1
|
Nguyen HP, Bui VA, Hoang AXT, Van Nguyen P, Nguyen DT, Mai HT, Le HA, Nguyen TL, Hoang NTM, Nguyen LT, Nguyen XH. The Correlation between Peripheral Blood Index and Immune Cell Expansion in Vietnamese Elderly Lung Cancer Patients. Int J Mol Sci 2023; 24:4284. [PMID: 36901716 PMCID: PMC10001827 DOI: 10.3390/ijms24054284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/24/2023] Open
Abstract
(1) Background: The dysfunction and reduced proliferation of peripheral CD8+ T cells and natural killer (NK) cells have been observed in both aging and cancer patients, thereby challenging the adoption of immune cell therapy in these subjects. In this study, we evaluated the growth of these lymphocytes in elderly cancer patients and the correlation of peripheral blood (PB) indices to their expansion. (2) Method: This retrospective study included 15 lung cancer patients who underwent autologous NK cell and CD8+ T cell therapy between January 2016 and December 2019 and 10 healthy individuals. (3) Results: On average, CD8+ T lymphocytes and NK cells were able to be expanded about 500 times from the PB of elderly lung cancer subjects. Particularly, 95% of the expanded NK cells highly expressed the CD56 marker. The expansion of CD8+ T cells was inversely associated with the CD4+:CD8+ ratio and the frequency of PB-CD4+ T cells in PB. Likewise, the expansion of NK cells was inversely correlated with the frequency of PB-lymphocytes and the number of PB-CD8+ T cells. The growth of CD8+ T cells and NK cells was also inversely correlated with the percentage and number of PB-NK cells. (4) Conclusion: PB indices are intrinsically tied to immune cell health and could be leveraged to determine CD8 T and NK cell proliferation capacity for immune therapies in lung cancer patients.
Collapse
Affiliation(s)
- Hoang-Phuong Nguyen
- Vinmec Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
| | - Viet Anh Bui
- Center of Applied Science, Regenerative Medicine, and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
| | - Ai-Xuan Thi Hoang
- Vinmec Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
| | - Phong Van Nguyen
- Center of Applied Science, Regenerative Medicine, and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
| | - Dac-Tu Nguyen
- Center of Applied Science, Regenerative Medicine, and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
| | - Hien Thi Mai
- Center of Applied Science, Regenerative Medicine, and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
| | - Hai-Anh Le
- Vinmec Times City International Hospital, Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
| | - Thanh-Luan Nguyen
- Center of Applied Science, Regenerative Medicine, and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
| | - Nhung Thi My Hoang
- Center of Applied Science, Regenerative Medicine, and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 100000, Vietnam
| | - Liem Thanh Nguyen
- Vinmec Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
- Vinmec Times City International Hospital, Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
- College of Health Sciences, VinUniversity, Hanoi 100000, Vietnam
| | - Xuan-Hung Nguyen
- Center of Applied Science, Regenerative Medicine, and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
- College of Health Sciences, VinUniversity, Hanoi 100000, Vietnam
| |
Collapse
|
2
|
Deng X, Terunuma H. Harnessing NK Cells to Control Metastasis. Vaccines (Basel) 2022; 10:vaccines10122018. [PMID: 36560427 PMCID: PMC9781233 DOI: 10.3390/vaccines10122018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
In recent years, tumor immunotherapy has produced remarkable results in tumor treatment. Nevertheless, its effects are severely limited in patients with low or absent pre-existing T cell immunity. Accordingly, metastasis remains the major cause of tumor-associated death. On the other hand, natural killer (NK) cells have the unique ability to recognize and rapidly act against tumor cells and surveil tumor cell dissemination. The role of NK cells in metastasis prevention is undisputable as an increase in the number of these cells mostly leads to a favorable prognosis. Hence, it is reasonable to consider that successful metastasis involves evasion of NK-cell-mediated immunosurveillance. Therefore, harnessing NK cells to control metastasis is promising. Circulating tumor cells (CTCs) are the seeds for distant metastasis, and the number of CTCs detected in the blood of patients with tumor is associated with a worse prognosis, whereas NK cells can eliminate highly motile CTCs especially in the blood. Here, we review the role of NK cells during metastasis, particularly the specific interactions of NK cells with CTCs, which may provide essential clues on how to harness the power of NK cells against tumor metastasis. As a result, a new way to prevent or treat metastatic tumor may be developed.
