1
|
Pan W, Zhao Z, Wu J, Fan Q, Huang H, He R, Shen H, Zhao Z, Feng S, Gan G, Chen Z, Ma M, Sun C, Zhang L. LACpG10-HL Functions Effectively in Antibiotic-Free and Healthy Husbandry by Improving the Innate Immunity. Int J Mol Sci 2022; 23:ijms231911466. [PMID: 36232768 PMCID: PMC9569488 DOI: 10.3390/ijms231911466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 12/05/2022] Open
Abstract
Antibiotics are broadly restricted in modern husbandry farming, necessitating the need for efficient and low-cost immunomodulatory preparations in antibiotic-free and healthful farming. As is known to all, CpG oligonucleotides (CpG-ODNs, an effective innate immunostimulatory agent) recognized by TLR9 in mammals (while TLR21 in avians) could collaborate with some united agent to induce stronger immune responses, but the cost is prohibitively expensive for farmers. Here, considering the coordination between TLR2 and TLR9/TLR21, we firstly proposed the idea that the well-fermented Lactococcus lactis could be utilized as a CpG-plasmid carrier (LACpG10) to enhance the host’s innate immunity against pathogenic invasion. In the present study, after obtaining LACpG10-HL from homogenized and lyophilized recombinant strain LACpG10, we treated primary chicken lymphocytes, two cell lines (HD11 and IPEC-J2), and chickens with LACpG10-HL, CpG plasmids (pNZ8148-CpG10), and other stimulants, and respectively confirmed the effects by conducting qRT-PCR, bacterial infection assays, and a zoological experiment. Our data showed that LACpG10-HL could induce excellent innate immunity by regulating autophagy reactions, cytokine expression, and motivating PRRs. Interestingly, despite having no direct antiseptic effect, LACpG10-HL improved the antibacterial capacities of lymphocytes and enterocytes at the first line of defense. Most importantly, water-supplied LACpG10-HL treatment reduced the average adverse event rates, demonstrating that LACpG10-HL maintained its excellent immunostimulatory and protective properties under farming conditions. Our research not only contributes to revealing the satisfactory effects of LACpG10-HL but also sheds new light on a cost-effective solution with optimal immune effects in green, antibiotic-free, and healthful husbandry farming.
Collapse
|
2
|
Tian Y, Hu Q, Zhang R, Zhou B, Xie D, Wang Y, Zhang X, Yang L. Rational design of innate defense regulator peptides as tumor vaccine adjuvants. NPJ Vaccines 2021; 6:75. [PMID: 34016984 PMCID: PMC8138013 DOI: 10.1038/s41541-021-00334-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 04/06/2021] [Indexed: 02/05/2023] Open
Abstract
The development of adjuvants has been an empirical process. Efforts to develop a new design and evaluation system for novel adjuvants are not only desirable but also necessary. Moreover, composite adjuvants that contain two or more types of adjuvants to synergistically enhance the immune response are important for adjuvant and vaccine design. Innate defense regulator peptides (IDRs) are promising adjuvants for clinical immunotherapy because they exhibit multifaceted immunomodulatory capabilities. However, the rational design and discovery of IDRs that have improved immunomodulatory activities have been hampered by the lack of screening techniques and the great challenges in the identification of their interaction partners. Here, we describe a screening and evaluation system for IDR design. On the basis of in vitro screening, the optimized IDR DP7 recruited neutrophils, monocytes and macrophages to the site of infection. The adjuvant, comprising the DP7 and CpG oligonucleotide (CpG), induced chemokine/cytokine expression, enhanced the antigen uptake by dendritic cells and upregulated surface marker expression in dendritic cells. Vaccination with the NY-ESO-1 or OVA antigens combined with the adjuvant alum/CpG/DP7 strongly suppressed tumor growth in mice which was due to the improvement of antigen-specific humoral and cellular immunity. Regarding the mechanism of action, GPR35 may be the potential interaction partner of DP7. Our study revealed the potential application of the screening and evaluation system as a strategy for rationally designing effective IDRs or composite adjuvants and identifying their mechanism of action.
