1
|
Yassen ASA, Abdel-Wahab SM, Darwish KM, Nafie MS, Abdelhameed RFA, El-Sayyad GS, El-Batal AI, Attia KM, Elshihawy HA, Elrayess R. Novel curcumin-based analogues as potential VEGFR2 inhibitors with promising metallic loading nanoparticles: synthesis, biological evaluation, and molecular modelling investigation. RSC Med Chem 2024:d4md00574k. [PMID: 39345715 PMCID: PMC11428034 DOI: 10.1039/d4md00574k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/31/2024] [Indexed: 10/01/2024] Open
Abstract
VEGFR2 inhibition has been established as a therapeutic approach for managing cancer. A series of curcumin-based analogues were designed, synthesized, and screened for their anticancer activity against MCF-7 and HepG-2 cell lines and WISH normal cells. Compounds 4b, 4d, 4e, and 4f showed potent cytotoxicity against MCF-7 with IC50 values of 0.49, 0.14, 0.01, and 0.32 μM, respectively, compared to curcumin (IC50 = 13.8 μM) and sorafenib (IC50 = 2.13 μM). Interestingly, compound 4e, the most active compound, exhibited potent VEGFR2 inhibition with an IC50 value of 11.6 nM (96.5% inhibition) compared to sorafenib with an IC50 value of 30 nM (94.8% inhibition). Additionally, compound 4e significantly induced apoptotic cell death in MCF-7 cells by 41.1% compared to a control group (0.8%), halting cell division during the G2/M phase by 39.8% compared to the control (21.7%). Molecular docking-coupled dynamics simulations highlighted the bias of the VEGFR2 pocket towards compound 4e compared to other synthesized compounds. Predicting superior binding affinities and relevant interactions with the pocket's key residues recapitulated in vitro findings towards higher inhibition activity for compound 4e. Furthermore, compound 4e with adequate pharmacokinetic and drug-likeness profiles in terms of ADME and safety characteristics can serve as a promising clinical candidate for future lead optimization and development. Notably, 4e-Fe2O3-humic acid NPs exhibited potent cytotoxicity with IC50 values of 2.41 and 13.4 ng mL-1 against MCF-7 and HepG-2 cell lines, respectively. Hence, compound 4e and its Fe2O3-humic acid-NPs could be further developed as promising anti-breast cancer agents.
Collapse
Affiliation(s)
- Asmaa S A Yassen
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University New Galala 43713 Egypt
| | - Sherief M Abdel-Wahab
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology Giza Egypt
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University New Galala 43713 Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah P.O. 27272 Sharjah United Arab Emirates
- Department of Chemistry, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| | - Reda F A Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University New Galala City Suez 43713 Egypt
- Pharmacognosy Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Gharieb S El-Sayyad
- Microbiology and Immunology Department, Faculty of Pharmacy, Galala University New Galala City Suez 43713 Egypt
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC) Cairo Egypt
| | - Ahmed I El-Batal
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - Khadiga M Attia
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology Giza Egypt
| | - Hosam A Elshihawy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Ranza Elrayess
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
- Al-Ayen University, College of Pharmacy Dhi Qar Iraq
| |
Collapse
|
2
|
Felthaus O, Vedlin S, Eigenberger A, Klein SM, Prantl L. Exosomes from Adipose-Tissue-Derived Stem Cells Induce Proapoptotic Gene Expression in Breast Tumor Cell Line. Int J Mol Sci 2024; 25:2190. [PMID: 38396867 PMCID: PMC10889659 DOI: 10.3390/ijms25042190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Lipofilling is an option for breast reconstruction after tumor resection to avoid the complications of an implant-based reconstruction. Although some concerns exist regarding the oncological safety of tissue rich in mesenchymal stem cells with their proangiogenic and proliferation-supportive properties, there are also reports that adipose-tissue-derived stem cells can exhibit antitumoral properties. We isolated primary adipose-tissue-derived stem cells. Both conditioned medium and exosomes were harvested from the cell culture and used to treat the breast cancer cell line MCF-7. Cell viability, cytotoxicity, and gene expression of MCF-7 cells in response to the indirect co-culture were evaluated. MCF-7 cells incubated with exosomes from adipose-tissue-derived stem cells show reduced cell viability in comparison to MCF-7 cells incubated with adipose-tissue-derived stem-cell-conditioned medium. Expression of proapoptotic genes was upregulated, and expression of antiapoptotic genes was downregulated. The debate about the oncological safety of autologous fat grafting after tumor resection continues. Here, we show that exosomes from adipose-tissue-derived stem cells exhibit some antitumoral properties on breast cancer cell line MCF-7.
Collapse
Affiliation(s)
- Oliver Felthaus
- Department for Plastic, Hand & Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany (S.M.K.); (L.P.)
| | - Simon Vedlin
- Department for Plastic, Hand & Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany (S.M.K.); (L.P.)
| | - Andreas Eigenberger
- Department for Plastic, Hand & Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany (S.M.K.); (L.P.)
- Medical Device Lab, Faculty of Mechanical Engineering, Ostbayerische Technische Hochschule Regensburg, 93053 Regensburg, Germany
| | - Silvan M. Klein
- Department for Plastic, Hand & Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany (S.M.K.); (L.P.)
| | - Lukas Prantl
- Department for Plastic, Hand & Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany (S.M.K.); (L.P.)
| |
Collapse
|
3
|
Yang HB, Kim HY, Kim SH, Kim SY. Suppressive role of vascular endothelial growth factor on intestinal apoptosis in induced necrotizing enterocolitis in rats. Ann Surg Treat Res 2023; 105:157-164. [PMID: 37693290 PMCID: PMC10485351 DOI: 10.4174/astr.2023.105.3.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 09/12/2023] Open
Abstract
Purpose Necrotizing enterocolitis (NEC) is a devastating disease that can cause mortality in preterm babies. NEC may develop through an apoptotic pathway that is known to be inhibited by vascular endothelial growth factor (VEGF). This study determined whether VEGF exerted a protective effect against the development of NEC and apoptosis in rats. Methods To determine the effect of VEGF in NEC rats, neonatal rats were randomized into 4 groups: the control group, the NEC group, the NEC + intraperitoneal VEGF (50 ng/kg) group (NEC + VEGF IP group), and the NEC + oral VEGF (50 ng/kg) group (NEC + VEGF OR group). NEC was induced by lipopolysaccharide/hypoxia and cold stress. The animals were sacrificed 72 hours later. After laparotomy, we obtained a region of the proximal small bowel from the ileocecal valve about 18 cm in length. Results The NEC histological grade, apoptosis histological score, and caspase-3 activity were lower in the NEC + VEGF IP and OR groups than in the NEC group. In the NEC + VEGF IP and OR groups, the messenger RNA expression of apoptotic and inflammatory genes, such as Bax, NF-κB, p53, Fas, FasL, and PAF-R, but not that of Bcl-2, was decreased, as was the Bax/Bcl-2 protein ratio. Histological analysis revealed that the apoptosis-blocking effect of VEGF was more effective in the NEC + VEGF IP group than in the NEC + VEGF OR group. Conclusion We identified apoptotic and inflammatory genes to confirm the preventive effect of VEGF pretreatment on NEC in rats. This study presents a novel approach to prevent apoptosis via VEGF pretreatment in rats with lipopolysaccharide/hypoxia-induced NEC.