Collapse
Affiliation(s)
- Xuewen Deng
- Biotherapy Institute of Japan Inc., 2-4-8 Edagawa, Koto-ku, Tokyo 135-0051, Japan
- Correspondence: ; Tel.: +81-3-5632-6080; Fax: +81-3-5632-6083
| | - Hiroshi Terunuma
- Biotherapy Institute of Japan Inc., 2-4-8 Edagawa, Koto-ku, Tokyo 135-0051, Japan
- N2 Clinic Yotsuya, 5F 2-6 Samon-cho, Shinjuku-ku, Tokyo 160-0017, Japan
| |
Collapse
|
3
|
Jonus HC, Burnham RE, Ho A, Pilgrim AA, Shim J, Doering CB, Spencer HT, Goldsmith KC. Dissecting the cellular components of ex vivo γδ T cell expansions to optimize selection of potent cell therapy donors for neuroblastoma immunotherapy trials. Oncoimmunology 2022; 11:2057012. [PMID: 35371623 PMCID: PMC8966991 DOI: 10.1080/2162402x.2022.2057012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
γδ T lymphocytes represent an emerging class of cellular immunotherapy with preclinical promise to treat cancer, notably neuroblastoma. The innate-like immune cell subset demonstrates inherent cytoxicity toward tumor cells independent of MHC recognition, enabling allogeneic administration of healthy donor-derived γδ T cell therapies. A current limitation is the substantial interindividual γδ T cell expansion variation among leukocyte collections. Overcoming this limitation will enable realization of the full potential of allogeneic γδ T-based cellular therapy. Here, we characterize γδ T cell expansions from healthy adult donors and observe that highly potent natural killer (NK) lymphocytes expand with γδ T cells under zoledronate and IL-2 stimulation. The presence of NK cells correlates with both the expansion potential of γδ T cells and the overall potency of the γδ T cell therapy. However, the potency of the cell therapy in combination with an antibody-based immunotherapeutic, dinutuximab, appears to be independent of γδ T/NK cell content both in vitro and in vivo, which minimizes the implication of interindividual expansion differences toward efficacy. Collectively, these studies highlight the utility of maintaining the NK cell population within expanded γδ T cell therapies and suggest a synergistic action of combined innate cell immunotherapy toward neuroblastoma.
Collapse
Affiliation(s)
- Hunter C. Jonus
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Rebecca E. Burnham
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew Ho
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Adeiye A. Pilgrim
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jenny Shim
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
- Division of Pediatric Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Christopher B. Doering
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
| | - H. Trent Spencer
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Kelly C. Goldsmith
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Division of Pediatric Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
4
|
Luo X, Xu J, Yu J, Yi P. Shaping Immune Responses in the Tumor Microenvironment of Ovarian Cancer. Front Immunol 2021; 12:692360. [PMID: 34248988 PMCID: PMC8261131 DOI: 10.3389/fimmu.2021.692360] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/02/2021] [Indexed: 12/21/2022] Open
Abstract
Reciprocal signaling between immune cells and ovarian cancer cells in the tumor microenvironment can alter immune responses and regulate disease progression. These signaling events are regulated by multiple factors, including genetic and epigenetic alterations in both the ovarian cancer cells and immune cells, as well as cytokine pathways. Multiple immune cell types are recruited to the ovarian cancer tumor microenvironment, and new insights about the complexity of their interactions have emerged in recent years. The growing understanding of immune cell function in the ovarian cancer tumor microenvironment has important implications for biomarker discovery and therapeutic development. This review aims to describe the factors that shape the phenotypes of immune cells in the tumor microenvironment of ovarian cancer and how these changes impact disease progression and therapy.