Collapse
Affiliation(s)
- Yaomei Tian
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong, Sichuan, PR China
| | - Qiuyue Hu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Rui Zhang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Bailing Zhou
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Daoyuan Xie
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Yuanda Wang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Xueyan Zhang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Li Yang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
3
|
Li J, Fan Q, Cai H, Deng J, Ming F, Li J, Zeng M, Ma M, Zhao P, Liang Q, Jia J, Zhang S, Zhang L. Identification of RBP4 from bighead carp (Hypophthalmichthys nobilis) / silver carp (Hypophthalmichthys molitrix) and effects of CpG ODN on RBP4 expression under A. hydrophila challenge. FISH & SHELLFISH IMMUNOLOGY 2020; 100:476-488. [PMID: 32209398 DOI: 10.1016/j.fsi.2020.03.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/23/2020] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
Retinol-binding protein 4 (RBP4) is known as a highly conserved adipokine for immune activation. Aeromonas hydrophila (A. hydrophila) is the most common zoonotic pathogen in aquaculture, which causes serious economic losses to aquaculture, especially to bighead carp (Hypophthalmichthys nobilis, H. nobilis) and silver carp (Hypophthalmichthys molitrix, H. molitrix). Recent studies along with our previous findings have shown that synthetic oligodeoxynucleotides containing CpG motifs (CpG ODN) can play a good role in aquatic animals against infection. In order to clarify the relationship between CpG ODN and RBP4 under A. hydrophila infection, firstly, full-length RBP4 cDNAs from H. nobilis and H. molitrix were cloned. And characteristics of RBP4, including sequence and structure, tissue distribution and genetic evolution were analyzed. In addition, mRNA expression levels of RBP4, cytokine, toll-like receptors (TLRs), morbidity and survival rates of H. nobilis and H. molitrix were observed post CpG ODN immunization or following challenge. The results indicated that hn/hm_RBP4 (RBP4 genes obtained from H. nobilis and H. molitrix) had the highest homology with Megalobrama amblycephala. Distribution data showed that the expression level of hn_RBP4 mRNA was higher than that of hm_RBP4. After CpG ODN immunization followed by A.hydrophila challenge, significantly higher survival was observed in both carps, together with up-regulated RBP4 expression. Meanwhile, hn/hm_IL-1β level was relatively flat (and decreased), hn/hm_IFN-γ, hn/hm_TLR4 and hn/hm_TLR9 levels increased significantly, but hn/hm_STRA6 showed no significant change, compared with control. Moreover, CpG ODN immunization could induce stronger immune protective responses (higher IFN-γ/gentle IL-1β level and lower morbidity/higher survival rate) against A. hydrophila in H. nobilis, along with higher RBP4 level, when compared with that in H. molitrix. These results demonstrated that RBP4 was well involved in the immune protection of CpG ODN. Based on the results, we speculated that in the case of A. hydrophila infection, TLR9 signaling pathway was activated by CpG ODN. Subsequently, CpG ODN up-regulated RBP4, and RBP4 activated TLR4 signaling pathway. Then TLR4 and TLR9 synergistically improved the anti-infection responses. Our findings have good significance for improving resistance to pathogen infection in freshwater fish.
Collapse
Affiliation(s)
- Jiaoqing Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qin Fan
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Haiming Cai
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jinbo Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Feiping Ming
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jiayi Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Min Zeng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Miaopeng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Peijing Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qianyi Liang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Junhao Jia
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Shuxia Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Linghua Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
4
|
Cai H, Wei J, Shen H, Li J, Fan Q, Zhao Z, Deng J, Ming F, Zeng M, Ma M, Zhao P, Liang Q, Jia J, Zhang S, Zhang L. Molecular cloning, characterization and expression profiles of Annexin family (ANXA1~A6) in yellow catfish (Pelteobagrus fulvidraco) and ANX regulation by CpG ODN responding to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2020; 99:609-630. [PMID: 32088284 DOI: 10.1016/j.fsi.2020.02.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/09/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Up to now, many previous reports have emphasized that Annexins (ANX) family played an important role in immune responses. Aeromonas hydrophila (A. hydrophila), the most common zoonotic pathogenic bacteria of yellow catfish (Pelteobagrus fulvidraco), can cause serious economic loss, especially to yellow catfish with high economic value. In our previous work, we demonstrated that synthetic oligodeoxynucleotides containing CpG motifs (CpG ODN) owned powerful immunostimulatory activity. However, the relationship among Pelteobagrus fulvidraco Annexins (Pf_ANX), CpG ODN and A. hydrophila is unknown. Therefore, we cloned Pf_ANX1-6 genes and analyzed its sequences, structures, genetic evolution, post-translation modifications (PTMs), Ca2+ ion binding sites and tissue distribution to reveal the relevance. In addition, we investigated the responses of ANXA1-6 and cytokines in intestine and spleen as well as morbidity/survival rate of fish post CpG ODN immunization and/or A. hydrophila infection. The results showed that compared with challenge alone (challenge-CK) group, the CpG immunization following challenge (CpG-challenge) group displayed relatively flat IL-1β level throughout in both organs. Meanwhile, the expression of IFN-γ and morbidity/survival rate of fish in CpG-challenge group showed a great improvement compared with the challenge-CK group. Our results indicated that CpG ODN could improve morbidity/survival by up-regulating Pf_ANXA 1, 2 and 5 in the intestine and spleen to ameliorate inflammatory responses and promote anti-infective responses. Our findings offer some important insights into ANX related to the immunity of fish infection and lay a theoretical basis for the prevention and treatment of fish infections.
