1
|
Shirakawa A, Yasuda H, Nakamura S, Takajo Y, Inamasu S, Yomoda S, Watanabe S, Kuse Y, Shimazawa M. The anti-angiogenic effects of arctigenin on choroidal neovascularization pathogenesis. J Pharmacol Sci 2025; 158:42-51. [PMID: 40121055 DOI: 10.1016/j.jphs.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025] Open
Abstract
Neovascular age-related macular degeneration (nAMD) is an ocular disease characterized by choroidal neovascularization (CNV), resulting in severe visual impairment. Arctigenin is a natural lignan compound from Arctium lappa L. and has anti-inflammatory and vascular normalizing effects. Here, we investigated the anti-angiogenic effects of arctigenin on CNV formation. Laser-induced CNV model mice were orally administered arctigenin at 100 mg/kg once a day for 5 days before laser irradiation. Oral administration of arctigenin suppressed CNV formation, vascular leakage, and the proliferation of endothelial cells in the CNV lesions. Treatment with arctigenin at 30 μM attenuated vascular endothelial growth factor (VEGF)-induced cell proliferation of human retinal microvascular endothelial cells (HRMECs). Moreover, arctigenin suppressed the phosphorylation of Src, which is involved in VEGF signaling. Arctigenin also inhibited VEGF-induced mitochondrial respiratory activation. These findings suggested that daily intake of arctigenin may have beneficial effects on nAMD.
Collapse
Affiliation(s)
- Aimi Shirakawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hiroto Yasuda
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| | | | | | | | | | - Yoshiki Kuse
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
2
|
Yao Q, Wei T, Qiu H, Cai Y, Yuan L, Liu X, Li X. Epigenetic Effects of Natural Products in Inflammatory Diseases: Recent Findings. Phytother Res 2025; 39:90-137. [PMID: 39513382 DOI: 10.1002/ptr.8364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/17/2024] [Accepted: 07/12/2024] [Indexed: 11/15/2024]
Abstract
Inflammation is an essential step for the etiology of multiple diseases. Clinically, due to the limitations of current drugs for the treatment of inflammatory diseases, such as serious side effects and expensive costs, it is urgent to explore novel mechanisms and medicines. Natural products have received extensive attention recently because of their multi-component and multi-target characteristics. Epigenetic modifications are crucial pathophysiological targets for developing innovative therapies for pharmacological interventions. Investigations examining how natural products improving inflammation through epigenetic modifications are emerging. This review state that natural products relieve inflammation via regulating the gene transcription levels through chromosome structure regulated by histone acetylation levels and the addition or deletion of methyl groups on DNA duplex. They could also exert anti-inflammatory effects by modulating the proteins in typical inflammatory signaling pathways by ubiquitin-related degradation and the effect of glycolysis derived free glycosyls. Studies on epigenetic modifications have the potential to facilitate the development of natural products as therapeutic agents. Future research directed at better understanding of how natural products modulate inflammatory processes through less studied epigenetic modifications including neddylation, SUMOylation, palmitoylation and lactylation, may provide new implications. Meanwhile, higher quality preclinical studies and more powerful clinical evidence are still needed to firmly establish the clinical efficacy of the natural products. Trial Registration: ClinicalTrials.gov Identifier: NCT01764204; ClinicalTrials.gov Identifier: NCT05845931; ClinicalTrials.gov Identifier: NCT04657926; ClinicalTrials.gov Identifier: NCT02330276.