Collapse
Affiliation(s)
- Hee-Beom Yang
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun-Young Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatric Surgery, Seoul National University Children’s Hospital, Seoul, Korea
| | - Soo-Hong Kim
- Division of Pediatric Surgery, Department of Surgery, Pusan National University Yangsan Hospital and Pusan National University Children’s Hospital, Yangsan, Korea
| | - So-young Kim
- Biomedical Science Institute, Chonnam National University Hwasun Hospital, Hwasun, Korea
| |
Collapse
|
4
|
Zhang X, Qin B, Wang M, Feng J, Zhang C, Zhu C, He S, Liu H, Wang Y, Averick SE, Vo NTN, Huang L, Liu W, Wang Z. Dual pH-Responsive and Tumor-Targeted Nanoparticle-Mediated Anti-Angiogenesis siRNA Delivery for Tumor Treatment. Int J Nanomedicine 2022; 17:953-967. [PMID: 35280336 PMCID: PMC8906879 DOI: 10.2147/ijn.s340926] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose In order to overcome the biological barriers at all levels and enhance the delivery efficiency of siRNA, we have prepared a multifunctional siRNA delivery system (CHCE/siRNA nanoparticles) through self-assembly of the carboxymethyl chitosan modified with histidine, cholesterol, and anti-EGFR antibody (CHCE). Methods The morphology of CHCE/siRNA NPs was detected by dynamic light scattering and scanning electron microscope. In vitro, we assessed the tumor-targeting, cellular uptake, and endosomal escape by flow cytometry and confocal laser scanning microscopy, confirming the CHCE/siRNA NPs functions in gene silencing and cell killing ability. In vivo, we examined the biodistribution of the CHCE/siRNA NPs by the IVIS imaging system and confirmed the therapeutic effect of NPs in the nude-mouse tumor model. Results The CHCE/siRNA NPs exhibited nanosized spherical with narrow size distribution. In vitro, the CHCE/siRNA NPs incorporated a dual capability of tumor targeting and pH response that could facilitate cellular bind, cellular uptake, and endosomal escape. The CHCE/siRNA NPs could effectively silence the vascular endothelial growth factor A (VEGFA) to cause cell apoptosis and inhibit proliferation. In vivo, the CHCE/siRNA NPs could target tumor sites to knock down VEGFA and achieve a better anti-tumor effect. Conclusion We successfully prepared a novel siRNA delivery system with the double capability of tumor targeting and pH response, which can break through the biological barriers to penetrate deep into tumors and achieve better therapeutic tumor effects, providing a new ideal delivery platform for siRNA.
Collapse
Affiliation(s)
- Xiangyang Zhang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Bin Qin
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Min Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Junyi Feng
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Chenglin Zhang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Chengshen Zhu
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Suqin He
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Hao Liu
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Yaohe Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Saadyah E Averick
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Nga T N Vo
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Lei Huang
- Inflammations Immunity Research Theme, Translational and Clinical Research Institute, FMS, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Wentao Liu
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Zhimin Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Correspondence: Zhimin Wang; Wentao Liu, Email ;
| |
Collapse
|
5
|
Alsaif NA, Taghour MS, Alanazi MM, Obaidullah AJ, Al-Mehizia AA, Alanazi MM, Aldawas S, Elwan A, Elkady H. Discovery of new VEGFR-2 inhibitors based on bis([1, 2, 4]triazolo)[4,3- a:3',4'- c]quinoxaline derivatives as anticancer agents and apoptosis inducers. J Enzyme Inhib Med Chem 2021; 36:1093-1114. [PMID: 34056992 PMCID: PMC8168755 DOI: 10.1080/14756366.2021.1915303] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Herein, a new wave of bis([1, 2, 4]triazolo)[4,3-a:3',4'-c]quinoxaline derivatives have been successfully designed and synthesised. The synthesised derivatives were biologically investigated for their cytotoxic activities against HepG2 and MCF-7. Also, the tested compounds were further examined in vitro for their VEGFR-2 inhibitory activity. The most promising derivative 23j was further investigated for its apoptotic behaviour in HepG2 cell lines using flow cytometric and western-plot analyses. Additional in-silico studies were performed to predict how the synthesised compounds can bind to VEGFR-2 and to determine the drug-likeness profiling of these derivatives. The results revealed that compounds 23a, 23i, 23j, 23l, and 23n displayed the highest antiproliferative activities against the two cell lines with IC50 values ranging from 6.4 to 19.4 µM. Furthermore, compounds 23a, 23d, 23h, 23i, 23j, 23l, 23 m, and 23n showed the highest VEGFR-2 inhibitory activities with IC50 values ranging from 3.7 to 11.8 nM, comparing to sorafenib (IC50 = 3.12 nM). Moreover, compound 23j arrested the HepG2 cell growth at the G2/M phase and induced apoptosis by 40.12% compared to the control cells (7.07%). As well, such compound showed a significant increase in the level of caspase-3 (1.36-fold), caspase-9 (2.80-fold), and BAX (1.65-fold), and exhibited a significant decrease in Bcl-2 level (2.63-fold).
Collapse
Affiliation(s)
- Nawaf A. Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman A. Al-Mehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Manal M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Aldawas
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
6
|
Hassani Moghaddam M, Eskandarian Boroujeni M, Vakili K, Fathi M, Abdollahifar MA, Eskandari N, Esmaeilpour T, Aliaghaei A. Functional and structural alternations in the choroid plexus upon methamphetamine exposure. Neurosci Lett 2021; 764:136246. [PMID: 34530114 DOI: 10.1016/j.neulet.2021.136246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/27/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Choroid plexus (CP) is the principal source of cerebrospinal fluid. CP can produce and release a wide range of materials including growth factors, neurotrophic factors, etc. all of which play an important role in the maintenance and proper functioning of the brain. Methamphetamine (METH) is a CNS neurostimulant that causes brain dysfunction. Herein, we investigated the potential effects of METH exposure on CP structure and function. Stereological analysis revealed a significant alteration in CP volume, epithelial cells and capillary number upon METH treatment. Electron microscopy exhibited changes in ultrastructure. Moreover, the upregulation of neurotrophic factors such as BDNF and VEGF as well as autophagy and apoptosis gene following METH administration were observed. We also identified several signaling cascades related to autophagy. In conclusion, gene expression changes coupled with structural alterations of the CP in response to METH suggested METH-induced autophagy in CP.
Collapse
Affiliation(s)
- Meysam Hassani Moghaddam
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Eskandarian Boroujeni
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Eskandari
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Esmaeilpour
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abbas Aliaghaei
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Erdoğan MK, Ağca CA, Aşkın H. Quercetin and Luteolin Improve the Anticancer Effects of 5-Fluorouracil in Human Colorectal Adenocarcinoma In Vitro Model: A Mechanistic Insight. Nutr Cancer 2021; 74:660-676. [PMID: 34309458 DOI: 10.1080/01635581.2021.1900301] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate the antitumor effects of quercetin and luteolin combined with 5-Fluorouracil (5-FU) in HT-29 human colorectal cancer cells. Cell viability induced by quercetin, luteolin and combination of these compounds with 5-FU were determined by MTT assay, also Cell death detection Elisa assay and fluorescence microscopy were performed to investigate apoptotic effects. Hu-VEGF Elisa assay was employed to determine the effects of treatments on angiogenesis. Western blot and qRT-PCR analysis were performed to investigate effects on p53, Bax, Bcl-2, p38 MAPK, mTOR, PTEN, and Akt proteins and genes. The results indicated that quercetin, luteolin and combinations of these compounds with 5-FU inhibited the growth of HT 29 cells. Compared to the control, apoptosis were triggered 8.1 and 10.1 fold in HT-29 cells, that treated with quercetin + 5-FU and luteolin + 5-FU, respectively. VEGF amount significantly decreased by combined treatments. qRT-PCR and western blot results demonstrated that quercetin, luteolin and the combinations of these flavonoids with 5-FU, modulate the apoptotic pathways in HT-29 cells. The increase in p53, Bax, p38 MAPK, and PTEN gene expression levels compared to the control group was 1.71, 1.42, 3.26, and 3.29-fold with 5-FU + L treatment, respectively, while this increase was 8.43, 1.65, 3.55, and 3.54-fold with 5-FU + Q treatment, respectively. In addition, when the anti-apoptotic Bcl-2, mTOR, and Akt gene expression levels were normalized as 1 in the control group, they were 0.28, 0.41, and 0.22 with 5-FU + L treatment, and 0.32, 0.46, and 0.39, respectively, with 5-FU + Q treatment. These findings suggested that quercetin and luteolin synergistically enhanced the anticancer effect of 5-FU in HT 29 cells and may therefore minimize the toxic effects of 5-FU in the clinical treatment of colorectal cancer.
