1
|
Caven L, Carabeo R. Chlamydial YAP activation in host endocervical epithelial cells mediates pro-fibrotic paracrine stimulation of fibroblasts. mSystems 2023; 8:e0090423. [PMID: 37874141 PMCID: PMC10734534 DOI: 10.1128/msystems.00904-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Chronic or repeated infection of the female upper genital tract by C. trachomatis can lead to severe fibrotic sequelae, including tubal factor infertility and ectopic pregnancy. However, the molecular mechanisms underlying this effect are unclear. In this report, we define a transcriptional program specific to C. trachomatis infection of the upper genital tract, identifying tissue-specific induction of host YAP-a pro-fibrotic transcriptional cofactor-as a potential driver of infection-mediated fibrotic gene expression. Furthermore, we show that infected endocervical epithelial cells stimulate collagen production by fibroblasts and implicate chlamydial induction of YAP in this effect. Our results define a mechanism by which infection mediates tissue-level fibrotic pathology via paracrine signaling and identify YAP as a potential therapeutic target for the prevention of Chlamydia-associated scarring of the female genital tract.
Collapse
Affiliation(s)
- Liam Caven
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Rey Carabeo
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
2
|
Caven L, Carabeo R. Chlamydial YAP activation in host endocervical epithelial cells mediates pro-fibrotic paracrine stimulation of fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542940. [PMID: 37398163 PMCID: PMC10312526 DOI: 10.1101/2023.05.30.542940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Infection of the female genital tract by Chlamydia trachomatis can produce severe fibrotic sequelae, including tubal factor infertility and ectopic pregnancy. While infection demonstrably mediates a pro-fibrotic response in host cells, it remains unclear if intrinsic properties of the upper genital tract exacerbate chlamydial fibrosis. The relatively sterile environment of the upper genital tract is primed for a pro-inflammatory response to infection, potentially enhancing fibrosis - however, subclinical C. trachomatis infections still develop fibrosis-related sequelae. Here, we compare infection-associated and steady-state gene expression of primary human cervical and vaginal epithelial cells. In the former, we observe enhanced baseline expression and infection-mediated induction of fibrosis-associated signal factors (e.g. TGFA , IL6 , IL8 , IL20 ), implying predisposition to Chlamydia -associated pro-fibrotic signaling. Transcription factor enrichment analysis identified regulatory targets of YAP, a transcriptional cofactor induced by infection of cervical epithelial cells, but not vaginal epithelial cells. YAP target genes induced by infection include secreted fibroblast-activating signal factors; therefore, we developed an in vitro model involving coculture of infected endocervical epithelial cells with uninfected fibroblasts. Coculture enhanced fibroblast expression of type I collagen, as well as prompting reproducible (albeit statistically insignificant) induction of α-smooth muscle actin. Fibroblast collagen induction was sensitive to siRNA-mediated YAP knockdown in infected epithelial cells, implicating chlamydial YAP activation in this effect. Collectively, our results present a novel mechanism of fibrosis initiated by Chlamydia, wherein infection-mediated induction of host YAP facilitates pro-fibrotic intercellular communication. Chlamydial YAP activation in cervical epithelial cells is thus a determinant of this tissue's susceptibility to fibrosis. Importance Chronic or repeated infection of the female upper genital tract by C. trachomatis can lead to severe fibrotic sequelae, including tubal factor infertility and ectopic pregnancy. However, the molecular mechanisms underlying this effect are unclear. In this report, we define a transcriptional program specific to C. trachomatis infection of the upper genital tract, identifying tissue-specific induction of host YAP - a pro-fibrotic transcriptional cofactor - as a potential driver of infection-mediated fibrotic gene expression. Further, we show that infected endocervical epithelial cells stimulate collagen production by fibroblasts, and implicate chlamydial induction of YAP in this effect. Our results define a mechanism by which infection mediates tissue-level fibrotic pathology via paracrine signaling, and identify YAP as a potential therapeutic target for prevention of Chlamydia -associated scarring of the female genital tract.