Collapse
Affiliation(s)
- Xin Luo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States.,Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Yang J, Hong S, Zhang X, Liu J, Wang Y, Wang Z, Gao L, Hong L. Tumor Immune Microenvironment Related Gene-Based Model to Predict Prognosis and Response to Compounds in Ovarian Cancer. Front Oncol 2021; 11:807410. [PMID: 34966691 PMCID: PMC8710702 DOI: 10.3389/fonc.2021.807410] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/25/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The tumor immune microenvironment (TIME) has been recognized to be an imperative factor facilitating the acquisition of many cancer-related hallmarks and is a critical target for targeted biological therapy. This research intended to construct a risk score model premised on TIME-associated genes for prediction of survival and identification of potential drugs for ovarian cancer (OC) patients. METHODS AND RESULTS The stromal and immune scores were computed utilizing the ESTIMATE algorithm in OC patient samples from The Cancer Genome Atlas (TCGA) database. Weighted gene co-expression network and differentially expressed genes analyses were utilized to detect stromal-and immune-related genes. The Least Absolute Shrinkage and Selection Operator (LASSO)-Cox regression was utilized for additional gene selection. The genes that were selected were utilized as the input for a stepwise regression to construct a TIME-related risk score (TIMErisk), which was then validated in Gene Expression Omnibus (GEO) database. For the evaluation of the protein expression levels of TIME regulators, the Human Protein Atlas (HPA) dataset was utilized, and for their biological functions, the TIMER and CIBERSORT algorithm, immunoreactivity, and Immune Cell Abundance Identifier (ImmuCellAI) were used. Possible OC medications were forecasted utilizing the Genomics of Drug Sensitivity in Cancer (GDSC) database and connectivity map (CMap). TIMErisk was developed based on ALPK2, CPA3, PTGER3, CTHRC1, PLA2G2D, CXCL11, and ZNF683. High TIMErisk was recognized as a poor factor for survival in the GEO and TCGA databases; subgroup analysis with FIGO stage, grade, lymphatic and venous invasion, debulking, and tumor site also indicated similar results. Functional immune cells corresponded to more incisive immune reactions, including secretion of chemokines and interleukins, natural killer cell cytotoxicity, TNF signaling pathway, and infiltration of activated NK cells, eosinophils, and neutrophils in patients with low TIMErisk. Several small molecular medications which may enhance the prognosis of patients in the TIMErisk subgroup were identified. Lastly, an enhanced predictive performance nomogram was constructed by compounding TIMErisk with the FIGO stage and debulking. CONCLUSION These findings may offer a valuable indicator for clinical stratification management and personalized therapeutic options for OC patients and may be a foundation for future mechanistic research of their association.
Collapse
|
6
|
Choi JW, Lee ES, Kim SY, Park SI, Oh S, Kang JH, Ryu HA, Lee S. Cytotoxic effects of ex vivo-expanded natural killer cell-enriched lymphocytes (MYJ1633) against liver cancer. BMC Cancer 2019; 19:817. [PMID: 31426763 PMCID: PMC6700835 DOI: 10.1186/s12885-019-6034-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/13/2019] [Indexed: 01/08/2023] Open
Abstract
Background Adoptive transfer of immune cells such as T cells and natural killer (NK) cells has emerged as a targeted method of controlling the immune system against cancer. Despite their significant therapeutic potential, efficient methods to generate adequate numbers of NK cells are lacking and ex vivo-expansion and activation of NK cells is currently under intensive investigation. The primary purpose of this study was to develop an effective method for expansion and activation of the effector cells with high proportion of NK cells and increasing cytotoxicity against liver cancer in a short time period. Methods Expanded NK cell-enriched lymphocytes (NKL) designated as “MYJ1633” were prepared by using autologous human plasma, cytokines (IL-2, IL-12 and IL-18) and agonistic antibodies (CD16, CD56 and NKp46) without an NK cell-sorting step. The characteristics of NKL were compared to those of freshly isolated PBMCs. In addition, the cytotoxic effect of the NKL on liver cancer cell was examined in vitro and in vivo. Results The total cell number after ex vivo-expansion increased about 140-fold compared to that of freshly isolated PBMC within 2 weeks. Approximately 78% of the expanded and activated NKL using the house-developed protocol was NK cell and NKT cells even without a NK cell-sorting step. In addition, the expanded and activated NKL demonstrated potent cytotoxicity against liver cancer in vitro and in vivo. Conclusion The house-developed method can be a new and effective strategy to prepare clinically applicable NKL for autologous NK cell-based anti-tumor immunotherapy. Electronic supplementary material The online version of this article (10.1186/s12885-019-6034-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jung-Won Choi
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 25601, Republic of Korea
| | - Eui Soo Lee
- IMMUNISBIO Co., Ltd, International St. Mary's Hospital, Incheon Metropolitan City, 22711, Republic of Korea
| | - Se Young Kim
- IMMUNISBIO Co., Ltd, International St. Mary's Hospital, Incheon Metropolitan City, 22711, Republic of Korea
| | - Su Il Park
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 25601, Republic of Korea
| | - Sena Oh
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 25601, Republic of Korea
| | - Jung Hwa Kang
- IMMUNISBIO Co., Ltd, International St. Mary's Hospital, Incheon Metropolitan City, 22711, Republic of Korea
| | - Hyun Aae Ryu
- IMMUNISBIO Co., Ltd, International St. Mary's Hospital, Incheon Metropolitan City, 22711, Republic of Korea
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 25601, Republic of Korea.