Collapse
Affiliation(s)
- Mehmet Kadir Erdoğan
- Department of Biology, Faculty of Arts and Sciences, Bingol University, Bingol, Turkey
| | - Can Ali Ağca
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bingol University, Bingol, Turkey
| | - Hakan Aşkın
- Department of Molecular Biology and Genetics, Faculty of Sciences, Ataturk University, Erzurum, Turkey
| |
Collapse
|
8
|
Kras P, Talkowski K, Grabarek BO, Skalska-Dziobek N, Boroń D, Oplawski M. Evaluation of Variances in VEGF-A-D and VEGFR-1-3 Expression in the Ishikawa Endometrial Cancer Cell Line Treated with Salinomycin and Anti-Angiogenic/Lymphangiogenic Effect. Curr Pharm Biotechnol 2021; 22:697-705. [PMID: 32648839 DOI: 10.2174/1389201021666200710093519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In cancer, an excessive and uncontrolled process of creating new blood and lymphatic vessels that play a key role in the metastasis process can be observed. The Vascular Endothelial Growth Factor (VEGF-A,-B,-C,-D) family together with their specific receptors (VEGFR-1,-2,- 3) plays a key role in these processes, therefore, it would be reasonable to determine the correct pattern of their expression. OBJECTIVES The study aimed to assess the use of salinomycin as an anti-angiogenic and anti-lymphangiogenic drug during endometrial cancer by examining changes in the expression pattern of VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGFR-1, VEGFR-2 and VEGFR-3 depending on the treatment period of the Ishikawa endometrial cancer cells with salinomycin in comparison to the control culture. MATERIALS AND METHODS To determine how influential salinomycin was on the expression of both mRNAs, 1 μM of the drug was added to the cell culture and then it was cultured all together for 12, 24 and 48 hour periods. The cells that made up the control culture were not treated with salinomycin. To determine the changes in the expression profile of the selected genes, we used the microarray, techniques: RTqPCR and ELISA (p<0.05). RESULTS For all isoforms of VEGF-A-D as well as receptors of VEGFR-1-3, a decrease in expression under the influence of salinomycin was noted. For VEGF-A and VEGFR-1, the difference in the expression between the culture treated with salinomycin in comparison to the control was statistically significant (p=0.0004). In turn, for VEGF-B, the difference between the culture exposed for 24 hours in comparison to the control (p=0.00000) as well as the comparison between H48 vs. C (p=0.00000) was statistically significant. In reference to VEGF-C, VEGFR-2 and VEGFR-3, the statistical analysis showed the significant difference in expression between the culture incubated with the drug for 12, 24 and 48 hours in comparison to the control as well as between the selected times. For all of these comparisons, p=0.00000 was utilized. CONCLUSION Salinomycin changes the expression pattern of VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGFR-1, VEGFR-2, and VEGFR-3 in endometrial cancer cells. The obtained results suggest that salinomycin might exert the effect via VEGF signaling pathways.
Collapse
Affiliation(s)
- Piotr Kras
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland
| | - Karol Talkowski
- Department of Psychiatry, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Beniamin O Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, University of Technology in Katowice, Katowice, Poland
| | - Nina Skalska-Dziobek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, University of Technology in Katowice, Katowice, Poland
| | - Dariusz Boroń
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland
| | - Marcin Oplawski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland
| |
Collapse
|
9
|
Wilson RL, Jones HN. Targeting the Dysfunctional Placenta to Improve Pregnancy Outcomes Based on Lessons Learned in Cancer. Clin Ther 2021; 43:246-264. [PMID: 33446335 PMCID: PMC11917529 DOI: 10.1016/j.clinthera.2020.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
In recent decades, our understanding of the disrupted mechanisms that contribute to major obstetrical diseases, including preeclampsia, fetal growth restriction, preterm birth, and gestational diabetes, has increased exponentially. Common to many of these obstetric diseases is placental maldevelopment and dysfunction; the placenta is a significant component of the maternal-fetal interface involved in coordinating, facilitating, and regulating maternal and fetal nutrient, oxygen and waste exchange, and hormone and cytokine production. Despite the advances in our understanding of placental development and function, there are currently no treatments for placental maldevelopment and dysfunction. However, given the transient nature and accessibility from the maternal circulation, the placenta offers a unique opportunity to develop targeted therapeutics for routine obstetric practices. Furthermore, given the similar developmental paradigms between the placenta and cancer, there is an opportunity to appropriate current knowledge from advances in targeted therapeutics in cancer treatments. In this review, we highlight the similarities between early placental development and cancer and introduce a number of targeted therapies currently being explored in cancer and pregnancy. We also propose a number of new effectors currently being targeted in cancer research that have the potential to be targeted in the development of treatments for pregnancy complications. Finally, we describe a method for targeting the placenta using nonviral polymers that are capable of delivering plasmids, small interfering RNA, and other effector nucleic acids, which could ultimately improve fetal and maternal outcomes from complicated pregnancies.
Collapse
Affiliation(s)
- Rebecca L Wilson
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.
| | - Helen N Jones
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
Wen L, Wen C, Zhang F, Wang K, Yuan H, Hu F. siRNA and chemotherapeutic molecules entrapped into a redox-responsive platform for targeted synergistic combination therapy of glioma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102218. [PMID: 32413510 DOI: 10.1016/j.nano.2020.102218] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/01/2020] [Accepted: 04/28/2020] [Indexed: 01/05/2023]
Abstract
Vascular endothelial growth factor (VEGF) has been implicated as the key regulator of tumor neovascularization. RNAi interference plays a critical role on down-regulation of VEGF, while single VEGF inhibition could not completely suppress angiogenesis and tumor growth; the effect of siRNA is temporary. To improve glioma therapy efficacy, an angiopep-2 (Ap) modified redox-responsive glycolipid-like copolymer co-delivering siVEGF and paclitaxel (PTX), termed as Ap-CSssSA/P/R complexes, was developed in this study. Ap modification significantly enhanced the distribution of Ap-CSssSA in glioma cells both in vitro and in vivo. Ap-CSssSA/P/R complexes could simultaneously deliver siVEGF and PTX into tumor cells, exhibiting great superiority in glioma growth suppression via receptor-mediated targeting delivery and cell apoptosis, accompanied with an obvious inhibition of neovascularization induced by VEGF gene silencing. The present study indicated that the combination delivery of siVEGF and PTX via Ap-modified copolymeric micelles presented a promising and safe platform for glioma targeted therapeutics.
Collapse
Affiliation(s)
- Lijuan Wen
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Changlong Wen
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fengtian Zhang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China; Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Bernard A, Chevrier S, Beltjens F, Dosset M, Viltard E, Lagrange A, Derangère V, Oudot A, Ghiringhelli F, Collin B, Apetoh L, Feron O, Chen S, Arnould L, Végran F, Boidot R. Cleaved Caspase-3 Transcriptionally Regulates Angiogenesis-Promoting Chemotherapy Resistance. Cancer Res 2019; 79:5958-5970. [PMID: 31611309 DOI: 10.1158/0008-5472.can-19-0840] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/17/2019] [Accepted: 10/08/2019] [Indexed: 11/16/2022]
Abstract
Caspases are well known for their role in apoptosis. Recently, nonapoptotic roles of caspases have been identified, however, these noncanonical roles are not well documented and the mechanisms involved are not fully understood. Here, we studied the role of cleaved caspase-3 using human- and mouse-proficient caspase-3 cancer cell lines and human-deficient caspase-3 cancer cells. Cleaved caspase-3 functioned as a transcription factor and directly bound to DNA. A DNA-binding domain was identified in the small subunit of caspase-3 and an active conformation was essential for caspase-3 transcriptional activity. Caspase-3 DNA binding enhanced angiogenesis by upregulating the expression of proangiogenic genes and by activating pathways that promoted endothelial cell activation. Some proapoptotic genes were downregulated in caspase-3-proficient cells. Inhibiting caspase-3 increased the efficacy of chemotherapy and decreased spontaneous tumor development. These data highlight a novel nonapoptotic role of caspase-3 and suggest that cleaved caspase-3 could be a new therapeutic target in cancer. SIGNIFICANCE: These findings report a noncanonical function of caspase-3 by demonstrating its ability to transcriptionally regulate the VEGFR pathway.