Collapse
Affiliation(s)
- Qianyi Yao
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Tanjun Wei
- Department of Pharmacy, Dazhou Integrated TCM & Western Medical Hospital, Sichuan, China
| | - Hongmei Qiu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Yongqing Cai
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| |
Collapse
|
3
|
Yu KH, Kuo CY, Wu IT, Chi CH, Tsai KC, Kuo PC, Zeng JW, Hung CC, Hung HY. Novel (-)-arctigenin derivatives inhibit signal transducer and activator of transcription 3 phosphorylation and P-glycoprotein function resensitizing multidrug resistant cancer cells in vitro and in vivo. Eur J Pharmacol 2023; 960:176146. [PMID: 37884184 DOI: 10.1016/j.ejphar.2023.176146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Multidrug resistance (MDR) is considered one of the significant chemotherapy failures of cancer patients and resulting in tumor recurrence and refractory cancer. The collateral sensitivity phenomenon is suggested as a potential alternative therapy for coring multidrug resistance in cancer. To achieve better effects and reduce toxicity, a polypharmacology strategy was applied. Arctigenin has been reported as a signal transducer and activator of transcription 3 (STAT3) inhibitor as an anticancer drug with low toxicity. However, the effective dosage of arctigenin was too high for re-sensitization in MDR cell lines. Therefore, we have designed and synthesized arctigenin derivatives and have evaluated their chemoreversal effects in KBvin and KB cells. The results conveyed that compounds 9, 10, and 12 displayed significant collateral sensitivity effects on MDR cancer cells, and the corresponding calculated RF values were 32, 174, and 133, respectively. In addition, compounds 9, 10, and 12 were identified to influence the activation of STAT3 and the function of P-glycoprotein in KBvin cells. Combining the active compounds (9, 10, and 12) with paclitaxel significantly inhibits MDR tumor growth in a zebrafish xenograft tumor model without toxicity. Thus, this study provided novel effective arctigenin derivatives and is considered a potential co-treatment with paclitaxel for treating MDR tumors.
Collapse
Affiliation(s)
- Ko-Hua Yu
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - I-Ting Wu
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, 406, Taiwan
| | - Ching-Ho Chi
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Keng-Chang Tsai
- Ministry of Health and Welfare, National Research Institute of Chinese Medicine, Taipei, 112, Taiwan
| | - Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Jing-Wen Zeng
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chin-Chuan Hung
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, 406, Taiwan; Department of Pharmacy, China Medical University Hospital, Taichung, 404, Taiwan; Department of Healthcare Administration, Asia University, Taichung, 500, Taiwan.
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
4
|
Wu D, Jin L, Huang X, Deng H, Shen QK, Quan ZS, Zhang C, Guo HY. Arctigenin: pharmacology, total synthesis, and progress in structure modification. J Enzyme Inhib Med Chem 2022; 37:2452-2477. [PMID: 36093586 PMCID: PMC9481144 DOI: 10.1080/14756366.2022.2115035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Arctium lappa L. is a prevalent medicinal herb and a health supplement that is commonly used in Asia. Over the last few decades, the bioactive component arctigenin has attracted the attention of researchers because of its anti-inflammatory, antioxidant, immunomodulatory, multiple sclerosis fighting, antitumor, and anti-leukemia properties. After summarising the research and literature on arctigenin, this study outlines the current status of research on pharmacological activity, total synthesis, and structural modification of arctigenin. The purpose of this study is to assist academics in obtaining a more comprehensive understanding of the research progress on arctigenin and to provide constructive suggestions for further investigation of this useful molecule.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Lili Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Qing-kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Zhe-shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Changhao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| |
Collapse
|
5
|
Kumar S, Basu M, Ghosh MK. Chaperone-assisted E3 ligase CHIP: A double agent in cancer. Genes Dis 2022; 9:1521-1555. [PMID: 36157498 PMCID: PMC9485218 DOI: 10.1016/j.gendis.2021.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
The carboxy-terminus of Hsp70-interacting protein (CHIP) is a ubiquitin ligase and co-chaperone belonging to Ubox family that plays a crucial role in the maintenance of cellular homeostasis by switching the equilibrium of the folding-refolding mechanism towards the proteasomal or lysosomal degradation pathway. It links molecular chaperones viz. HSC70, HSP70 and HSP90 with ubiquitin proteasome system (UPS), acting as a quality control system. CHIP contains charged domain in between N-terminal tetratricopeptide repeat (TPR) and C-terminal Ubox domain. TPR domain interacts with the aberrant client proteins via chaperones while Ubox domain facilitates the ubiquitin transfer to the client proteins for ubiquitination. Thus, CHIP is a classic molecule that executes ubiquitination for degradation of client proteins. Further, CHIP has been found to be indulged in cellular differentiation, proliferation, metastasis and tumorigenesis. Additionally, CHIP can play its dual role as a tumor suppressor as well as an oncogene in numerous malignancies, thus acting as a double agent. Here, in this review, we have reported almost all substrates of CHIP established till date and classified them according to the hallmarks of cancer. In addition, we discussed about its architectural alignment, tissue specific expression, sub-cellular localization, folding-refolding mechanisms of client proteins, E4 ligase activity, normal physiological roles, as well as involvement in various diseases and tumor biology. Further, we aim to discuss its importance in HSP90 inhibitors mediated cancer therapy. Thus, this report concludes that CHIP may be a promising and worthy drug target towards pharmaceutical industry for drug development.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, West Bengal 743372, India
