1
|
Yan W, Yu W, Shen L, Xiao L, Qi J, Hu T. A SARS-CoV-2 nanoparticle vaccine based on chemical conjugation of loxoribine and SpyCatcher/SpyTag. Int J Biol Macromol 2023; 253:127159. [PMID: 37778577 DOI: 10.1016/j.ijbiomac.2023.127159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
SARS-CoV-2 is a particularly transmissible virus that renders the worldwide COVID-19 pandemic and global severe respiratory distress syndrome. Protein-based vaccines hold great advantages to build the herd immunity for their specificity, effectiveness, and safety. Receptor-binding domain (RBD) of SARS-CoV-2 is an appealing antigen for vaccine development. However, adjuvants and delivery system are necessitated to enhance the immunogenicity of RBD. In the present study, RBD was chemically conjugated with loxoribine and SpyCatcher/SpyTag, followed by assembly to form a nanoparticle vaccine. Loxoribine (a TLR7/8 agonist) acted as an adjuvant, and nanoparticles functioned as delivery system for the antigen and the adjuvant. The nanoparticle vaccine elicited high RBD-specific antibody titers, high neutralizing antibody titer, and strong ACE2-blocking activity. It stimulated high splenic levels of Th1-type cytokines (IFN-γ and IL-2) and Th2-type cytokines (IL-4 and IL-5) in BALB/c mice. It promoted the splenocyte proliferation, enhanced the CD4+ and CD8+ T cell percentage and stimulated the maturation of dendritic cells. The vaccine did not render apparent toxicity to the organs of mice. Thus, the nanoparticle vaccine was of potential to act as a preliminarily safe and effective candidate against SARS-CoV-2.
Collapse
Affiliation(s)
- Wenying Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Weili Yu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Lijuan Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Lucheng Xiao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jinming Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Tao Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
2
|
Liu ZM, Yang MH, Yu K, Lian ZX, Deng SL. Toll-like receptor (TLRs) agonists and antagonists for COVID-19 treatments. Front Pharmacol 2022; 13:989664. [PMID: 36188605 PMCID: PMC9518217 DOI: 10.3389/fphar.2022.989664] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) rapidly infects humans and animals which make coronavirus disease 2019 (COVID-19) a grievous epidemic worldwide which broke out in 2020. According to data analysis of the other coronavirus family, for instance severe acute respiratory syndrome SARS coronavirus (SARS-CoV), can provide experience for the mutation of SARS-CoV-2 and the prevention and treatment of COVID-19. Toll-like receptors (TLRs) as a pattern recognition receptor (PRRs), have an indispensable function in identifying the invader even activate the innate immune system. It is possible for organism to activate different TLR pathways which leads to secretion of proinflammatory cytokines such as Interleukin 1 (IL-1), Interleukin 6 (IL-6), Tumor necrosis factor α (TNFα) and type Ⅰ interferon. As a component of non-specific immunity, TLRs pathway may participate in the SARS-CoV-2 pathogenic processes, due to previous works have proved that TLRs are involved in the invasion and infection of SARS-CoV and MERS to varying degrees. Different TLR, such as TLR2, TLR4, TLR7, TLR8 and TLR9 probably have a double-sided in COVID-19 infection. Therefore, it is of great significance for a correctly acknowledging how TLR take part in the SARS-CoV-2 pathogenic processes, which will be the development of treatment and prevention strategies.
Collapse
Affiliation(s)
- Zhi-Mei Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ming-Hui Yang
- Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zheng-Xing Lian, ; Shou-Long Deng,
| | - Shou-Long Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
- *Correspondence: Zheng-Xing Lian, ; Shou-Long Deng,
| |
Collapse
|
3
|
Yu W, Shen L, Qi Q, Hu T. Conjugation with loxoribine and mannan improves the immunogenicity of Mycobacterium tuberculosis CFP10-TB10.4 fusion protein. Eur J Pharm Biopharm 2022; 172:193-202. [DOI: 10.1016/j.ejpb.2022.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/01/2022] [Accepted: 02/15/2022] [Indexed: 11/04/2022]
|
4
|
Martínez-Espinoza I, Guerrero-Plata A. The Relevance of TLR8 in Viral Infections. Pathogens 2022; 11:134. [PMID: 35215078 PMCID: PMC8877508 DOI: 10.3390/pathogens11020134] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Toll-like receptors (TLRs) are the largest pattern recognition receptors responsible for activating the innate and adaptive immune response against viruses through the release of inflammatory cytokines and antiviral mediators. Viruses are recognized by several TLRs, including TLR8, which is known to bind ssRNA structures. However, the similarities between TLR8 and TLR7 have obscured the distinctive characteristics of TLR8 activation and its importance in the immune system. Here we discuss the activation and regulation of TLR8 by viruses and its importance in therapeutical options such as vaccine adjuvants and antiviral stimulators.