Collapse
Affiliation(s)
| | - Sandy Chevrier
- Department of Biology and Pathology of Tumors, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
| | - Françoise Beltjens
- Department of Biology and Pathology of Tumors, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
| | | | | | | | - Valentin Derangère
- Inserm U1231, Dijon, France.,Platform of Transfer in Cancer Biology, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
| | - Alexandra Oudot
- Preclinical Imaging Platform-Nuclear Medicine Department, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
| | - François Ghiringhelli
- Inserm U1231, Dijon, France.,Platform of Transfer in Cancer Biology, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
| | - Bertrand Collin
- Preclinical Imaging Platform-Nuclear Medicine Department, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
| | | | - Olivier Feron
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,The Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Laurent Arnould
- Department of Biology and Pathology of Tumors, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
| | - Frédérique Végran
- Inserm U1231, Dijon, France.,Platform of Transfer in Cancer Biology, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
| | - Romain Boidot
- Inserm U1231, Dijon, France. .,Department of Biology and Pathology of Tumors, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
| |
Collapse
|
12
|
Yu Q, Zhang B, Zhou Y, Ge Q, Chang J, Chen Y, Zhang K, Peng D, Chen W. Co-delivery of gambogenic acid and VEGF-siRNA with anionic liposome and polyethylenimine complexes to HepG2 cells. J Liposome Res 2019; 29:322-331. [PMID: 29745740 DOI: 10.1080/08982104.2018.1473423] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background and objective: The combination of two or more different mechanisms of drugs in the treatment of cancer has become one of the effective methods. The purpose of this study was to successfully prepare a non-viral delivery system that could efficiently co-delivery siRNA and gambogenic acid (GNA) to improve the anti-cancer efficiency in HepG2 cells. Methods: The delivery system was prepared by a two-step method. First, the GNA-anionic liposome took shape by a solvent evaporation method, and then the liposome was bound to the PEI/siRNA complex by electrostatic interaction to form the final carrier system (lipopolyplexes). Agarose gel electrophoresis, MTT, particle size and zeta potential were detected to analyse the lipopolyplexes formation. The transfection efficiency of siRNA was determined by confocal laser scanning microscopy and flow cytometry. Western blotting was used to assess the VEGF protein expression levels of HepG2 cells. The cell apoptosis assay was used to assess the anti-tumour superiority of lipopolyplexes. Results: GNA-PEI/siRNA-liposome (lipopolyplexes) are significantly less cytotoxicity compared to PEI mediated carriers. Simultaneously, the results of flow cytometry and confocal laser scanning microscopy indicated that the lipopolyplexes could successfully carry siRNA into the cytoplasm, and the western-blot result evidence that the delivery system has a potential for VEGF to express down. Also compared with the control group, the results of apoptosis test suggest that the lipopolyplexes can significantly promote cell apoptosis. Conclusion: The delivery system has a potential in the combination of various drugs for cancer therapy in future.
Collapse
Affiliation(s)
- Qiongfang Yu
- The Collage of Pharmacy, Anhui University of Chinese Medicine , Hefei , China.,Anhui Academy of Chinese Medicine , Hefei , Anhui , China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine , Hefei , China
| | - Bian Zhang
- The Collage of Pharmacy, Anhui University of Chinese Medicine , Hefei , China.,Anhui Academy of Chinese Medicine , Hefei , Anhui , China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine , Hefei , China
| | - Yali Zhou
- The Collage of Pharmacy, Anhui University of Chinese Medicine , Hefei , China.,Anhui Academy of Chinese Medicine , Hefei , Anhui , China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine , Hefei , China
| | - Qin Ge
- The Collage of Pharmacy, Anhui University of Chinese Medicine , Hefei , China.,Anhui Academy of Chinese Medicine , Hefei , Anhui , China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine , Hefei , China
| | - Jiali Chang
- The Collage of Pharmacy, Anhui University of Chinese Medicine , Hefei , China.,Anhui Academy of Chinese Medicine , Hefei , Anhui , China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine , Hefei , China
| | - Yunna Chen
- The Collage of Pharmacy, Anhui University of Chinese Medicine , Hefei , China.,Anhui Academy of Chinese Medicine , Hefei , Anhui , China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine , Hefei , China
| | - Kaiqi Zhang
- The Collage of Pharmacy, Anhui University of Chinese Medicine , Hefei , China.,Anhui Academy of Chinese Medicine , Hefei , Anhui , China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine , Hefei , China
| | - Daiyin Peng
- The Collage of Pharmacy, Anhui University of Chinese Medicine , Hefei , China.,Anhui Academy of Chinese Medicine , Hefei , Anhui , China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine , Hefei , China
| | - Weidong Chen
- The Collage of Pharmacy, Anhui University of Chinese Medicine , Hefei , China.,Anhui Academy of Chinese Medicine , Hefei , Anhui , China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine , Hefei , China
| |
Collapse
|
13
|
Yao Y, Wang T, Liu Y, Zhang N. Co-delivery of sorafenib and VEGF-siRNA via pH-sensitive liposomes for the synergistic treatment of hepatocellular carcinoma. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1374-1383. [PMID: 30977418 DOI: 10.1080/21691401.2019.1596943] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Non-viral nanocarrier affords a platform for drug and siRNA combination, the focus of which is to load drug and siRNA into a single carrier, allowing for co-delivery and a synergistic effect at tumour site. In our previous study, pH-sensitive carboxymethyl chitosan-modified liposomes (CMCS-SiSf-CL) were assembled for sorafenib (Sf) and Cy3-siRNA co-loaded. The present study evaluated in vitro and in vivo co-delivery of the co-loaded liposomes. Further, in vitro inhibiting hepatocellular carcinoma of the pH-sensitive sorafenib (Sf) and VEGF-siRNA co-loaded liposomes was discussed. The experimental results demonstrated co-delivery and penetration into 2-dimensional (2D) cultured HepG2 cells, 3-dimensional (3D) cultured HepG2 tumour spheroids and tumour regions of H22 tumour-bearing mice. Compared with free siRNA and single loaded carrier, co-delivery liposomes exhibited enhanced VEGF downregulating effect, inducing cell early apoptosis. Therefore, the CMCS-SiSf-CL delivery system can lay the foundation for the co-delivery systems development and provide new area for HCC therapy.
Collapse
Affiliation(s)
- Yao Yao
- a Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences , Shandong University , Jinan , People's republic of China
| | - Tianqi Wang
- a Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences , Shandong University , Jinan , People's republic of China
| | - Yongjun Liu
- a Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences , Shandong University , Jinan , People's republic of China
| | - Na Zhang
- a Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences , Shandong University , Jinan , People's republic of China
| |
Collapse
|
14
|
Vergara JP, Sacdalan DBL, Amurao-Amante M, Sacdalan DL. Bevacizumab in metastatic small-bowel adenocarcinoma: A systematic review and meta-analysis. Rare Tumors 2019; 11:2036361318825413. [PMID: 35154612 PMCID: PMC8832313 DOI: 10.1177/2036361318825413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/25/2018] [Indexed: 12/20/2022] Open
Abstract
Cancers of the small bowel could account for less than 5% of all gastrointestinal
malignancies. Of these tumors, adenocarcinomas were the major histologic subtype
and generally carried a poor prognosis. High expression of vascular epithelial
growth factor (VEGF) could be seen in small bowel adenocarcinomas. A systematic
review was conducted here to determine if bevacizumab, a recombinant humanized
antibody against VEGF, could offer clinical benefit among patients with
metastatic small bowel adenocarcinoma when combined with chemotherapy. A search
for relevant published and unpublished studies was performed using PubMed,
ScienceDirect, Google Scholar, the American Society of Clinical Oncology
meetings library, ClinicalTrials.gov, and ISRCTN registry. Information on study
design, methods, intervention, and outcomes were extracted from selected
eligible studies. Methodological quality was then assessed using the
Newcastle-Ottawa Scale. There was a significant improvement in mean overall
survival with the addition of bevacizumab with chemotherapy versus chemotherapy
alone. The use of bevacizumab with chemotherapy, likewise improved
progression-free survival and objective response rate compared to chemotherapy
alone. Continued use of bevacizumab beyond first progression also appeared to
show benefit. The conduct of prospective controlled studies by consortia to
offset the rarity of small bowel adenocarcinomas could further elucidate the
efficacy of bevacizumab in the treatment of this disease.