Collapse
|
3
|
Zhang P, You S, Ding X, Luan P, Xu J, Cui Q, Wang F, Li R, Zhu Y, Zhang J. Protective effect and underlying mechanism of muscone on acute cerebral ischemia-reperfusion injury in rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116287. [PMID: 36841376 DOI: 10.1016/j.jep.2023.116287] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Musk is a widely used traditional Chinese medicine, which has resuscitation, activating blood, and disperse swelling effects. Musk is commonly used in the prevention of myocardial infarction and ischemic stroke, and muscone is its main active component. AIM OF THE STUDY The effect and mechanism of muscone to improve the condition of ischemic stroke is not clear, accordingly, we verified its efficacy in ischemia-reperfused rats, and investigated its mechanism by PC12 and THP-1 cells. METHODS A transient middle cerebral artery occlusion (tMCAO) rat model was established for in vivo experiments. 2,3,5-Triphenyl Tetrazolium Chloride (TTC) staining was used to calculate infarct rate. Neuroprotection and angiogenesis were assessed by Hematoxylin-eosin (HE) staining, nissl staining, immunofluorescence staining, and quantitative real-time PCR (qRT-PCR). Oxygen glucose deprivation-reperfusion (OGD/R) model of PC12 cells was established for neuroprotection analysis, where CCK-8 assay was used to measure cell viability, flow cytometry and Hoechst 33258 staining were used to demonstrate apoptosis, and protein levels were detected by Western blot. For angiogenesis analysis, enzyme-linked immunosorbent assay (ELISA) and qRT-PCR were used to detect angiogenic factors expressed by THP-1. Cell viability assay, scratch wound assay, and tube formation assay were used to evaluate angiogenic effect of HUVECs treated with medium of THP-1. And the angiogenic pathway in HUVECs was detected by Western blot. RESULTS According to the results, in cerebral ischemia-reperfusion rats, the infarct rate and tissue damage were significantly reduced by muscone, and the expression of neurotrophic factors and angiogenesis-related factors were all elevated. In OGD/R-PC12 cell models, muscone could increase cell viability and inhibit apoptosis via Bax/Bcl-2/Caspase-3 pathway. In THP-1-mediated angiogenesis of HUVECs, muscone promoted the secretion of angiogenesis-related factors in THP-1 and thus indirectly promoted the proliferation, migration and tube formation of HUVECs, and then regulated phosphorylation of VEGFR2 and Akt in HUVECs. CONCLUSIONS Our study indicated that muscone may be a potential neuroprotective and proangiogenic agent in cerebral ischemia.
Collapse
Affiliation(s)
- Pei Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Suxin You
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinyue Ding
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Putuo District Central Hospital of Shanghai, Shanghai, 200062, China
| | - Pengwei Luan
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiazhen Xu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qianfei Cui
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Feiyun Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ruixiang Li
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuying Zhu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
4
|
Wang Z, Wu C, Zhang M, Dong A, Niu R, Zhang J. Sevoflurane promotes the proliferation of HUVECs by activating VEGF signaling. Exp Ther Med 2020; 19:1336-1342. [PMID: 32010307 PMCID: PMC6966126 DOI: 10.3892/etm.2019.8319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/05/2019] [Indexed: 11/09/2022] Open
Abstract
The vascular endothelium plays an essential role in vascular disease and cardiovascular diseases. The effects and underlying mechanisms of sevoflurane on vascular endothelial growth factor (VEGF) in human endothelial cells have not been elucidated. The MTT colorimetric assay was used to determine HUVEC activity at different concentrations (1 and 3%, respectively) of sevoflurane for different time-points (12, 24 and 48 h, respectively). The regulation of sevoflurane on the mRNA levels of VEGFa, VEGFb, VEGFc and VEGFR1, 2, 3 was analyzed by real-time PCR. When VEGFR2 was inhibited by axitinib, VEGFR2 protein expression was determined by western blotting, and the cell viability was assessed by MTT analysis. The results revealed that sevoflurane increased cell viability in a dose- and time-dependent manner. Sevoflurane significantly upregulated VEGFA mRNA expression only. In addition, sevoflurane increased the expression of VEGFR2 at the mRNA and protein levels, whereas sevoflurane did not modulate the mRNA expression of VEGFR1 and VEGFR3. Furthermore, sevoflurane failed to increase the mRNA and protein expression of VEGFR2 when VEGFR2 was inhibited by axitinib, an inhibitor of VEGF receptors. In conclusion, sevoflurane may be a promising agent against endothelium dysfunction-caused vascular disease by activating the VEGF-A/VEGFR2 signaling pathway.