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
6
|
Kang KR, Kim JS, Lim H, Seo JY, Park JH, Chun HS, Yu SK, Kim HJ, Kim CS, Kim DK. Arctigenin induces caspase-dependent apoptosis in FaDu human pharyngeal carcinoma cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:447-456. [PMID: 36302620 PMCID: PMC9614403 DOI: 10.4196/kjpp.2022.26.6.447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/29/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022]
Abstract
The present study was carried out to investigate the effect of Arctigenin on cell growth and the mechanism of cell death elicited by Arctigenin were examined in FaDu human pharyngeal carcinoma cells. To determine the apoptotic activity of Arctigenin in FaDu human pharyngeal carcinoma cells, cell viability assay, DAPI staining, caspase activation analysis, and immunoblotting were performed. Arctigenin inhibited the growth of cells in a dose-dependent manner and induced nuclear condensation and fragmentation. Arctigenin-treated cells showed caspase-3/7 activation and increased apoptosis versus control cells. FasL, a death ligand associated with extrinsic apoptotic signaling pathways, was up-regulated by Arctigenin treatment. Moreover, caspase-8, a part of the extrinsic apoptotic pathway, was activated by Arctigenin treatments. Expressions of anti-apoptotic factors such as Bcl-2 and Bcl-xL, components of the mitochondria-dependent intrinsic apoptosis pathway, significantly decreased following Arctigenin treatment. The expressions of pro-apoptotic factors such as BAX, BAD and caspase-9, and tumor suppressor -53 increased by Arctigenin treatments. In addition, Arctigenin activated caspase-3 and poly (ADP-ribose) polymerase (PARP) induced cell death. Arctigenin also inhibited the proliferation of FaDu cells by the suppression of p38, NF-κB, and Akt signaling pathways. These results suggest that Arctigenin may inhibit cell proliferation and induce apoptotic cell death in FaDu human pharyngeal carcinoma cells through both the mitochondria-mediated intrinsic pathway and the death receptor-mediated extrinsic pathway.
Collapse
Affiliation(s)
- Kyeong-Rok Kang
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Jae-Sung Kim
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - HyangI Lim
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Jeong-Yeon Seo
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Jong-Hyun Park
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Hong Sung Chun
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju 61452, Korea
| | - Sun-Kyoung Yu
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Heung-Joong Kim
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Chun Sung Kim
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Do Kyung Kim
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea,Correspondence Do Kyung Kim, E-mail:
| |
Collapse
|
7
|
Zhang J, Cao P, Gui J, Wang X, Han J, Wang Y, Wang G. Arctigenin ameliorates renal impairment and inhibits endoplasmic reticulum stress in diabetic db/db mice. Life Sci 2019; 223:194-201. [PMID: 30898648 DOI: 10.1016/j.lfs.2019.03.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/16/2019] [Accepted: 03/16/2019] [Indexed: 12/11/2022]
Abstract
AIMS Diabetic nephropathy (DN) is the most common complication of diabetes mellitus. Endoplasmic reticulum (ER) plays an important role in the development and progression of DN. Arctigenin (ATG), a lignan extract from Fructus Arctii, exhibits anti-inflammatory, anticarcinogenic, anti-oxidative stress and immunomodulatory properties. The present research aimed to investigate whether ATG could protect against diabetes-related renal injury and inhibit ER stress in db/db mice. MAIN METHODS Male db/db mice were randomly divided into two groups: DN group and ATG treatment group (DN + ATG). db/m mice were defined as the normal control group (NC). ATG was dissolved in 0.5% carboxymethyl cellulose sodium salt solution and administered orally at a dose of 80 mg/kg to mice in the DN + ATG group once daily for 8 consecutive weeks. HK2 cells were used to determine the effects of ATG on ER stress and cell apoptosis in vitro. KEY FINDINGS ATG administration significantly reduced blood glucose, urine albumin excretion, and urine albumin to creatinine ratio, and attenuated renal pathological injury when compared with untreated db/db mice. These changes were accompanied by decreased expression of both ER stress-related markers and caspase 12 level in the kidneys of db/db mice. In vitro, high glucose activated ER stress signal transduction pathway and induced cell apoptosis in HK2 cells, which were blocked by ATG. SIGNIFICANCE Our results suggest that ATG exerts renoprotective effects on diabetes-related renal injury in db/db mice and cytoprotective effects on high glucose induced cell apoptosis and inhibits ER stress.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Nephrology, the First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Peng Cao
- Department of Nephrology, the First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Jingjing Gui
- Department of Nephrology, the First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Xin Wang
- Department of Nephrology, the First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Jun Han
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-molecules, Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Yuwei Wang
- Department of Nephrology, the First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China.