Collapse
Affiliation(s)
- John Paulo Vergara
- Section of Medical Oncology, Department of Medicine, Philippine General Hospital and University of the Philippines Manila, Manila, Philippines
| | - Danielle Benedict Leoncio Sacdalan
- Section of Medical Oncology, Department of Medicine, Philippine General Hospital and University of the Philippines Manila, Manila, Philippines
| | - Madelaine Amurao-Amante
- Section of Medical Oncology, Department of Medicine, Philippine General Hospital and University of the Philippines Manila, Manila, Philippines
| | - Dennis Lee Sacdalan
- Section of Medical Oncology, Department of Medicine, Philippine General Hospital and University of the Philippines Manila, Manila, Philippines
| |
Collapse
|
15
|
Liang L, Ge K, Zhang F, Ge Y. The suppressive effect of co-inhibiting PD-1 and CTLA-4 expression on H22 hepatomas in mice. Cell Mol Biol Lett 2018; 23:58. [PMID: 30564277 PMCID: PMC6295075 DOI: 10.1186/s11658-018-0122-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 11/22/2018] [Indexed: 12/31/2022] Open
Abstract
Objective We investigated the suppressive effect of siRNA-mediated co-inhibition of PD-1 and CTLA-4 expression on H22 hepatomas in mice. Methods Murine H22 cells were cultured in vivo in ICR mice. An allograft tumor model was also established in another ICR mouse group. The tumor-bearing mice were randomly divided into four groups: control, single PD-1 siRNA, single CTLA-4 siRNA, and double PD-1 + CTLA-4 siRNAs. The survival time and physiological condition of the mice were observed after the injection of the siRNAs and placebo. The volume and weight of the solid tumor were measured to assess the inhibition of the tumor. To assess the effects of siRNAs on mouse immune function, the protein levels of IFN-γ and IL-10 in the blood and PD-L1 in the tumor and liver were determined using ELISA, and the mRNA levels of IFN-γ, PD-L1, PD-1, CTLA-4, IL-6 and Survivin in the tumor, liver and spleen were determined using quantitative RT-PCR. The ratios of Bax and Bcl-2 protein were determined via western blot to analyze the effect of siRNAs on tumor cell apoptosis. Results The anti-tumor effect appeared in all groups with siRNA-mediated inhibition. The tumor growth suppression was stronger in the group with double inhibition. The weight and volume of the tumors were significantly lower and the survival rate improved in the three siRNA groups. IFN-γ levels increased but IL-10 levels decreased in the blood of the siRNA group mice compared with the results for the control group. In the tumor and spleen tissue, the IFN-γ levels significantly increased, but in the liver tissue they significantly decreased in the three siRNA groups. The results of quantitative RT-PCR showed that the mRNAs for PD-1 and CTLA-4 were downregulated in spleen tissue in the three siRNA groups, while the PD-L1 mRNA and protein levels increased significantly in the tumor, but decreased in the liver. Survivin and IL-6 mRNA levels decreased in the tumor. Western blot results showed that ratio of Bax and Bcl-2 had significantly increased. These results indicated that downregulating PD-1 and CTLA-4 could increase the body’s immune response and promote apoptosis of tumor cells. Conclusion Co-inhibiting the expressions of PD-1 and CTLA-4 can effectively suppress the growth of H22 hepatoma and promote the apoptosis of tumor cells in mice. Blocking PD-1 and CTLA-4 can improve the vitality of T cells, and improve the immune environment and response.
Collapse
Affiliation(s)
- Leilei Liang
- 1Department of Biochemistry and Molecular Biology, Medical College, Qingdao University, 38 Dengzhou Road, Qingdao, 266021 Shandong China.,2Central Laboratory, Binzhou People's Hospital, Binzhou, 256610 Shandong China
| | - Keli Ge
- 3Integrative Medicine Research Center, Medical College, Qingdao University, Qingdao, 266021 Shandong China
| | - Fengying Zhang
- 4Department of Biochemistry and Molecular Biology, Heze Medical College, Heze, 274000 Shandong China
| | - Yinlin Ge
- 1Department of Biochemistry and Molecular Biology, Medical College, Qingdao University, 38 Dengzhou Road, Qingdao, 266021 Shandong China
| |
Collapse
|
16
|
Karim ME, Tha KK, Othman I, Borhan Uddin M, Chowdhury EH. Therapeutic Potency of Nanoformulations of siRNAs and shRNAs in Animal Models of Cancers. Pharmaceutics 2018; 10:E65. [PMID: 29861465 PMCID: PMC6026921 DOI: 10.3390/pharmaceutics10020065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023] Open
Abstract
RNA Interference (RNAi) has brought revolutionary transformations in cancer management in the past two decades. RNAi-based therapeutics including siRNA and shRNA have immense scope to silence the expression of mutant cancer genes specifically in a therapeutic context. Although tremendous progress has been made to establish catalytic RNA as a new class of biologics for cancer management, a lot of extracellular and intracellular barriers still pose a long-lasting challenge on the way to clinical approval. A series of chemically suitable, safe and effective viral and non-viral carriers have emerged to overcome physiological barriers and ensure targeted delivery of RNAi. The newly invented carriers, delivery techniques and gene editing technology made current treatment protocols stronger to fight cancer. This review has provided a platform about the chronicle of siRNA development and challenges of RNAi therapeutics for laboratory to bedside translation focusing on recent advancement in siRNA delivery vehicles with their limitations. Furthermore, an overview of several animal model studies of siRNA- or shRNA-based cancer gene therapy over the past 15 years has been presented, highlighting the roles of genes in multiple cancers, pharmacokinetic parameters and critical evaluation. The review concludes with a future direction for the development of catalytic RNA vehicles and design strategies to make RNAi-based cancer gene therapy more promising to surmount cancer gene delivery challenges.
Collapse
Affiliation(s)
- Md Emranul Karim
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia.
| | - Kyi Kyi Tha
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia.
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia.
| | - Mohammad Borhan Uddin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia.
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia.
| |
Collapse
|
17
|
Liu YC, Ma WH, Ge YL, Xue ML, Zhang Z, Zhang JY, Hou L, Mu RH. RNAi-mediated gene silencing of vascular endothelial growth factor C suppresses growth and induces apoptosis in mouse breast cancer in vitro and in vivo. Oncol Lett 2016; 12:3896-3904. [PMID: 27895746 PMCID: PMC5104198 DOI: 10.3892/ol.2016.5158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/19/2016] [Indexed: 12/23/2022] Open
Abstract
Vascular endothelial cell growth factor (VEGF)-C promotes tumorigenesis by allowing lymph node metastasis and lymphangiogenesis, among other actions. RNA interference (RNAi) is a novel technique for suppressing target gene expression and may increase the effectiveness of cancer treatments. The present study assessed the influence of VEGF-C RNAi on the apoptosis and proliferation of mouse breast cancer cells in vitro and in vivo. A total of three pairs of small interfering RNA (siRNA) targeting mouse VEGF-C were designed and synthesized prior to transfection into 4T1 cells via a liposomal approach. Reverse transcription polymerase chain reaction, western blot analysis, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Hoechst 33258 staining and flow cytometry were performed in vitro to analyze VEGF-C expression, cleaved caspase-3 protein expression and 4T1 cell proliferation and apoptosis. Experiments were also conducted in vivo on BALB/c mice with breast cancer. Tumor weight and volume were measured and the number of apoptotic cells in tumor tissues was assessed by a TUNEL assay. Immunohistochemical assays and an enzyme-linked immunosorbent assay were used to measure the expression of VEGF-C in tumor tissues. The results demonstrated that the three pairs of siRNA, particularly siV2, significantly reduced VEGF-C mRNA and protein levels in 4T1 cells. siV2 was deemed to be the most efficient siRNA and therefore was selected to be used in subsequent experiments. Furthermore, in vitro studies indicated that VEGF-C RNAi significantly decreased cell growth, induced apoptosis and upregulated the expression of cleaved caspase-3 protein. Tumor weight and volume in breast cancer in vivo models was reduced by the intratumoral injection of siV2. Antitumor efficacy was associated with decreased VEGF-C expression and increased induction of apoptosis. The present study therefore indicated that VEGF-C RNAi inhibited mouse breast cancer growth in vitro and in vivo and that it may be a novel targeted therapy for breast cancer.