Collapse
Affiliation(s)
- Zengtao Wang
- Department of Anesthesiology, Huashan Hospital-North Fudan University, Shanghai 201907, P.R. China
| | - Cui Wu
- Department of Anesthesiology, Huashan Hospital-North Fudan University, Shanghai 201907, P.R. China
| | - Min Zhang
- Department of Anesthesiology, Central Hospital of Shanghai Yangpu District Affiliated to Tongji University, Shanghai 201907, P.R. China
| | - Aiping Dong
- Department of Anesthesiology, Huashan Hospital-North Fudan University, Shanghai 201907, P.R. China
| | - Ruibin Niu
- Department of Anesthesiology, Huashan Hospital-North Fudan University, Shanghai 201907, P.R. China
| | - Jie Zhang
- Department of Anesthesiology, Huashan Hospital-North Fudan University, Shanghai 201907, P.R. China
| |
Collapse
|
5
|
Lim C, Hammond CJ, Hingley ST, Balin BJ. Chlamydia pneumoniae infection of monocytes in vitro stimulates innate and adaptive immune responses relevant to those in Alzheimer's disease. J Neuroinflammation 2014; 11:217. [PMID: 25540075 PMCID: PMC4295513 DOI: 10.1186/s12974-014-0217-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/07/2014] [Indexed: 11/24/2022] Open
Abstract
Background Alzheimer’s disease (AD) is a progressive neurodegenerative disorder in which infection with Chlamydia pneumoniae (Cpn) has been associated. Cpn is an obligate intracellular respiratory pathogen that may enter the central nervous system (CNS) following infection and trafficking of monocytes through the blood-brain barrier. Following this entry, these cells may secrete pro-inflammatory cytokines and chemokines that have been identified in the AD brain, which have been thought to contribute to AD neurodegeneration. The objectives of this work were: (i) to determine if Cpn infection influences monocyte gene transcript expression at 48 hours post-infection and (ii) to analyze whether pro-inflammatory cytokines are produced and secreted from these cells over 24 to 120 hours post-infection. Methods Gene transcription was analyzed by RT-PCR using an innate and adaptive immunity microarray with 84 genes organized into 5 functional categories: inflammatory response, host defense against bacteria, antibacterial humoral response, septic shock, and cytokines, chemokines and their receptors. Statistical analysis of the results was performed using the Student's t-test. P-values ≤ 0.05 were considered to be significant. ELISA was performed on supernatants from uninfected and Cpn-infected THP1 monocytes followed by statistical analysis with ANOVA. Results When Cpn-infected THP1 human monocytes were compared to control uninfected monocytes at 48 hours post-infection, 17 genes were found to have a significant 4-fold or greater expression, and no gene expression was found to be down-regulated. Furthermore, cytokine secretion (IL-1β, IL-6, IL-8) appears to be maintained for an extended period of infection. Conclusions Utilizing RT-PCR and ELISA techniques, our data demonstrate that Cpn infection of THP1 human monocytes promotes an innate immune response and suggests a potential role in the initiation of inflammation in sporadic/late-onset Alzheimer’s disease.
Collapse
Affiliation(s)
- Charles Lim
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA.
| | - Christine J Hammond
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA.
| | - Susan T Hingley
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA.
| | - Brian J Balin
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA.