Collapse
Affiliation(s)
- Haiming Cai
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jiatian Wei
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Haokun Shen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jiayi Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qin Fan
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Zengjue Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jinbo Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Feiping Ming
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Min Zeng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Miaopeng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Peijing Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qianyi Liang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Junhao Jia
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Shuxia Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Linghua Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
5
|
Rodríguez-Carlos A, Martinez-Gutierrez F, Torres-Juarez F, Rivas-Santiago B. Antimicrobial Peptides-based Nanostructured Delivery Systems: An Approach for Leishmaniasis Treatment. Curr Pharm Des 2019; 25:1593-1603. [PMID: 31264542 DOI: 10.2174/1381612825666190628152842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Leishmaniasis is a major health problem mainly in tropical and subtropical areas worldwide, although in the last decades it has been treated with the use of conventional drugs such as amphotericin, the emergence of multidrug-resistant strains has raised a warning signal to the public health systems thus a new call for the creation of new leishmanicidal drugs is needed. METHODS The goal of this review was to explore the potential use of antimicrobial peptides-based nanostructured delivery systems as an approach for leishmaniasis treatment. RESULTS Within these new potential drugs, human host defense peptides (HDP) can be included given their remarkable antimicrobial activity and their outstanding immunomodulatory functions for the therapy of leishmaniasis. CONCLUSION Though several approaches have been done using these peptides, new ways for delivering HDPs need to be analyzed, such is the case for nanotechnology.
Collapse
Affiliation(s)
- Adrian Rodríguez-Carlos
- Medical Research Unit- Zacatecas-IMSS, Zacatecas, Mexico.,División de Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí. Mexico
| | - Fidel Martinez-Gutierrez
- Microbiology Laboratory, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, Centro 78300, San Luis, S.L.P, Mexico
| | | | | |
Collapse
|
6
|
The novel complex combination of alum, CpG ODN and HH2 as adjuvant in cancer vaccine effectively suppresses tumor growth in vivo. Oncotarget 2018; 8:45951-45964. [PMID: 28515346 PMCID: PMC5542240 DOI: 10.18632/oncotarget.17504] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/02/2017] [Indexed: 02/05/2023] Open
Abstract
Single-component adjuvant is prone to eliciting a specific type of Th1 or Th2 response. So, the development of combinatorial adjuvants inducing a robust mixed Th1/Th2 response is a promising vaccination strategy against cancer. Here, we describe a novel combination of aluminum salts (alum), CpG oligodeoxynucleotide (CpG) and innate defense regulator peptide HH2 for improving anti-tumor immune responses. The CpG-HH2 complex significantly enhanced the production of IFN-γ, TNF-α and IL-1β, promoted the uptake of antigen and strengthened the activation of p38, Erk1/2 and NF-κB in vitro, compared to CpG or HH2 alone. Immunization with NY-ESO-1 antigen plus alum-CpG-HH2 combinatorial adjuvant effectively inhibited tumor growth and reduced tumor burden in prophylactic and therapeutic tumor models and even in passive serum or cellular therapy. In addition, co-administration of NY-ESO-1 with alum-CpG-HH2 combinatorial adjuvant markedly activated NK cell cytotoxicity, induced antibody-dependent cellular cytotoxicity (ADCC), dramatically elicited cytotoxic T lymphocytes (CTLs) response, and increased infiltrating lymphocytes in tumors. Moreover, in vivo depletion of CD8+ T cells completely and depletion of NK cells partially blocked the anti-tumor activity of NY-ESO-1-alum-CpG-HH2 immunization. Overall, our results demonstrate a novel adjuvant combination for cancer vaccine with efficient immunomodulation by stimulating innate immunity and mediating adaptive immunity.