Collapse
|
5
|
Li X, Sun X, Guo X, Li X, Peng S, Mu X. Chemical reagents modulate nucleic acid-activated toll-like receptors. Biomed Pharmacother 2022; 147:112622. [PMID: 35008000 DOI: 10.1016/j.biopha.2022.112622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/08/2023] Open
Abstract
Nucleic acid-mediated interferon signaling plays a pivotal role in defense against microorganisms, especially during viral infection. Receptors sensing exogenous nucleic acid molecules are localized in the cytosol and endosomes. Cytosolic sensors, including cGAS, RIG-I, and MDA5, and endosome-anchored receptors are toll-like receptors (TLR3, TLR7, TLR8, and TLR9). These TLRs share the same domain architecture and have similar structures, facing the interior of endosomes so their binding to nucleic acids of invading pathogens via endocytosis is possible. The correct function of these receptors is crucial for cell homeostasis and effective response against pathogen invasion. A variety of endogenous mechanisms modulates their activities. Nevertheless, naturally occurring mutations lead to aberrant TLR-mediated interferon (IFN) signaling. Furthermore, certain pathogens require a more robust defense against control. Thus, manipulating these TLR activities has a profound impact. High-throughput virtual screening followed by experimental validation led to the discovery of numerous chemicals that can change these TLR-mediated IFN signaling activities. Many of them are unique in selectivity, while others regulate more than one TLR due to commonalities in these receptors. We summarized these nucleic acid-sensing TLR-mediated IFN signaling pathways and the corresponding chemicals activating or deactivating their signaling.
Collapse
Affiliation(s)
- Xiao Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xinyuan Sun
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xuemin Guo
- Meizhou People's Hospital, Meizhou 514031, China; Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population, Meizhou 514031, China
| | - Xueren Li
- Department of Respiratory Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300350, China
| | - Shouchun Peng
- Department of Respiratory Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300350, China.
| | - Xin Mu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
6
|
Ryan L, Mills KHG. Sex differences regulate immune responses in experimental autoimmune encephalomyelitis and multiple sclerosis. Eur J Immunol 2021; 52:24-33. [PMID: 34727577 DOI: 10.1002/eji.202149589] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022]
Abstract
MS is an autoimmune disease of the CNS that afflicts over 2.5 million people worldwide. There are striking sex differences in the susceptibility to and progression of this disease in humans. Females are twice as likely to develop MS than males, whereas disease progression and disability is more rapid in males compared with females; however, the latter is still controversial. There is growing evidence, mainly from animal models, that innate and adaptive immune responses are different in males and females, and that this can influence the outcome of a range of diseases including infection, cancer, and autoimmunity. Since MS is an immune-mediated disease, sex differences in pathogenic immune responses may account for some of the differences in susceptibility to and progression seen in men versus women. Indeed, data from the mouse model of MS, EAE, have already provided some evidence that female mice have earlier disease onset associated with stronger Th17 responses. This review will discuss the possible immunological basis of sex differences in susceptibility and disease outcome in EAE and MS and how a better understanding of sex differences in the responses to disease-modifying therapies may lead to improved patient treatment.
Collapse
Affiliation(s)
- Lucy Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
7
|
Pázmándi K, Sütő M, Fekete T, Varga A, Boldizsár E, Boldogh I, Bácsi A. Oxidized base 8-oxoguanine, a product of DNA repair processes, contributes to dendritic cell activation. Free Radic Biol Med 2019; 143:209-220. [PMID: 31408726 PMCID: PMC6848796 DOI: 10.1016/j.freeradbiomed.2019.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 01/14/2023]
Abstract
A growing body of evidence suggests that elevated levels of reactive oxygen species (ROS) in the airways caused by exposure to gas phase pollutants or particulate matter are able to activate dendritic cells (DCs); however, the exact mechanisms are still unclear. When present in excess, ROS can modify macromolecules including DNA. One of the most abundant DNA base lesions is 7,8-dihydro-8-oxoguanine (8-oxoG), which is repaired by the 8-oxoguanine DNA glycosylase 1 (OGG1)-initiated base excision repair (BER) (OGG1-BER) pathway. Studies have also demonstrated that in addition to its role in repairing oxidized purines, OGG1 has guanine nucleotide exchange factor activity when bound to 8-oxoG. In the present study, we tested the hypothesis that exposure to 8-oxoG, the specific product of OGG1-BER, induces functional changes of DCs. Supporting our hypothesis, transcriptome analysis revealed that in mouse lungs, out of 95 genes associated with DCs' function, 22 or 42 were significantly upregulated after a single or multiple intranasal 8-oxoG challenges, respectively. In a murine model of allergic airway inflammation, significantly increased serum levels of ovalbumin (OVA)-specific IgE antibodies were detected in mice sensitized via nasal challenges with OVA+8-oxoG compared to those challenged with OVA alone. Furthermore, exposure of primary human monocyte-derived DCs (moDC) to 8-oxoG base resulted in significantly enhanced expression of cell surface molecules (CD40, CD86, CD83, HLA-DQ) and augmented the secretion of pro-inflammatory mediators IL-6, TNF and IL-8, whereas it did not considerably influence the production of the anti-inflammatory cytokine IL-10. The stimulatory effects of 8-oxoG on human moDCs were abolished upon siRNA-mediated OGG1 depletion. Collectively, these data suggest that OGG1-BER-generated 8-oxoG base-driven cell signaling activates DCs, which may contribute to initiation of both the innate and adaptive immune responses under conditions of oxidative stress.