| | - Guodong Wang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-molecules, Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| |
Collapse
|
8
|
He Y, Fan Q, Cai T, Huang W, Xie X, Wen Y, Shi Z. Molecular mechanisms of the action of Arctigenin in cancer. Biomed Pharmacother 2018; 108:403-407. [PMID: 30236849 DOI: 10.1016/j.biopha.2018.08.158] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 11/25/2022] Open
Abstract
Since antediluvian times, the scientific community has realized that natural compounds exhibit enormous potential for the treatment of terrible diseases, such as cancer. Despite a variety of effective bioactive molecules, effective therapies still need to be developed to treat cancer. Hence, it is necessary to study the interactions of natural molecules with their cellular targets. Arctigenin (ATG), a natural lignan compound extracted from Arctium lappa, inhibits the growth of various cancer cells, such as those of the stomach, lungs, liver, and colon, as well as leukocytes, and regulates numerous intracellular activities, such as antioxidative, anti-inflammatory, and anticancer activities. The intention of this paper is to summarize and generally analyse the molecular pathways that are involved in the anticancer effects of ATG. In addition, the interactions of ATG with other drugs are also highlighted in this paper.
Collapse
Affiliation(s)
- Yinghua He
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medicine University, Xiasha District, Hangzhou, Zhejiang 310018, China; Department of Pharmacy, Zhejiang International Exchange Center of Clinical Traditional Chinese Medicine, Xiasha District, Hangzhou, Zhejiang 310018, China; Department of Pharmacy, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Xiasha District, Hangzhou, Zhejiang 310018, China
| | - Qiaomei Fan
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medicine University, Xiasha District, Hangzhou, Zhejiang 310018, China; Department of Pharmacy, Zhejiang International Exchange Center of Clinical Traditional Chinese Medicine, Xiasha District, Hangzhou, Zhejiang 310018, China; Department of Pharmacy, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Xiasha District, Hangzhou, Zhejiang 310018, China
| | - Tiantian Cai
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medicine University, Xiasha District, Hangzhou, Zhejiang 310018, China; Department of Pharmacy, Zhejiang International Exchange Center of Clinical Traditional Chinese Medicine, Xiasha District, Hangzhou, Zhejiang 310018, China; Department of Pharmacy, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Xiasha District, Hangzhou, Zhejiang 310018, China
| | - Wei Huang
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medicine University, Xiasha District, Hangzhou, Zhejiang 310018, China; Department of Pharmacy, Zhejiang International Exchange Center of Clinical Traditional Chinese Medicine, Xiasha District, Hangzhou, Zhejiang 310018, China; Department of Pharmacy, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Xiasha District, Hangzhou, Zhejiang 310018, China
| | - Xianze Xie
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medicine University, Xiasha District, Hangzhou, Zhejiang 310018, China; Department of Pharmacy, Zhejiang International Exchange Center of Clinical Traditional Chinese Medicine, Xiasha District, Hangzhou, Zhejiang 310018, China; Department of Pharmacy, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Xiasha District, Hangzhou, Zhejiang 310018, China
| | - Yayun Wen
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medicine University, Xiasha District, Hangzhou, Zhejiang 310018, China; Department of Pharmacy, Zhejiang International Exchange Center of Clinical Traditional Chinese Medicine, Xiasha District, Hangzhou, Zhejiang 310018, China; Department of Pharmacy, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Xiasha District, Hangzhou, Zhejiang 310018, China
| | - Zheng Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medicine University, Xiasha District, Hangzhou, Zhejiang 310018, China; Department of Pharmacy, Zhejiang International Exchange Center of Clinical Traditional Chinese Medicine, Xiasha District, Hangzhou, Zhejiang 310018, China; Department of Pharmacy, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Xiasha District, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
9
|
Gao Q, Yang M, Zuo Z. Overview of the anti-inflammatory effects, pharmacokinetic properties and clinical efficacies of arctigenin and arctiin from Arctium lappa L. Acta Pharmacol Sin 2018; 39:787-801. [PMID: 29698388 DOI: 10.1038/aps.2018.32] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/07/2018] [Indexed: 12/11/2022]
Abstract