Collapse
Affiliation(s)
- Yong-Chao Liu
- Department of Biochemistry and Molecular Biology, Medical College, Qingdao University, Qingdao, Shandong 266021, P.R. China; Department of Immunology, Medical College, Beihua University, Jilin, Jilin 132013, P.R. China
| | - Wen-Hui Ma
- Department of Biochemistry and Molecular Biology, Medical College, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Yin-Lin Ge
- Department of Biochemistry and Molecular Biology, Medical College, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Mei-Lan Xue
- Department of Biochemistry and Molecular Biology, Medical College, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Zheng Zhang
- Department of Biochemistry and Molecular Biology, Medical College, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Jin-Yu Zhang
- Department of Biochemistry and Molecular Biology, Medical College, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Lin Hou
- Department of Biochemistry and Molecular Biology, Medical College, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Run-Hong Mu
- Department of Immunology, Medical College, Beihua University, Jilin, Jilin 132013, P.R. China
| |
Collapse
|
18
|
Crochiere M, Kashyap T, Kalid O, Shechter S, Klebanov B, Senapedis W, Saint-Martin JR, Landesman Y. Deciphering mechanisms of drug sensitivity and resistance to Selective Inhibitor of Nuclear Export (SINE) compounds. BMC Cancer 2015; 15:910. [PMID: 26573568 PMCID: PMC4647283 DOI: 10.1186/s12885-015-1790-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/15/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Exportin 1 (XPO1) is a well-characterized nuclear export protein whose expression is up-regulated in many types of cancers and functions to transport key tumor suppressor proteins (TSPs) from the nucleus. Karyopharm Therapeutics has developed a series of small-molecule Selective Inhibitor of Nuclear Export (SINE) compounds, which have been shown to block XPO1 function both in vitro and in vivo. The drug candidate, selinexor (KPT-330), is currently in Phase-II/IIb clinical trials for treatment of both hematologic and solid tumors. The present study sought to decipher the mechanisms that render cells either sensitive or resistant to treatment with SINE compounds, represented by KPT-185, an early analogue of KPT-330. METHODS Using the human fibrosarcoma HT1080 cell line, resistance to SINE was acquired over a period of 10 months of constant incubation with increasing concentration of KPT-185. Cell viability was assayed by MTT. Immunofluorescence was used to compare nuclear export of TSPs. Fluorescence activated cell sorting (FACS), quantitative polymerase chain reaction (qPCR), and immunoblots were used to measure effects on cell cycle, gene expression, and cell death. RNA from naïve and drug treated parental and resistant cells was analyzed by Affymetrix microarrays. RESULTS Treatment of HT1080 cells with gradually increasing concentrations of SINE resulted in >100 fold decrease in sensitivity to SINE cytotoxicity. Resistant cells displayed prolonged cell cycle, reduced nuclear accumulation of TSPs, and similar changes in protein expression compared to parental cells, however the magnitude of the protein expression changes were more significant in parental cells. Microarray analyses comparing parental to resistant cells indicate that a number of key signaling pathways were altered in resistant cells including expression changes in genes involved in adhesion, apoptosis, and inflammation. While the patterns of changes in transcription following drug treatment are similar in parental and resistant cells, the extent of response was more robust in the parental cells. CONCLUSIONS These results suggest that SINE resistance is conferred by alterations in signaling pathways downstream of XPO1 inhibition. Modulation of these pathways could potentially overcome the resistance to nuclear export inhibitors.
Collapse
Affiliation(s)
- Marsha Crochiere
- Karyopharm Therapeutics Inc., 85 Wells Avenue, Newton, MA 02459, USA.
| | - Trinayan Kashyap
- Karyopharm Therapeutics Inc., 85 Wells Avenue, Newton, MA 02459, USA.
| | - Ori Kalid
- Karyopharm Therapeutics Inc., 85 Wells Avenue, Newton, MA 02459, USA.
| | - Sharon Shechter
- Karyopharm Therapeutics Inc., 85 Wells Avenue, Newton, MA 02459, USA.
| | - Boris Klebanov
- Karyopharm Therapeutics Inc., 85 Wells Avenue, Newton, MA 02459, USA.
| | - William Senapedis
- Karyopharm Therapeutics Inc., 85 Wells Avenue, Newton, MA 02459, USA.
| | | | - Yosef Landesman
- Karyopharm Therapeutics Inc., 85 Wells Avenue, Newton, MA 02459, USA.
| |
Collapse
|
19
|
Chi Y, Huang S, Peng H, Liu M, Zhao J, Shao Z, Wu J. Critical role of CDK11(p58) in human breast cancer growth and angiogenesis. BMC Cancer 2015; 15:701. [PMID: 26470709 PMCID: PMC4608324 DOI: 10.1186/s12885-015-1698-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/07/2015] [Indexed: 11/24/2022] Open
Abstract
Background A capillary network is needed in cancer growth and metastasis. Induction of angiogenesis represents one of the major hallmarks of cancer. CDK11p58, a Ser/Thr kinase that belongs to the Cell Division Cycle 2-like 1 (CDC2L1) subfamily is associated with cell cycle progression, tumorigenesis, sister chromatid cohesion and apoptotic signaling. However, its role in breast cancer proliferation and angiogenesis remains unclear. Methods Tumorigenicity assays and blood vessel assessment in athymic mice were used to assess the function of CDK11p58 in tumor proliferation and angiogenesis. CCK-8 assay was used to detect breast cancer cell growth. Immunohistochemistry was used to detect the expression of vascular endothelial growth factor (VEGF), CD31 and CD34 in CDK11 positive patient breast cancer tissues. Dual-Luciferase array was used to analyze the function of CDK11p58 in the regulation of VEGF promoter activity. Western blot was used to detect related protein expression levels. Results CDK11p58 inhibited breast cancer growth and angiogenesis in breast cancer cells and in nude mice transplanted with tumors. Immunohistochemistry confirmed that CDK11p58 was negatively associated with angiogenesis-related proteins such as VEGF, CD31 and CD34 in breast cancer patients. Real-time PCR and dual-luciferase assay showed CDK11p58 inhibited the mRNA levels of VEGF and the promoter activity of VEGF. As CDK11p58 is a Ser/Thr kinase, the kinase-dead mutant failed to inhibit VEGF mRNA and promoter activity. Western blot analysis showed the same pattern of related protein expression. The data suggested angiogenesis inhibition was dependent on CDK11p58 kinase activity. Conclusion This study indicates that CDK11p58 inhibits the growth and angiogenesis of breast cancer dependent on its kinase activity. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1698-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yayun Chi
- Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Sheng Huang
- Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Haojie Peng
- School of Biomedical Engineering, hanghai Jiao Tong University, Shanghai, 200240, China.
| | - Mengying Liu
- Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Jun Zhao
- School of Biomedical Engineering, hanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhiming Shao
- Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Jiong Wu
- Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| |
Collapse
|
20
|
Li Y, Yang J, Xu B, Gao F, Wang W, Liu W. Enhanced Therapeutic siRNA to Tumor Cells by a pH-Sensitive Agmatine-Chitosan Bioconjugate. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8114-24. [PMID: 25832629 DOI: 10.1021/acsami.5b00851] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Charge-conversional naturally occurring chitosan-agmatine bioconjugates are prepared by dimethylmaleic anhydride (DMA) modification and the nucleophilic reaction between tosyl of tosylated chitosan and primary amine of agmatine. These bioconjugates (CS-DM-Agm) are shown to condense siRNA into nanocomplexes, which are stable in the presence of serum at physical pH values. Furthermore, the surface charge of complexes can tune from negative to positive while pH is changed to weak acid tumor micromilieu, thus facilitating the target cancer cell internalization in resisting serum adsorption. More importantly, this smart biogenic system shows remarkable gene silencing efficiency and a high apoptotic rate of tumor cells both in vitro and in vivo, indicating its great potential for cancer therapy.