Collapse
Affiliation(s)
- Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, Debrecen, H-4032, Hungary
| | - Máté Sütő
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, Debrecen, H-4032, Hungary; Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, 1 Egyetem Square, Debrecen, H-4032, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, Debrecen, H-4032, Hungary
| | - Aliz Varga
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, Debrecen, H-4032, Hungary
| | - Eszter Boldizsár
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, Debrecen, H-4032, Hungary; Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, 1 Egyetem Square, Debrecen, H-4032, Hungary
| | - István Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, Debrecen, H-4032, Hungary.
| |
Collapse
|
8
|
Allan B, Wheler C, Köster W, Sarfraz M, Potter A, Gerdts V, Dar A. In Ovo Administration of Innate Immune Stimulants and Protection from Early Chick Mortalities due to Yolk Sac Infection. Avian Dis 2019; 62:316-321. [PMID: 30339510 DOI: 10.1637/11840-041218-reg.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Omphalitis or yolk sac infection (YSI) and colibacillosis are the most common infectious diseases that lead to high rates of early chick mortalities (ECMs) in young chicks. Out of numerous microbial causes, avian pathogenic Escherichia coli (APEC) or extraintestinal pathogenic E. coli infections are considered the most common cause of these conditions. YSI causes deterioration and decomposition of yolk, leading to deficiency of necessary nutrients and maternal antibodies, retarded growth, poor carcass quality, and increased susceptibility to other infections, including omphalitis, colibacillosis, and respiratory tract infection. Presently, in ovo injection of antibiotics, heavy culling, or after hatch use of antibiotics is practiced to manage ECM. However, increased antibiotic resistance and emergence of "super bugs" associated with use or misuse of antibiotics in the animal industry have raised serious concerns. These concerns urgently require a focus on host-driven nonantibiotic approaches for stimulation of protective antimicrobial immunity. Using an experimental YSI model in newborn chicks, we evaluated the prophylactic potential of three in ovo-administered innate immune stimulants and immune adjuvants for protection from ECM due to YSI. Our data have shown >80%, 65%, and 60% survival with in ovo use of cytosine-phosphodiester-guanine (CpG) oligodeoxynucleotides (ODN), polyinosinic:polycytidylic acid, and polyphosphazene, respectively. In conclusion, data from these studies suggest that in ovo administration of CpG ODN may serve as a potential candidate for replacement of antibiotics for the prevention and control of ECM due to YSI in young chicks.