Arctigenin (AR) and its glycoside, arctiin, are two major active ingredients of Arctium lappa L (A lappa), a popular medicinal herb and health supplement frequently used in Asia. In the past several decades, bioactive components from A lappa have attracted the attention of researchers due to their promising therapeutic effects. In the current article, we aimed to provide an overview of the pharmacology of AR and arctiin, focusing on their anti-inflammatory effects, pharmacokinetics properties and clinical efficacies. Compared to acrtiin, AR was reported as the most potent bioactive component of A lappa in the majority of studies. AR exhibits potent anti-inflammatory activities by inhibiting inducible nitric oxide synthase (iNOS) via modulation of several cytokines. Due to its potent anti-inflammatory effects, AR may serve as a potential therapeutic compound against both acute inflammation and various chronic diseases. However, pharmacokinetic studies demonstrated the extensive glucuronidation and hydrolysis of AR in liver, intestine and plasma, which might hinder its in vivo and clinical efficacy after oral administration. Based on the reviewed pharmacological and pharmacokinetic characteristics of AR, further pharmacokinetic and pharmacodynamic studies of AR via alternative administration routes are suggested to promote its ability to serve as a therapeutic agent as well as an ideal bioactive marker for A lappa.
Collapse
|
10
|
Abstract
The carboxyl terminal of Hsp70-interacting protein (CHIP) is an E3 ubiquitin ligase that plays a pivotal role in the protein quality control system by shifting the balance of the folding-refolding machinery toward the degradative pathway. However, the precise mechanisms by which nonnative proteins are selected for degradation by CHIP either directly or indirectly via chaperone Hsp70 or Hsp90 are still not clear. In this review, we aim to provide a comprehensive model of the mechanism by which CHIP degrades its substrate in a chaperone-dependent or direct manner. In addition, through tight regulation of the protein level of its substrates, CHIP plays important roles in many physiological and pathological conditions, including cancers, neurological disorders, cardiac diseases, bone metabolism, immunity, and so on. Nonetheless, the precise mechanisms underlying the regulation of the immune system by CHIP are still poorly understood despite accumulating developments in our understanding of the regulatory roles of CHIP in both innate and adaptive immune responses. In this review, we also aim to provide a view of CHIP-mediated regulation of immune responses and the signaling pathways involved in the model described. Finally, we discuss the roles of CHIP in immune-related diseases.
Collapse
Affiliation(s)
- Shaohua Zhan
- a Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences , National Key Laboratory of Medical Molecular Biology & Department of Immunology , Dongcheng District , Beijing , China
| | - Tianxiao Wang
- b Key Laboratory of Carcinogenesis and Translational Research, Department of Head and Neck Surgery , Peking University Cancer Hospital & Institute , Beijing , China
| | - Wei Ge
- a Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences , National Key Laboratory of Medical Molecular Biology & Department of Immunology , Dongcheng District , Beijing , China
| |
Collapse
|
11
|
Maxwell T, Chun SY, Lee KS, Kim S, Nam KS. The anti-metastatic effects of the phytoestrogen arctigenin on human breast cancer cell lines regardless of the status of ER expression. Int J Oncol 2016; 50:727-735. [DOI: 10.3892/ijo.2016.3825] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/12/2016] [Indexed: 11/05/2022] Open
|
12
|
Arctigenin Inhibits Lung Metastasis of Colorectal Cancer by Regulating Cell Viability and Metastatic Phenotypes. Molecules 2016; 21:molecules21091135. [PMID: 27618887 PMCID: PMC6272973 DOI: 10.3390/molecules21091135] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 02/03/2023] Open
Abstract
Arctigenin (ARC) has been shown to have an anti-cancer effect in various cell types and tissues. However, there have been no studies concerning metastatic colorectal cancer (CRC). In this study, we investigated the anti-metastatic properties of ARC on colorectal metastasis and present a potential candidate drug. ARC induced cell cycle arrest and apoptosis in CT26 cells through the intrinsic apoptotic pathway via MAPKs signaling. In several metastatic phenotypes, ARC controlled epithelial-mesenchymal transition (EMT) through increasing the expression of epithelial marker E-cadherin and decreasing the expressions of mesenchymal markers; N-cadherin, vimentin, β-catenin, and Snail. Moreover, ARC inhibited migration and invasion through reducing of matrix metalloproteinase-2 (MMP-2) and MMP-9 expressions. In an experimental metastasis model, ARC significantly inhibited lung metastasis of CT26 cells. Taken together, our study demonstrates the inhibitory effects of ARC on colorectal metastasis.