Collapse
Affiliation(s)
- Yongmao Li
- †School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
- ‡Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Jianhai Yang
- †School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
| | - Bing Xu
- †School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
| | - Fei Gao
- †School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Wang
- †School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
- §State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China
| | - Wenguang Liu
- †School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
- ‡Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| |
Collapse
|
21
|
Direct cytosolic siRNA delivery by reconstituted high density lipoprotein for target-specific therapy of tumor angiogenesis. Biomaterials 2014; 35:7214-27. [DOI: 10.1016/j.biomaterials.2014.05.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 05/02/2014] [Indexed: 12/16/2022]
|
22
|
Prolyl-4-hydroxylase 2 enhances hypoxia-induced glioblastoma cell death by regulating the gene expression of hypoxia-inducible factor-α. Cell Death Dis 2014; 5:e1322. [PMID: 25010988 PMCID: PMC4123088 DOI: 10.1038/cddis.2014.295] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/30/2014] [Accepted: 06/03/2014] [Indexed: 02/08/2023]
Abstract
Oxygen deprivation (hypoxia) is a common feature of solid tumors in advanced stages. The primary cellular transcriptional responses to hypoxia are mainly mediated by the transcription factor hypoxia-inducible factor (HIF). HIF consists of an oxygen-labile α-subunit (HIF-1α, -2α) and a stable β-subunit (ARNT). Prolyl-4-hydroxylase 2 (PHD2) is known as an important mediator of the oxygen-dependent degradation of HIF-α subunits. As HIF-α subunits are not confirmed to be the only substrates of PHD2, it is unknown whether PHD2 regulates HIF-1α and HIF-2α by interacting with other intracellular molecules. In this study, we found that in the glioblastoma cells, PHD2 maintains the gene expression of HIF-1α in dependence of nuclear factor κB and suppresses the gene expression of HIF-2α through HIF-1α. The PHD2-mediated degradation of HIF-1α and HIF-2α seems less important. Furthermore, PHD2 enhances hypoxia-induced glioblastoma cell death by modulating the expression of the HIF target genes glucose transporter 1, vascular endothelial growth factor-A and Bcl-2 binding protein 3. Our findings show that PHD2 inhibits the adaptation of glioblastoma cells to hypoxia by regulating the HIF-α subunits in a non-canonical way. Modulation of PHD2 activity might be considered as a new way to inhibit glioblastoma progression.
Collapse
|
23
|
Herrera ACS, Victorino VJ, Campos FC, Verenitach BD, Lemos LT, Aranome AMF, Oliveira SR, Cecchini AL, Simão ANC, Abdelhay E, Panis C, Cecchini R. Impact of tumor removal on the systemic oxidative profile of patients with breast cancer discloses lipid peroxidation at diagnosis as a putative marker of disease recurrence. Clin Breast Cancer 2014; 14:451-9. [PMID: 25077997 DOI: 10.1016/j.clbc.2014.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/29/2014] [Accepted: 05/27/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Recent studies have suggested a regulatory role for some of the metabolites derived from oxidative stress in breast cancer. In this way, cancer-induced oxidative changes could modify the breast environment and potentially trigger systemic responses that may affect disease prognosis and recurrence. In this study, we investigated the systemic oxidative profile of women with early breast cancer bearing the primary tumor and after tumor withdrawal, and its long-term implications. PATIENTS AND METHODS Plasma samples were collected at diagnosis, and the systemic oxidative profile was determined by evaluating the lipid peroxidation, total antioxidant capacity of plasma (TRAP), malondialdehyde (MDA), protein carbonylation, and hydroperoxides. Nitric oxide, vascular endothelial growth factor (VEGF), and tumor necrosis factor alpha (TNF-α) levels were further measured. We also evaluated the impact of the oxidative profiling at diagnosis on disease recurrence in a 5-year follow-up. RESULTS Enhanced oxidative stress was detected in patients bearing the primary tumors, characterized by high lipid peroxidation, TRAP consumption, high carbonyl content, and elevated VEGF and TNF-α levels. After tumor removal, the systemic oxidative status presented attenuation in lipid peroxidation, MDA, VEGF, and TNF-α. The 5-year recurrence analysis indicated that all patients who recidivated presented high levels of lipid peroxidation measured by chemiluminescence at diagnosis. CONCLUSIONS Our data suggest that the presence of the primary tumor is indicative of the systemic pro-oxidant status of breast cancer and demonstrates a role for lipid peroxidation in disease recurrence, highlighting the need for a metabolic follow-up of patients with cancer at diagnosis before tumor removal.
Collapse
Affiliation(s)
- Ana Cristina S Herrera
- Laboratory of Pathophysiology and Free Radicals, Department of General Pathology, State University of Londrina, Londrina, Paraná, Brazil; Londrina Cancer Institute, Londrina, Paraná
| | | | - Fernanda C Campos
- Laboratory of Pathophysiology and Free Radicals, Department of General Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | | | - Lauana T Lemos
- Laboratory of Pathophysiology and Free Radicals, Department of General Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | - Adriano M F Aranome
- Laboratory of Pathophysiology and Free Radicals, Department of General Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | - Sayonara R Oliveira
- Department of Pharmacy, State University of Londrina, Londrina, Paraná, Brazil
| | - Alessandra L Cecchini
- Laboratory of Pathophysiology and Free Radicals, Department of General Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | - Andrea Name C Simão
- Department of Pharmacy, State University of Londrina, Londrina, Paraná, Brazil
| | - Eliana Abdelhay
- Instituto Nacional de Câncer, Laboratory of Stem Cells, National Cancer Institute, INCA, Rio de Janeiro, Brazil
| | - Carolina Panis
- Laboratory of Inflammatory Mediators, State University of West Paraná (UNIOESTE), Francisco Beltrão, Paraná, Brazil.
| | - Rubens Cecchini
- Laboratory of Pathophysiology and Free Radicals, Department of General Pathology, State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
24
|
Sevket O, Sevket A, Buyukpinarbasili N, Molla T, Kilic G, Ates S, Dansuk R. The effects of ranibizumab on surgically induced endometriosis in a rat model: a preliminary study. Reprod Sci 2013; 20:1224-9. [PMID: 23536575 DOI: 10.1177/1933719113483012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To examine the effect of ranibizumab on surgically induced endometriosis in rat models. STUDY DESIGN Endometrial tissue was implanted onto the abdominal peritoneum of 20 rats that were randomized into 2 groups. The rats in group 1 (n = 9) were given 0.6 mg/kg ranibizumab on the 1st and 14th days after the second operation. The rats in group 2 (control group, n = 9) received no medication. All the rats were observed for a total of 28 days. RESULTS At the end of the treatment, the mean volume and weight of the explants in group 1 (11.49 ± 6.87 mm(3) and 36.61 ± 17.84 mg) were significantly lower than that of the control group (190.6 ± 177.4 mm(3) and 187.3 ± 174.5 mg; both Ps < .01). Mean epithelial histologic scores were significantly lower in group 1 (1.11 ± 0.78) than that of the control group (2.33 ± 0.71; P < .01). When compared with the control group, vascular endothelial growth factor (VEGF) immunoreactivities in group 1 showed statistically significant reductions (1.67 ± 0.50; 2.67 ± 0.50; P < .01). CONCLUSION Ranibizumab has significantly regressed the size of the endometriotic implants and caused atrophy of these lesions in rats by decreasing explant levels of VEGF.