Collapse
Affiliation(s)
- Brenda Allan
- A Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Colette Wheler
- A Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Wolfgang Köster
- A Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Mishal Sarfraz
- A Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Andy Potter
- A Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Volker Gerdts
- A Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Arshud Dar
- A Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| |
Collapse
|
9
|
Magalhães D, Soares-da-Silva P, Magro F. The effect of PRR ligands on the membrane potential of intestinal epithelial cells. Pharmacol Rep 2017; 69:978-984. [DOI: 10.1016/j.pharep.2017.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/11/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
|
10
|
Gajanayaka N, O'Hara S, Konarski Y, Fernandes J, Muthumani K, Kozlowski M, Angel JB, Kumar A. HIV and HIV-Tat inhibit LPS-induced IL-27 production in human macrophages by distinct intracellular signaling pathways. J Leukoc Biol 2017; 102:925-939. [PMID: 28698313 DOI: 10.1189/jlb.4a0716-332rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 07/09/2017] [Accepted: 07/11/2017] [Indexed: 11/24/2022] Open
Abstract
Monocyte-derived Mϕs (MDMs) from HIV-infected patients and MDM infected in vitro with HIV exhibit a reduced ability to secrete various cytokines, including IL-12. Recently, IL-27, an IL-12 family cytokine, was shown to inhibit HIV replication in Mϕ. Whether HIV infection or HIV accessory protein(s) impact IL-27 production in Mϕs remains unknown. Herein, we show that in vitro HIV infection, as well as intracellular HIV-Tat (Tat) and Tat peptides, inhibit LPS-induced IL-27 production in human MDMs, suggesting impairment of the TLR4 signaling pathway. To understand the signaling pathways governing HIV or Tat-mediated inhibition of LPS-induced IL-27 production, we first demonstrated that p38 MAPK, PI3K, Src-homology region 2 domain-containing tyrosine phosphatase 1 (SHP-1), and Src kinases regulate LPS-induced IL-27 production in MDMs. Tat caused down-regulation of TNFR-associated factor (TRAF)-6 and inhibitor of apoptosis 1 (cIAP-1) and subsequently decreased phosphorylation of downstream PI3K and p38 MAPKs, which were implicated in LPS-induced IL-27 production. Whereas SHP-1 and Src kinases regulated LPS-induced IL-27 production, Tat did not inhibit these kinases, suggesting that they were not involved in Tat-mediated inhibition of LPS-induced IL-27 production. In contrast to Tat, in vitro HIV infection of MDM inhibited LPS-induced IL-27 production via inhibition of p38 MAPK activation. Overall, HIV and Tat inhibit LPS-induced IL-27 production in human macrophages via distinct mechanisms: Tat through the inhibition of cIAP-1-TRAF-6 and subsequent inhibition of PI3K and p38 MAPKs, whereas HIV through the inhibition of p38 MAPK activation.
Collapse
Affiliation(s)
- Niranjala Gajanayaka
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Research Institute, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Shifawn O'Hara
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Research Institute, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Yulia Konarski
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Research Institute, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Jason Fernandes
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Kar Muthumani
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Maya Kozlowski
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jonathan B Angel
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; and
| | - Ashok Kumar
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada; .,Research Institute, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada.,Department Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Ye J, Wang Y, Liu X, Li L, Opejin A, Hsueh EC, Luo H, Wang T, Hawiger D, Peng G. TLR7 Signaling Regulates Th17 Cells and Autoimmunity: Novel Potential for Autoimmune Therapy. THE JOURNAL OF IMMUNOLOGY 2017; 199:941-954. [PMID: 28652396 DOI: 10.4049/jimmunol.1601890] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/26/2017] [Indexed: 01/20/2023]
Abstract
Innate regulation through TLR signaling has been shown to be important for promoting T cell subset development and function. However, limited information is known about whether differential TLR signaling can selectively inhibit Th17 and/or Th1 cells, which are important for controlling excessive inflammation and autoimmune responses. In this article, we demonstrate that activation of TLR7 signaling in T cells can inhibit Th17 cell differentiation from naive T cells and IL-17 production in established Th17 cells. We further report that downregulation of STAT3 signaling is responsible for TLR7-mediated inhibition of Th17 cells due to induction of suppressor of cytokine signaling 3 and 5. TLR7-mediated suppression of Th17 cells does not require dendritic cell involvement. In addition, we show that TLR7 signaling can suppress Th1 cell development and function through a mechanism different from Th17 cell suppression. Importantly, our complementary in vivo studies demonstrate that treatment with the TLR7 ligand imiquimod can inhibit Th1 and Th17 cells, resulting in the prevention of, and an immunotherapeutic reduction in, experimental autoimmune encephalomyelitis. These studies identify a new strategy to manipulate Th17/Th1 cells through TLR7 signaling, with important implications for successful immunotherapy against autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Jian Ye
- Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Yadan Wang
- Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Xia Liu
- Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Lingyun Li
- Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Adeleye Opejin
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Eddy C Hsueh
- Division of General Surgery, Department of Surgery, Saint Louis University School of Medicine, St. Louis, MO 63110; and
| | - Huanle Luo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104; .,Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104
| |
Collapse
|
12
|
Sun X, Yu W, Pang Q, Hu T. Conjugation Reaction with 8-Arm PEG Markedly Improves the Immunogenicity of Mycobacterium tuberculosis CFP10-TB10.4 Fusion Protein. Bioconjug Chem 2017; 28:1658-1668. [DOI: 10.1021/acs.bioconjchem.7b00131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiaowei Sun
- College
of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Weili Yu
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Quanhai Pang
- College
of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China
| | - Tao Hu
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
13
|
Elshabrawy HA, Essani AE, Szekanecz Z, Fox DA, Shahrara S. TLRs, future potential therapeutic targets for RA. Autoimmun Rev 2016; 16:103-113. [PMID: 27988432 DOI: 10.1016/j.autrev.2016.12.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 01/27/2023]
Abstract
Toll like receptors (TLR)s have a central role in regulating innate immunity and in the last decade studies have begun to reveal their significance in potentiating autoimmune diseases such as rheumatoid arthritis (RA). Earlier investigations have highlighted the importance of TLR2 and TLR4 function in RA pathogenesis. In this review, we discuss the newer data that indicate roles for TLR5 and TLR7 in RA and its preclinical models. We evaluate the pathogenicity of TLRs in RA myeloid cells, synovial tissue fibroblasts, T cells, osteoclast progenitor cells and endothelial cells. These observations establish that ligation of TLRs can transform RA myeloid cells into M1 macrophages and that the inflammatory factors secreted from M1 and RA synovial tissue fibroblasts participate in TH-17 cell development. From the investigations conducted in RA preclinical models, we conclude that TLR-mediated inflammation can result in osteoclastic bone erosion by interconnecting the myeloid and TH-17 cell response to joint vascularization. In light of emerging unique aspects of TLR function, we summarize the novel approaches that are being tested to impair TLR activation in RA patients.