Collapse
|
13
|
Possible Contribution of Zerumbone-Induced Proteo-Stress to Its Anti-Inflammatory Functions via the Activation of Heat Shock Factor 1. PLoS One 2016; 11:e0161282. [PMID: 27536885 PMCID: PMC4990220 DOI: 10.1371/journal.pone.0161282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/02/2016] [Indexed: 01/04/2023] Open
Abstract
Zerumbone is a sesquiterpene present in Zinger zerumbet. Many studies have demonstrated its marked anti-inflammatory and anti-carcinogenesis activities. Recently, we showed that zerumbone binds to numerous proteins with scant selectivity and induces the expression of heat shock proteins (HSPs) in hepatocytes. To dampen proteo-toxic stress, organisms have a stress-responsive molecular machinery, known as heat shock response. Heat shock factor 1 (HSF1) plays a key role in this protein quality control system by promoting activation of HSPs. In this study, we investigated whether zerumbone-induced HSF1 activation contributes to its anti-inflammatory functions in stimulated macrophages. Our findings showed that zerumbone increased cellular protein aggregates and promoted nuclear translocation of HSF1 for HSP expression. Interestingly, HSF1 down-regulation attenuated the suppressive effects of zerumbone on mRNA and protein expressions of pro-inflammatory genes, including inducible nitric oxide synthase and interlukin-1β. These results suggest that proteo-stress induced by zerumbone activates HSF1 for exhibiting its anti-inflammatory functions.
Collapse
|
14
|
|
15
|
Arctigenin Protects against Lipopolysaccharide-Induced Pulmonary Oxidative Stress and Inflammation in a Mouse Model via Suppression of MAPK, HO-1, and iNOS Signaling. Inflammation 2016; 38:1406-14. [PMID: 25616905 PMCID: PMC7102291 DOI: 10.1007/s10753-015-0115-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arctigenin, a bioactive component of Arctium lappa (Nubang), has anti-inflammatory activity. Here, we investigated the effects of arctigenin on lipopolysaccharide (LPS)-induced acute lung injury. Mice were divided into four groups: control, LPS, LPS + DMSO, and LPS + Arctigenin. Mice in the LPS + Arctigenin group were injected intraperitoneally with 50 mg/kg of arctigenin 1 h before an intratracheal administration of LPS (5 mg/kg). Lung tissues and bronchoalveolar lavage fluids (BALFs) were collected. Histological changes of the lung were analyzed by hematoxylin and eosin staining. Arctigenin decreased LPS-induced acute lung inflammation, infiltration of inflammatory cells into BALF, and production of pro-inflammatory cytokines. Moreover, arctigenin pretreatment reduced the malondialdehyde level and increased superoxide dismutase and catalase activities and glutathione peroxidase/glutathione disulfide ratio in the lung. Mechanically, arctigenin significantly reduced the production of nitric oxygen and inducible nitric oxygen synthase (iNOS) expression, enhanced the expression of heme oxygenase-1, and decreased the phosphorylation of mitogen-activated protein kinases (MAPKs). Arctigenin has anti-inflammatory and antioxidative effects on LPS-induced acute lung injury, which are associated with modulation of MAPK, HO-1, and iNOS signaling.
Collapse
|
16
|
Laavola M, Haavikko R, Hämäläinen M, Leppänen T, Nieminen R, Alakurtti S, Moreira VM, Yli-Kauhaluoma J, Moilanen E. Betulin Derivatives Effectively Suppress Inflammation in Vitro and in Vivo. JOURNAL OF NATURAL PRODUCTS 2016; 79:274-280. [PMID: 26915998 DOI: 10.1021/acs.jnatprod.5b00709] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Betulin is a pharmacologically active triterpenoid found in the bark of the birch tree (Betula sp. L.). Betulin and betulinic acid are structurally related to anti-inflammatory steroids, but little is known about their potential anti-inflammatory properties. In the present study, the inflammatory gene expression and the anti-inflammatory properties of betulin, betulinic acid, and 16 semisynthetic betulin derivatives were investigated. Betulin derivatives 3, 4, and 5 selectively inhibited the expression of the inducible nitric oxide synthase (iNOS) in a post-transcriptional manner. They also inhibited nitric oxide (NO) production but had no effect on the other inflammatory factors studied. More interestingly, a new anti-inflammatory betulin derivative 9 with a wide-spectrum anti-inflammatory activity was discovered. Compound 9 was found to suppress the expression of cytokines interleukin-6 (IL-6) and monocyte chemotactic protein-1 (MCP-1), as well as that of prostaglandin synthase-2 (COX-2) in addition to iNOS. The in vivo anti-inflammatory effect of compound 9 was indicated via significant suppression of the carrageenan-induced paw inflammation in mice. The results show, for the first time, that the pyrazole-fused betulin derivative (9) and related compounds have anti-inflammatory properties that could be utilized in drug development.
