeks. The diet without ethanol caused moderate liver steatosis in C3-/- but not in C3+/+ mice. As expected, ethanol-containing diet caused marked macrovesicular steatosis and increased the liver triglyceride content in C3+/+ mice. In contrast, ethanol diet tended to reduce steatosis and had no further effect on liver triglycerides in C3-/- mice. Furthermore, while in normal mice ethanol significantly increased the liver/body weight ratio, liver malondialdehyde level and serum alanine aminotransferase (ALT) activity, these effects were absent or small in C3-/- mice. A separate experiment with mice on chow diet confirmed the aberrant steatotic effect of ethanol in C3-/-mice: 4 hours after acute dosing of ethanol the liver triglyceride level had increased by 138% in C3+/+ mice (P<0.001), but only by 64% in C3-/- mice (n.s.). CONCLUSION In C3-/- mice alcohol-induced liver steatosis is absent or strongly reduced after chronic or acute alcohol exposure. This suggests that the complement system and its component C3 contribute to the development of alcohol-induced fatty liver and its consequences.
Collapse
Affiliation(s)
- Igor Bykov
- National Public Health Institute, Department of Mental Health and Alcohol Research, and Department of Bacteriology and Immunology, Helsinki University Central Hospital, Finland
| | | | | | | | | |
Collapse
|