Collapse
Affiliation(s)
- Hatem A Elshabrawy
- Division of Rheumatology, Jesse Brown VA, Medical Center, Chicago, IL 60612, USA; Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, IL 60612, USA
| | - Abdul E Essani
- Division of Rheumatology, Jesse Brown VA, Medical Center, Chicago, IL 60612, USA; Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, IL 60612, USA
| | - Zoltán Szekanecz
- Department of Rheumatology, Institute of Medicine, University of Debrecen Faculty of Medicine, Nagyerdei Str 98, Debrecen H-4004, Hungary
| | - David A Fox
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shiva Shahrara
- Division of Rheumatology, Jesse Brown VA, Medical Center, Chicago, IL 60612, USA; Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, IL 60612, USA.
| |
Collapse
|
14
|
Pavlović B, Tomić S, Đokić J, Vasilijić S, Vučević D, Lukić J, Gruden-Movsesijan A, Ilić N, Marković M, Čolić M. Fast dendritic cells matured with Poly (I:C) may acquire tolerogenic properties. Cytotherapy 2015; 17:1763-76. [PMID: 26455276 DOI: 10.1016/j.jcyt.2015.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND AIMS Because of the labor-intensive and time-consuming conventional protocols for the generation of dendritic cells (DCs) as the most promising tools for anti-cancer therapy that enable the induction of a T-helper (Th)1-mediated anti-tumor immune response, the use of short-term protocols has been proposed. However, data on the applicability of such protocols in cancer immunotherapy are quite limited. METHODS We compared the phenotypic and functional capability of fast DCs (fDCs) differentiated for 24 h and then matured for 48 h with Poly (I:C), a strong Th1-promoting agent, with donor-matched conventional DCs (cDCs) differentiated for 5 days and matured likewise. RESULTS Of 12 donors tested, we identified seven whose monocytes failed to develop into immunogenic DCs through the use of fDC protocol, on the basis of incomplete downregulation of CD14, low expression of CD1a and macrophage-like morphology. Such fDCs have significantly lower expression of CD83, CD86, CCR7 and CD40, weaker allo-stimulatory Th1- and Th17-polarizing capacity caused by poor production of interleukin (IL)-12p70 and IL-23 and high production of IL-10, and prominent Th2-polarizing capacity, compared with donor-matched cDCs. Furthermore, such fDCs had tolerogenic properties as judged by higher expression of indolamine dioxigenase-3, IDO-1 and IL-1β and induction of a higher percentage of CD4(+)CD25(+)FoxP3(+) T cells. These findings correlated with increased transforming growth factor (TGF)-β production by fDC-primed CD3(+)T cells and their stronger anti-proliferative capacity. CONCLUSIONS We emphasize that although fDCs could probably be applied as an alternative to cDCs for cancer therapy, the fDC protocol should not be applied to donors whose DCs acquire tolerogenic capabilities.