| |
Collapse
|
6
|
Deniset JF, Pierce GN. Possibilities for therapeutic interventions in disrupting Chlamydophila pneumoniae involvement in atherosclerosis. Fundam Clin Pharmacol 2011; 24:607-17. [PMID: 20653790 DOI: 10.1111/j.1472-8206.2010.00863.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Strong sero-epidemiologic, pathologic, and experimental evidence suggests that Chlamydophila pneumoniae (Cpn) infection may play a causative role in the development of atherosclerosis. Cpn is an obligate intracellular gram-negative bacterium that is responsible for 10% of cases of community-acquired pneumonia. In addition to its presence in the respiratory tract, live Cpn has been found within atherosclerotic plaques. Experimental findings have established Cpn's ability to infect vascular cells and elicit important atherogenic responses. Furthermore, Cpn infection can promote atherosclerotic development in different animal models. To date however, large-scale antibiotic clinical trials have not been effective in preventing major cardiovascular events. It is becoming apparent that Cpn undergoes a persistent state of infection, which is refractory to current chlamydial antibiotics. New treatment strategies that are effective toward acute and persistent forms of Cpn infection are needed in order to effectively eradicate the bacterium within the vascular wall. Possible therapeutics targets include Cpn-specific proteins and machinery directly involved in their survival, replication and maintenance. Alternatively, selectively targeting host cell pathways and machinery required for Cpn's actions in vascular cells also represent potential treatment strategies for atherosclerosis.
Collapse
Affiliation(s)
- Justin F Deniset
- Department of Physiology, Faculties of Medicine and Pharmacy, Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
7
|
Inman RD, Chiu B. Heavy metal exposure reverses genetic resistance to Chlamydia-induced arthritis. Arthritis Res Ther 2009; 11:R19. [PMID: 19203382 PMCID: PMC2688251 DOI: 10.1186/ar2610] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2008] [Revised: 12/19/2008] [Accepted: 02/09/2009] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION We have previously observed that Brown Norway (BN) rats display a relative resistance to experimental Chlamydia-induced arthritis. In the present study, we examine an environmental toxin, mercuric chloride (HgCl2), as a modulator of this innate resistance to arthritis. METHODS To assess the effect of the heavy metal exposure, one group of rats received two subcutaneous injections of HgCl2 (1 mg/kg) 48 hours apart. Seven days later, the animals received the intra-articular injection of synoviocyte-packaged Chlamydia. RESULTS Histopathology revealed that BN rats receiving only Chlamydia had a minimal cellular infiltration in the joint, which was predominantly mononuclear in character. In contrast, mercury-exposed rats had a marked exacerbation of the histopathological severity of the arthritis, and the infiltration was predominantly neutrophilic. Mercury exposure was also associated with marked enhancement in IgE levels and an alteration in IgG2a/IgG1 ratio, reflecting a Th2 shift. The local cytokine profile in the joint was markedly altered after mercury exposure, with a suppression of tumour necrosis factor-alpha and interferon-gamma but an enhancement of vascular endothelial growth factor. This was associated with decreased host clearance capacity reflected in enhanced bacterial load in both the spleen and the joint and was accompanied by enhanced detection of microbial antigens in the synovial tissues by immunohistological staining. CONCLUSIONS Genetically defined cytokine production in the joint defines the severity of reactive arthritis by dictating the local clearance of the pathogen. This interplay can be altered dramatically by heavy metal exposure, which results in suppression of protective cytokines in the microenvironment of the joint.
Collapse
Affiliation(s)
- Robert D Inman
- Division of Genes and Development, Toronto Western Research Institute, 399 Bathurst Street, Toronto, ON M5T2S8, Canada.
| | | |
Collapse
|
8
|
Galindo RC, Muñoz PM, de Miguel MJ, Marin CM, Blasco JM, Gortazar C, Kocan KM, de la Fuente J. Differential expression of inflammatory and immune response genes in rams experimentally infected with a rough virulent strain of Brucella ovis. Vet Immunol Immunopathol 2008; 127:295-303. [PMID: 19056128 DOI: 10.1016/j.vetimm.2008.10.326] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 10/02/2008] [Accepted: 10/20/2008] [Indexed: 11/27/2022]
Abstract
Infection of sheep with Brucella ovis results in ovine brucellosis, a disease characterized by infertility in rams, abortion in ewes and increased perinatal mortality in lambs. During the course of the infection both the ovine immune response and host cell gene expression are modified. The objective of this research was to conduct a preliminary characterization of differential gene expression in rams experimentally infected with B. ovis by microarray hybridization and real-time RT-PCR. Of the 600 ruminant inflammatory and immune response genes that were analyzed in the microarray, 20 and 14 genes displayed an expression fold change >1.75 with a P-value <0.05 at 15 and 60 days post-challenge (dpc), respectively. Of these genes, 16 were upregulated and 4 were downregulated in infected rams at 15 dpc. At 60 dpc, 11 and 3 genes were up- and down-regulated in infected rams, respectively. Only four genes, desmoglein, epithelial sodium channel, alpha subunit (ENaC-alpha), interleukin 18 binding protein (IL18BP) and macrophage migration inhibition factor (MIF) were found upregulated in infected rams at both 15 and 60 dpc. The analysis of differentially expressed genes demonstrated activation of inflammatory and innate immune pathways in infected animals. B. ovis infection also resulted in upregulation of genes involved in phagocytosis and downregulation of protective host defense mechanisms, both of which may contribute to the chronicity of B. ovis infection. The gene expression profiles differed between rams with severe and moderate B. ovis infection. This is the first analysis of differential gene expression in rough brucellae and particularly in B. ovis-infected rams. The characterization of the genes and their expression profiles in response to B. ovis infection further contributes to our understanding of the molecular mechanisms of infection and the pathogenesis of brucellosis.