Collapse
|
7
|
Li R, Zhang L, Shi P, Deng H, Li Y, Ren J, Fu X, Zhang L, Huang J. Immunological effects of different types of synthetic CpG oligodeoxynucleotides on porcine cells. RSC Adv 2017. [DOI: 10.1039/c7ra04493c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The agonists of toll-like receptor 9, synthetic oligodeoxynucleotides (ODNs) containing CpG sequences, stimulate innate and adaptive immune responses in humans and a variety of animal species.
Collapse
Affiliation(s)
- Ruiqiao Li
- School of Life Sciences
- Tianjin University
- Tianjin
- China
| | - Lilin Zhang
- School of Life Sciences
- Tianjin University
- Tianjin
- China
| | - Peidian Shi
- School of Life Sciences
- Tianjin University
- Tianjin
- China
| | - Hui Deng
- School of Life Sciences
- Tianjin University
- Tianjin
- China
| | - Yi Li
- School of Life Sciences
- Tianjin University
- Tianjin
- China
| | - Jie Ren
- School of Life Sciences
- Tianjin University
- Tianjin
- China
| | - Xubin Fu
- Tianjin Ruipu Biotechnology Limited Co
- Tianjin
- China
| | - Lei Zhang
- School of Life Sciences
- Tianjin University
- Tianjin
- China
| | - Jinhai Huang
- School of Life Sciences
- Tianjin University
- Tianjin
- China
| |
Collapse
|
8
|
Srivastava A, Gowda DV, Madhunapantula SV, Shinde CG, Iyer M. Mucosal vaccines: a paradigm shift in the development of mucosal adjuvants and delivery vehicles. APMIS 2015; 123:275-88. [PMID: 25630573 DOI: 10.1111/apm.12351] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/05/2014] [Indexed: 12/25/2022]
Abstract
Mucosal immune responses are the first-line defensive mechanisms against a variety of infections. Therefore, immunizations of mucosal surfaces from which majority of infectious agents make their entry, helps to protect the body against infections. Hence, vaccinization of mucosal surfaces by using mucosal vaccines provides the basis for generating protective immunity both in the mucosal and systemic immune compartments. Mucosal vaccines offer several advantages over parenteral immunization. For example, (i) ease of administration; (ii) non-invasiveness; (iii) high-patient compliance; and (iv) suitability for mass vaccination. Despite these benefits, to date, only very few mucosal vaccines have been developed using whole microorganisms and approved for use in humans. This is due to various challenges associated with the development of an effective mucosal vaccine that can work against a variety of infections, and various problems concerned with the safe delivery of developed vaccine. For instance, protein antigen alone is not just sufficient enough for the optimal delivery of antigen(s) mucosally. Hence, efforts have been made to develop better prophylactic and therapeutic vaccines for improved mucosal Th1 and Th2 immune responses using an efficient and safe immunostimulatory molecule and novel delivery carriers. Therefore, in this review, we have made an attempt to cover the recent advancements in the development of adjuvants and delivery carriers for safe and effective mucosal vaccine production.
Collapse
Affiliation(s)
- Atul Srivastava
- Department of Pharmaceutics, JSS College of Pharmacy, JSS University, Mysore, India
| | | | | | | | | |
Collapse
|
9
|
CpG oligodeoxynucleotide protect neonatal piglets from challenge with the enterotoxigenic E. coli. Vet Immunol Immunopathol 2014; 161:66-76. [PMID: 25081388 DOI: 10.1016/j.vetimm.2014.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/02/2014] [Accepted: 07/06/2014] [Indexed: 11/23/2022]
Abstract
CpG motifs activates mammalian lymphocytes and macrophages to produce cytokines and polyclonal Ig. These include IFN-γ, IL-12, TNF-a, which are important in the control of bacterial infection. But thus far, the innate immunostimulatory effects of CpG ODN against pathogen have been established mainly in mouse, monkey, sheep, chicken, but not in neonatal piglets. The purpose of this study is to determine the potential protection of CpG ODN against enterotoxigenic Escherichia coli (ETEC) (with which neonatal piglets were susceptible to infection in our lab) in neonatal piglets. Here, we show intranasal (IN)-mucosal and intramuscularly (IM) systemic administration of CpG ODN could enhance innate cellular (cytokine) immunity in the sera and intestine mucosa post challenge, and thereafter the development of antigen-specific antibodies in piglets. IN and IM immunizations of neonatal piglets without antigen both reduced the ETEC excretion and alleviated diarrhoea symptoms upon challenge, and IN route had better protection effects than IM route. Protection in this study was linked to induction of a Th1 response which induced by CpG ODN. Co-delivery with Emulsigen (EM), could improve protection mediated by CpG ODN. These observations indicate that IN administration of 100 μg/kg CpG ODN with 20% EM codelivery may represent a valuable strategy for induction of innate immunity against ETEC infection in neonatal piglets.