Collapse
Affiliation(s)
- Bojan Pavlović
- Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Sergej Tomić
- Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Jelena Đokić
- Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Saša Vasilijić
- Institute for Medical Research, Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Dragana Vučević
- Institute for Medical Research, Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Jovanka Lukić
- Institute for Molecular Genetics and Genetic Engineering, Laboratory for Molecular Microbiology, University of Belgrade, Belgrade, Serbia
| | | | - Nataša Ilić
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Milan Marković
- Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia; Medical Faculty, University of Niš, Niš, Serbia
| | - Miodrag Čolić
- Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia; Medical Faculty, University of Niš, Niš, Serbia.
| |
Collapse
|
15
|
Dominguez-Villar M, Gautron AS, de Marcken M, Keller MJ, Hafler DA. TLR7 induces anergy in human CD4(+) T cells. Nat Immunol 2015; 16:118-28. [PMID: 25401424 PMCID: PMC4413902 DOI: 10.1038/ni.3036] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/20/2014] [Indexed: 02/06/2023]
Abstract
The recognition of microbial patterns by Toll-like receptors (TLRs) is critical for activation of the innate immune system. Although TLRs are expressed by human CD4(+) T cells, their function is not well understood. Here we found that engagement of TLR7 in CD4(+) T cells induced intracellular calcium flux with activation of an anergic gene-expression program dependent on the transcription factor NFATc2, as well as unresponsiveness of T cells. As chronic infection with RNA viruses such as human immunodeficiency virus type 1 (HIV-1) induces profound dysfunction of CD4(+) T cells, we investigated the role of TLR7-induced anergy in HIV-1 infection. Silencing of TLR7 markedly decreased the frequency of HIV-1-infected CD4(+) T cells and restored the responsiveness of those HIV-1(+) CD4(+) T cells. Our results elucidate a previously unknown function for microbial pattern-recognition receptors in the downregulation of immune responses.
Collapse
Affiliation(s)
| | - Anne-Sophie Gautron
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520
| | - Marine de Marcken
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520
| | - Marla J. Keller
- Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461
| | - David A. Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
16
|
Bergmann-Leitner ES, Leitner WW. Adjuvants in the Driver's Seat: How Magnitude, Type, Fine Specificity and Longevity of Immune Responses Are Driven by Distinct Classes of Immune Potentiators. Vaccines (Basel) 2014; 2:252-96. [PMID: 26344620 PMCID: PMC4494256 DOI: 10.3390/vaccines2020252] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/20/2014] [Accepted: 03/28/2014] [Indexed: 12/16/2022] Open
Abstract
The mechanism by which vaccine adjuvants enhance immune responses has historically been considered to be the creation of an antigen depot. From here, the antigen is slowly released and provided to immune cells over an extended period of time. This "depot" was formed by associating the antigen with substances able to persist at the injection site, such as aluminum salts or emulsions. The identification of Pathogen-Associated Molecular Patterns (PAMPs) has greatly advanced our understanding of how adjuvants work beyond the simple concept of extended antigen release and has accelerated the development of novel adjuvants. This review focuses on the mode of action of different adjuvant classes in regards to the stimulation of specific immune cell subsets, the biasing of immune responses towards cellular or humoral immune response, the ability to mediate epitope spreading and the induction of persistent immunological memory. A better understanding of how particular adjuvants mediate their biological effects will eventually allow them to be selected for specific vaccines in a targeted and rational manner.
Collapse
Affiliation(s)
- Elke S Bergmann-Leitner
- US Military Malaria Research Program, Malaria Vaccine Branch, 503 Robert Grant Ave, 3W65, Silver Spring, MD 20910, USA.
| | - Wolfgang W Leitner
- Division on Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 6610 Rockledge Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Mihajlovic D, Rajkovic I, Chinou I, Colic M. Dose-dependent immunomodulatory effects of 10-hydroxy-2-decenoic acid on human monocyte-derived dendritic cells. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.01.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
18
|
Dzopalic T, Rajkovic I, Dragicevic A, Colic M. The response of human dendritic cells to co-ligation of pattern-recognition receptors. Immunol Res 2012; 52:20-33. [PMID: 22392051 DOI: 10.1007/s12026-012-8279-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DCs) are key antigen-presenting cells that express a wide variety of pattern-recognition receptors (PRRs). Triggering of a single PRR, especially Toll-like receptors (TLRs) and C-type lectins, induces maturation of DCs, but cooperativity between multiple PRRs is needed in order to achieve an effective immune response. In this review, we summarize the published data related to the effect of individual and joint PRR agonists on DCs and Langerhans-like cells derived from monocytes (MoDCs and MoLCs, respectively). Our results demonstrate that MoDCs co-stimulated with TLR3/TLR7 and TLR3/Dectin-1 ligands induced superior T helper (Th)1 and Th17 immune responses, compared to effects of single agonists. The opposite outcome was observed after co-ligation of TLR3 and Langerin on MoLCs. These findings may be relevant to improve strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Tanja Dzopalic