Collapse
Affiliation(s)
- Ruth C Galindo
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Cane G, Moal VLL, Pagès G, Servin AL, Hofman P, Vouret-Craviari V. Up-regulation of intestinal vascular endothelial growth factor by Afa/Dr diffusely adhering Escherichia coli. PLoS One 2007; 2:e1359. [PMID: 18159242 PMCID: PMC2147078 DOI: 10.1371/journal.pone.0001359] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 11/25/2007] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Angiogenesis has been recently described as a novel component of inflammatory bowel disease pathogenesis. The level of vascular endothelial growth factor (VEGF) has been found increased in Crohn's disease and ulcerative colitis mucosa. To question whether a pro-inflammatory Escherichia coli could regulate the expression of VEGF in human intestinal epithelial cells, we examine the response of cultured human colonic T84 cells to infection by E. coli strain C1845 that belongs to the typical Afa/Dr diffusely adhering E. coli family (Afa/Dr DAEC). METHODOLOGY VEGF mRNA expression was examined by Northern blotting and q-PCR. VEGF protein levels were assayed by ELISA and its bioactivity was analysed in endothelial cells. The bacterial factor involved in VEGF induction was identified using recombinant E. coli expressing Dr adhesin, purified Dr adhesin and lipopolysaccharide. The signaling pathway activated for the up-regulation of VEGF was identified using a blocking monoclonal anti-DAF antibody, Western blot analysis and specific pharmacological inhibitors. PRINCIPAL FINDINGS C1845 bacteria induce the production of VEGF protein which is bioactive. VEGF is induced by adhering C1845 in both a time- and bacteria concentration-dependent manner. This phenomenon is not cell line dependent since we reproduced this observation in intestinal LS174, Caco2/TC7 and INT407 cells. Up-regulation of VEGF production requires: (1) the interaction of the bacterial F1845 adhesin with the brush border-associated decay accelerating factor (DAF, CD55) acting as a bacterial receptor, and (2) the activation of a Src protein kinase upstream of the activation of the Erk and Akt signaling pathways. CONCLUSIONS Results demonstrate that a Afa/Dr DAEC strain induces an adhesin-dependent activation of DAF signaling that leads to the up-regulation of bioactive VEGF in cultured human intestinal cells. Thus, these results suggest a link between an entero-adherent, pro-inflammatory E. coli strain and angiogenesis which appeared recently as a novel component of IBD pathogenesis.
Collapse
Affiliation(s)
- Gaëlle Cane
- CNRS UMR 6543, Université de Nice-Sophia Antipolis, Nice, France
| | - Vanessa Liévin-Le Moal
- Inserm, Unité 756
- Université Paris-Sud 11, Faculté de Pharmacie, Châtenay-Malabry, France
| | - Gilles Pagès
- CNRS UMR 6543, Université de Nice-Sophia Antipolis, Nice, France
| | - Alain L. Servin
- Inserm, Unité 756
- Université Paris-Sud 11, Faculté de Pharmacie, Châtenay-Malabry, France
| | - Paul Hofman
- Inserm, ERI-21, Faculté de Médecine de Nice, Nice, France
| | - Valérie Vouret-Craviari
- CNRS UMR 6543, Université de Nice-Sophia Antipolis, Nice, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|