Collapse
|
10
|
Bommineni YR, Pham GH, Sunkara LT, Achanta M, Zhang G. Immune regulatory activities of fowlicidin-1, a cathelicidin host defense peptide. Mol Immunol 2014; 59:55-63. [DOI: 10.1016/j.molimm.2014.01.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/03/2014] [Accepted: 01/08/2014] [Indexed: 02/05/2023]
|
11
|
Avian antimicrobial host defense peptides: from biology to therapeutic applications. Pharmaceuticals (Basel) 2014; 7:220-47. [PMID: 24583933 PMCID: PMC3978490 DOI: 10.3390/ph7030220] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 11/17/2022] Open
Abstract
Host defense peptides (HDPs) are an important first line of defense with antimicrobial and immunomoduatory properties. Because they act on the microbial membranes or host immune cells, HDPs pose a low risk of triggering microbial resistance and therefore, are being actively investigated as a novel class of antimicrobials and vaccine adjuvants. Cathelicidins and β-defensins are two major families of HDPs in avian species. More than a dozen HDPs exist in birds, with the genes in each HDP family clustered in a single chromosomal segment, apparently as a result of gene duplication and diversification. In contrast to their mammalian counterparts that adopt various spatial conformations, mature avian cathelicidins are mostly α-helical. Avian β-defensins, on the other hand, adopt triple-stranded β-sheet structures similar to their mammalian relatives. Besides classical β-defensins, a group of avian-specific β-defensin-related peptides, namely ovodefensins, exist with a different six-cysteine motif. Like their mammalian counterparts, avian cathelicidins and defensins are derived from either myeloid or epithelial origin expressed in a majority of tissues with broad-spectrum antibacterial and immune regulatory activities. Structure-function relationship studies with several avian HDPs have led to identification of the peptide analogs with potential for use as antimicrobials and vaccine adjuvants. Dietary modulation of endogenous HDP synthesis has also emerged as a promising alternative approach to disease control and prevention in chickens.
Collapse
|
12
|
Rivas-Santiago CE, Hernández-Pando R, Rivas-Santiago B. Immunotherapy for pulmonary TB: antimicrobial peptides and their inducers. Immunotherapy 2013; 5:1117-26. [DOI: 10.2217/imt.13.111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
TB is an infectious disease that still has an enormous impact on public health worldwide. With the continuous increasing epidemic of multidrug-resistant TB, new drugs and vaccines are urgently needed. In the last decade there has been a broad advance in the knowledge of innate immunity in TB. Together with the growing research regarding immunomodulators, new promising insights have been developed that can contribute in the control of TB. This is the case of antimicrobial peptides, which can be potential therapeutic or adjuvant agents. The current high cost of antimicrobial peptide synthesis may be a current deterrent for treatment; antimicrobial peptide-inducers can be an alternative for low-cost treatment and/or adjuvants.
Collapse
Affiliation(s)
- Cesar Enrique Rivas-Santiago
- Rutgers University School of Public Health, Department of Environmental & Occupational Health, Center for Global Public Health, Piscataway, NJ, USA
| | - Rogelio Hernández-Pando
- Department of Experimental Pathology, National Institute of Medical Sciences & Nutrition “Salvador Zubirán”, Mexico City, Mexico
| | - Bruno Rivas-Santiago
- Medical Research Unit Zacatecas, Mexican Institute of Social Security-IMSS, 45 Zacatecas, cp.98000, Mexico
| |
Collapse
|