- Medical Faculty of the Military Medical Academy, University of Defense in Belgrade, Crnotravska 17, 11002 Belgrade, Serbia
| | | | | | | |
Collapse
|
19
|
Dzopalic T, Dragicevic A, Bozic B, Rajkovic I, Colic M. Dose-dependent response of dendritic cells to 7-thia-8-oxo-guanosine and its modulation by polyinosinic:polycytidylic acid. Exp Biol Med (Maywood) 2012; 237:784-92. [PMID: 22859738 DOI: 10.1258/ebm.2012.011409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Targeting the endosomal Toll-like receptors (TLRs) by specific agonists seems to be a promising tool for stimulation of the immunogenicity of dendritic cells (DCs). Since the functional outcome upon the engagement of TLRs may be different, the aim of our study was to examine if and how different concentrations of 7-thia-8-oxo-guanosine (7-TOG), a selective TLR7 agonist, influence differentiation, maturation and functions of human monocyte-derived DCs (MoDCs) and if its effects on MoDCs could be modulated by co-ligation of TLR3. Immature MoDCs were treated with different concentrations of 7-TOG (25, 100 and 250 μmol/L) alone, or together with polyinosinic:polycytidylic acid, Poly (I:C) (10 ng/mL), a selective TLR3 agonist, for an additional 48 h. We showed that the highest concentration of 7-TOG stimulated the differentiation, maturation and allostimulatory capability of MoDCs. These changes were accompanied by an increased production of interleukin 12 (IL-12) and induction of T helper (Th)1 and Th17 immune responses. Both Th responses were significantly augmented by additional stimulation of MoDCs with Poly (I:C). The treatment of MoDCs with the intermediate concentration of 7-TOG resulted in the up-regulation of co-stimulatory molecule (CD86) and increased production of IL-1β and IL-6 by MoDCs, followed by the stimulation of the Th17 immune response. The lowest concentration of 7-TOG down-regulated the expression of CD40 on MoDCs and potentiated the Th2 immune response. The Th2 response was not significantly modulated by additional treatment of MoDCs with Poly (I:C), but this combination of TLR3/TLR7 agonists also stimulated both Th1 and Th17 responses. In conclusion, our results show that 7-TOG influences the phenotype and functions of MoDCs in a dose-dependent manner and suggests that fine-tuned signaling through TLR7 may be modified by the engagement of TLR3, resulting in a different outcome of immune response.
Collapse
Affiliation(s)
- Tanja Dzopalic
- Medical Faculty of the Military Medical Academy, University of Defense in Belgrade, Crnotravska 17, 11002 Belgrade, Serbia
| | | | | | | | | |
Collapse
|
20
|
Abstract
INTRODUCTION Adjuvants potentiate immune responses, reducing the amount and dosing frequency of antigen required for inducing protective immunity. Adjuvants are of special importance when considering subunit, epitope-based or more unusual vaccine formulations lacking significant innate immunogenicity. While numerous adjuvants are known, only a few are licensed for human use; principally alum, and squalene-based oil-in-water adjuvants. Alum, the most commonly used, is suboptimal. There are many varieties of adjuvant: proteins, oligonucleotides, drug-like small molecules and liposome-based delivery systems with intrinsic adjuvant activity being perhaps the most prominent. AREAS COVERED This article focuses on small molecules acting as adjuvants, with the author reviewing their current status while highlighting their potential for systematic discovery and rational optimisation. Known small molecule adjuvants (SMAs) can be synthetically complex natural products, small oligonucleotides or drug-like synthetic molecules. The author provides examples of each class, discussing adjuvant mechanisms relevant to SMAs, and exploring the high-throughput discovery of SMAs. EXPERT OPINION SMAs, particularly synthetic drug-like adjuvants, are amenable to the plethora of drug-discovery techniques able to optimise the properties of biologically active small molecules. These range from laborious synthetic modifications to modern, rational, effort-efficient computational approaches, such as QSAR and structure-based drug design. In principal, any property or characteristic can thus be designed in or out of compounds, allowing us to tailor SMAs to specific biological functions, such as targeting specific cells or pathways, in turn affording the power to tailor SMAs to better address different diseases.
Collapse
Affiliation(s)
- Darren R Flower
- University of Aston, School of Life and Health Sciences, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
21
|
de Koning HD, Simon A, Zeeuwen PLJM, Schalkwijk J. Pattern recognition receptors in immune disorders affecting the skin. J Innate Immun 2012; 4:225-40. [PMID: 22398307 DOI: 10.1159/000335900] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 12/14/2011] [Indexed: 12/22/2022] Open
Abstract
Pattern recognition receptors (PRRs) evolved to protect organisms against pathogens, but excessive signaling can induce immune responses that are harmful to the host. Putative PRR dysfunction is associated with numerous immune disorders that affect the skin, such as systemic lupus erythematosus, cryopyrin-associated periodic syndrome, and primary inflammatory skin diseases including psoriasis and atopic dermatitis. As yet, the evidence is often confined to genetic association studies without additional proof of a causal relationship. However, insight into the role of PRRs in the pathophysiology of some disorders has already resulted in new therapeutic approaches based on immunomodulation of PRRs.