Collapse
Affiliation(s)
- Mirka Laavola
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital , FI-33014 Tampere, Finland
| | - Raisa Haavikko
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital , FI-33014 Tampere, Finland
| | - Tiina Leppänen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital , FI-33014 Tampere, Finland
| | - Riina Nieminen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital , FI-33014 Tampere, Finland
| | - Sami Alakurtti
- Process Chemistry and Environmental Engineering, VTT Technical Research Centre of Finland , FI-02044 Espoo, Finland
| | - Vânia M Moreira
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital , FI-33014 Tampere, Finland
| |
Collapse
|
17
|
Paul I, Ghosh MK. A CHIPotle in physiology and disease. Int J Biochem Cell Biol 2014; 58:37-52. [PMID: 25448416 DOI: 10.1016/j.biocel.2014.10.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/21/2014] [Accepted: 10/25/2014] [Indexed: 01/06/2023]
Abstract
The carboxy-terminus of Hsc70 interacting protein (CHIP) is known to function as a chaperone associated E3 ligase for several proteins and regulates a variety of physiological processes. Being a connecting link between molecular chaperones and 26S proteasomes, it is widely regarded as the central player in the cellular protein quality control system. Recent analyses have provided new insights on the biochemical and functional dynamics of CHIP. In this review article, we give a comprehensive account of our current knowledge on the biology of CHIP, which apart from shedding light on fundamental biological questions promises to provide a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Indranil Paul
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology (CSIR-IICB), 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology (CSIR-IICB), 4, Raja S.C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
18
|
Huang K, Li LA, Meng YG, You YQ, Fu XY, Song L. Arctigenin promotes apoptosis in ovarian cancer cells via the iNOS/NO/STAT3/survivin signalling. Basic Clin Pharmacol Toxicol 2014; 115:507-11. [PMID: 24842412 DOI: 10.1111/bcpt.12270] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/06/2014] [Indexed: 01/10/2023]
Abstract
Arctigenin is a biologically active lignan extracted from the seeds of Arctium lappa and shows anticancer activity against a variety of human cancers. The aim of this study was to determine the effects of arctigenin on ovarian cancer cell proliferation and survival and associated molecular mechanisms. Human ovarian cancer OVCAR3 and SKOV3 cells were treated with arctigenin, and cell proliferation and apoptosis were assessed. Western blot analysis was used to examine signal transducer and activator of transcription-3 (STAT3) phosphorylation and survivin and inducible nitric oxide synthase (iNOS) expression. The involvement of STAT3/survivin/iNOS/NO signalling in arctigenin action was checked. Arctigenin treatment resulted in a significant and dose-dependent inhibition of cell proliferation. Arctigenin-treated cells showed a 4-6 times increase in the percentage of apoptosis, compared with control cells. Pre-treatment with Ac-DEVD-CHO, a specific inhibitor of caspase-3, counteracted the induction of apoptosis by arctigenin. Arctigenin treatment significantly inhibited STAT3 phosphorylation and survivin and iNOS expression. Arctigenin-induced apoptosis was impaired by pre-transfection with survivin-expressing plasmid or addition of chemical nitric oxide (NO) donors. Additionally, exogenous NO prevented the suppression of STAT3 phosphorylation and survivin expression by arctigenin. Arctigenin treatment inhibits the proliferation and induces caspase-3-dependent apoptosis of ovarian cancer cells. Suppression of iNOS/NO/STAT3/survivin signalling is causally linked to the anticancer activity of arctigenin. Therefore, arctigenin may be applicable to anticancer therapy for ovarian cancer.
Collapse
Affiliation(s)
- Ke Huang
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
| | | | | | | | | | | |
Collapse
|