Collapse
Affiliation(s)
- Osman Sevket
- 1Department of Obstetrics and Gynecology, Bezmialem Vakif University, School of Medicine, Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
25
|
Karroum A, Mirshahi P, Faussat AM, Therwath A, Mirshahi M, Hatmi M. Tubular network formation by adriamycin-resistant MCF-7 breast cancer cells is closely linked to MMP-9 and VEGFR-2/VEGFR-3 over-expressions. Eur J Pharmacol 2012; 685:1-7. [PMID: 22542663 DOI: 10.1016/j.ejphar.2012.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 03/30/2012] [Accepted: 04/05/2012] [Indexed: 01/06/2023]
Abstract
We have previously demonstrated that matrix metalloproteinase-9 (MMP-9) is critical for breast cancer cell migration and is necessary but not sufficient for tubular network formation. Given the important angiogenic activity of vascular endothelial growth factor (VEGF), we investigate here its possible contribution in tubular network formation and its link with MMP-9. Exposure of resistant epithelial breast cancer cells (rMCF-7) to Avastin, a VEGF neutralising antibody, suppresses tubular network formation but not cell migration. However, their exposure to MMP-9 inhibitor markedly decreases both parameters. Besides, the addition of exogenous VEGF or MMP-9 alone or in combination to sensitive parental cells (sMCF-7) or rMCF-7 cells enhances tubular network formation by rMCF-7 cells but not by sMCF-7 cells. The evaluation of the expression levels of VEGF receptor (VEGFR) subtypes shows that sMCF-7 cells express only small quantities of VEGFR-2 and VEGFR-3 compared with rMCF-7 cells that express strong quantities. However, treatment of sMCF-7 cells by phorbol 12-myristate 13-acetate (PMA), a PKC activator, induces both tubular network formation and VEGFR-2/VEGFR-3 over-expressions. Interestingly, exposure of rMCF-7 cells or PMA-treated sMCF-7 cells to the specific inhibitors of VEGFR-2 and VEGFR-3 reduces markedly the tubular network formation. Together, our results demonstrate that the proteolytic enzyme MMP-9 promotes rMCF-7 cell migration and, consequently, tubular network formation through VEGFR-2/ VEGFR-3 activation. Understanding of mechanisms involved in vasculogenic mimicry and cell migration related to MMP-9 and VEGF may open new opportunities to improve cancer therapy.
Collapse
Affiliation(s)
- Asmae Karroum
- UMRS 872, Equipe 18, CRC, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | | | | | | | | | | |
Collapse
|
26
|
Qazi Y, Stagg B, Singh N, Singh S, Zhang X, Luo L, Simonis J, Kompella UB, Ambati BK. Nanoparticle-mediated delivery of shRNA.VEGF-a plasmids regresses corneal neovascularization. Invest Ophthalmol Vis Sci 2012; 53:2837-44. [PMID: 22467572 DOI: 10.1167/iovs.11-9139] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
PURPOSE To determine the efficacy of a plasmid containing a small hairpin RNA expression cassette (pSEC.shRNA) against VEGF-A-loaded poly(lactic co-glycolic acid) nanoparticles (PLGA NPs) in the sustained regression of murine corneal neovascularization. METHODS PLGA nanoparticles were loaded with pSEC.shRNA.VEGF-A plasmids using the double emulsion-solvent evaporation method. KNV was induced in BALB/c mice by mechanical-alkali injury. Four weeks after induction of KNV, the mice were randomly divided to receive one of four treatments intrastromally: pSEC.shRNA.VEGF-A PLGA NPs (2 μg plasmid); naked pSEC.shRNA.VEGF-A plasmid only (2 μg plasmid); control blank PLGA NPs (equivalent dry weight of NPs); and vehicle. Two and five days after intervention, corneas were harvested to determine VEGF-A gene and protein expression using reverse transcriptase polymerase chain reaction and ELISA, respectively. Four weeks after intervention, corneas were photographed, mice sacrificed, and the corneal whole mounts were immunostained for CD31 (panendothelial cell marker). Immunofluorescence microscopy was performed and the neovascular area was quantitated. RESULTS VEGF-A mRNA (49.6 ± 12.4 vs. 82.9 ± 6.0%, P < 0.01) and protein (4.0 ± 5.2 vs. 20.0 ± 7.5 ρg VEGF-A/mg total protein, P < 0.05) expression were significantly reduced in pSEC.shRNA.VEGF-A PLGA NP-treated corneas as compared with control blank NP. The pSEC.shRNA.VEGF-A PLGA NP-treated corneas showed significant regression in the mean fractional areas of KNV (0.125 ± 0.042; 12.5%, P <0.01) compared with both naked plasmid only (0.283 ± 0.004; 28.3%) and control (blank NPs = 0.555 ± 0.072, 55.5%) at 4 weeks post-treatment. CONCLUSIONS The pSEC.shRNA.VEGF-A-loaded PLGA NPs are an effective, nonviral, nontoxic, and sustainable form of gene therapy for the regression of murine KNV.
Collapse
Affiliation(s)
- Yureeda Qazi
- John A. Moran Eye Center, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ricci AG, Olivares CN, Bilotas MA, Meresman GF, Barañao RI. Effect of Vascular Endothelial Growth Factor Inhibition on Endometrial Implant Development in a Murine Model of Endometriosis. Reprod Sci 2011; 18:614-22. [DOI: 10.1177/1933719110395406] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Analía Gabriela Ricci
- Instituto de Biología y Medicina Experimental (IBYME) − CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carla Noemí Olivares
- Instituto de Biología y Medicina Experimental (IBYME) − CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariela Andrea Bilotas
- Instituto de Biología y Medicina Experimental (IBYME) − CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriela Fabiana Meresman
- Instituto de Biología y Medicina Experimental (IBYME) − CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Rosa Inés Barañao
- Instituto de Biología y Medicina Experimental (IBYME) − CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
28
|
Tai W, Qin B, Cheng K. Inhibition of breast cancer cell growth and invasiveness by dual silencing of HER-2 and VEGF. Mol Pharm 2010; 7:543-56. [PMID: 20047302 DOI: 10.1021/mp9002514] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Overexpression of HER-2 accounts for approximately 25% of all breast cancer cases, while 87.7% of HER-2 positive breast cancers are associated with upregulated VEGF. The objective of this study is to explore the combination therapy of blocking HER-2 and VEGF expressions simultaneously using siRNA. This is the first report to examine the effect of dual silencing of HER-2 and VEGF genes on tumor growth and invasiveness. We have designed nine HER-2 siRNAs and ten VEGF siRNAs, and identified potent siRNA which can silence the target gene up to 75-83.5%. The most potent HER-2 and VEGF siRNAs were used to conduct functional studies in HER-2 positive breast cancer cells. Tumor invasiveness properties including cell morphology change, in vitro migration, cell spreading, and adhesion to ECM were evaluated. In addition, cell proliferation and apoptosis were examined after the siRNA treatment. Our data demonstrated for the first time that HER-2 siRNA could inhibit cell migration and invasion abilities. Combination of HER-2 and VEGF siRNAs exhibited synergistic silencing effect on VEGF. Both HER-2 siRNA and VEGF siRNA showed significant inhibition on cell migration and proliferation. HER-2 siRNA also demonstrated dramatic suppression on cell spreading and adhesion to ECM, as well as induction of apoptosis. Dual silencing of HER-2 and VEGF exhibited significant cell morphology change, and substantial suppression on migration, spreading, cell adhesion, and proliferation. Our observations suggested that HER-2 positive breast cancer may be more effectively treated by dual inhibition of HER-2 and VEGF gene expressions using siRNA.
Collapse
Affiliation(s)
- Wanyi Tai
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2454 Charlotte Street, Kansas City, Missouri 64108, USA
| | | | | |
Collapse
|
29
|
ISLAM MS, MATSUMOTO M, ISHIDA R, OKA T, KANOUCHI H. Change in VEGF Expression in Mouse Mammary Gland during Reproductive Cycle. J Vet Med Sci 2010; 72:1159-63. [DOI: 10.1292/jvms.10-0086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Mohammad Saiful ISLAM
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, Faculty of Agriculture, Kagoshima University
| | - Mitsuharu MATSUMOTO
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, Faculty of Agriculture, Kagoshima University
| | - Rina ISHIDA
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, Faculty of Agriculture, Kagoshima University
| | - Tatsuzo OKA
- Laboratory of Veterinary Pathobiology, Department of Veterinary Medicine, Faculty of Agriculture, Kagoshima University
| | - Hiroaki KANOUCHI
- Laboratory of Veterinary Pathobiology, Department of Veterinary Medicine, Faculty of Agriculture, Kagoshima University
| |
Collapse
|