Collapse
Affiliation(s)
- Heleen D de Koning
- Department of Dermatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
22
|
Hwang I, Ahn G, Park E, Ha D, Song JY, Jee Y. An acidic polysaccharide of Panax ginseng ameliorates experimental autoimmune encephalomyelitis and induces regulatory T cells. Immunol Lett 2011; 138:169-78. [DOI: 10.1016/j.imlet.2011.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 04/10/2011] [Accepted: 04/10/2011] [Indexed: 10/18/2022]
|
23
|
Fidock MD, Souberbielle BE, Laxton C, Rawal J, Delpuech-Adams O, Corey TP, Colman P, Kumar V, Cheng JB, Wright K, Srinivasan S, Rana K, Craig C, Horscroft N, Perros M, Westby M, Webster R, van der Ryst E. The innate immune response, clinical outcomes, and ex vivo HCV antiviral efficacy of a TLR7 agonist (PF-4878691). Clin Pharmacol Ther 2011; 89:821-9. [PMID: 21451504 DOI: 10.1038/clpt.2011.60] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hepatitis C virus (HCV) infection is an issue of global concern, and studies are ongoing to identify new therapies that are both effective and safe. PF-4878691 is a Toll-like receptor 7 (TLR7) agonist modeled so as to dissociate its antiviral activities from its inflammatory activities. In a proof-of-mechanism study in healthy volunteers who received doses of 3, 6, and 9 mg of PF-4878691 twice a week for 2 weeks, PF-4878691 induced biomarkers of the immune and interferon (IFN) responses in a dose-dependent and dose-frequency-related manner. A novel finding was induction of TLR7 expression in vivo in response to PF-4878691, leading to an amplified biomarker response. A nonresponder at the 9-mg dose had a polymorphism in the IFN-α receptor 1 subunit (Val168Leu). Two subjects who had received 9-mg doses experienced serious adverse events (SAEs), characterized by flu-like symptoms, hypotension, and lymphopenia, leading to early termination of the study. TLR7 stimulation results in a pharmacologic response at levels commensurate with predicted antiviral efficacy, but these doses are associated with SAEs, raising concerns about the therapeutic window of this class of compounds for the treatment of HCV infection.
Collapse
Affiliation(s)
- M D Fidock
- Sandwich Research Laboratories, Pfizer Ltd, Sandwich, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kimber I, Basketter DA, Gerberick GF, Ryan CA, Dearman RJ. Chemical allergy: translating biology into hazard characterization. Toxicol Sci 2010; 120 Suppl 1:S238-68. [PMID: 21097995 DOI: 10.1093/toxsci/kfq346] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The induction by chemicals of allergic sensitization and allergic disease is an important and challenging branch of toxicology. Skin sensitization resulting in allergic contact dermatitis represents the most common manifestation of immunotoxicity in humans, and many hundreds of chemicals have been implicated as skin sensitizers. There are far fewer chemicals that have been shown to cause sensitization of the respiratory tract and asthma, but the issue is no less important because hazard identification remains a significant challenge, and occupational asthma can be fatal. In all areas of chemical allergy, there have been, and remain still, intriguing challenges where progress has required a close and productive alignment between immunology, toxicology, and clinical medicine. What the authors have sought to do here is to exemplify, within the framework of chemical allergy, how an investment in fundamental research and an improved understanding of relevant biological and biochemical mechanisms can pay important dividends in driving new innovations in hazard identification, hazard characterization, and risk assessment. Here we will consider in turn three specific areas of research in chemical allergy: (1) the role of epidermal Langerhans cells in the development of skin sensitization, (2) T lymphocytes and skin sensitization, and (3) sensitization of the respiratory tract. In each area, the aim is to identify what has been achieved and how that progress has impacted on the development of new approaches to toxicological evaluation. Success has been patchy, and there is still much to be achieved, but the journey has been fascinating and there have been some very important developments. The conclusion drawn is that continued investment in research, if coupled with an appetite for translating the fruits of that research into imaginative new tools for toxicology, should continue to better equip us for tackling the important challenges that remain to be addressed.
Collapse
Affiliation(s)
- Ian Kimber
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| | | | | | | | | |
Collapse
|