| |
Collapse
|
7
|
Zeng J, Tang SY, Wang S. Derivation of mimetic γδ T cells endowed with cancer recognition receptors from reprogrammed γδ T cell. PLoS One 2019; 14:e0216815. [PMID: 31071196 PMCID: PMC6508724 DOI: 10.1371/journal.pone.0216815] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/23/2019] [Indexed: 01/13/2023] Open
Abstract
Using induced pluripotent stem cells (iPSCs) to derive chimeric antigen receptor-modified T (CAR-T) cells has great industrial potential. A previous study used αβ T cell-derived CAR-modified iPSCs to produce CAR-T cells. However, these αβ T cells are restricted to autologous use and only recognize single cancer antigen. To make CAR-T alternative for allogeneic use, we reprogrammed γδ T cell into iPSCs (γδ T-iPSCs) to circumvent the risk of graft-versus-host disease. To target multiple cancer-associated antigens, we used an "NK cell-promoting" protocol to differentiate γδ T-iPSCs and to induce expression of natural killer receptors (NKRs). Through such two-step strategy, mimetic γδ T cells endowed with an array of NKRs and thus designated as "γδ natural killer T (γδ NKT) cells" were derived. With no/low-level expression of inhibitory killer cell immunoglobulin-like receptors (KIRs) and immune checkpoint receptors, γδ NKT cells may provide a potent "off-the-shelf" cytotoxic cell source to recognize multiple ubiquitous antigens in a broad spectrum of cancers.
Collapse
MESH Headings
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- HCT116 Cells
- Hep G2 Cells
- Humans
- Induced Pluripotent Stem Cells/immunology
- Induced Pluripotent Stem Cells/pathology
- K562 Cells
- MCF-7 Cells
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/pathology
- Neoplasms/genetics
- Neoplasms/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- THP-1 Cells
Collapse
Affiliation(s)
- Jieming Zeng
- Institute of Bioengineering and Nanotechnology, Singapore
- * E-mail: , (JZ); (SW)
| | - Shin Yi Tang
- Institute of Bioengineering and Nanotechnology, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Shu Wang
- Institute of Bioengineering and Nanotechnology, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- * E-mail: , (JZ); (SW)
| |
Collapse
|
8
|
Increase of Tumor Infiltrating γδ T-cells in Pancreatic Ductal Adenocarcinoma Through Remodeling of the Extracellular Matrix by a Hyaluronan Synthesis Suppressor, 4-Methylumbelliferone. Pancreas 2019; 48:292-298. [PMID: 30589828 DOI: 10.1097/mpa.0000000000001211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Desmoplastic changes of extracellular matrix (ECM) containing large amounts of hyaluronan (HA) are of interest in chemo- and immunoresistance of pancreatic ductal adenocarcinoma (PDAC). The goal of this study was to evaluate the effects of 4-methylumbelliferone (MU), a selective inhibitor of HA, on ECM and to examine how MU affects adoptive immunotherapy. METHODS The effect of MU on cell proliferation, HA synthesis and formation of ECM were investigated in four PDAC cell lines. In addition, the cytotoxicity of γδ T-cell-rich peripheral blood mononuclear cells (PBMCs) collected from healthy donors and stimulated with zoledronate and interleukin-2 was examined in the presence of MU. The amount of HA and tumor-infiltrating lymphocytes were also investigated in mice xenograft models. RESULTS In vitro, 1.0 mM MU inhibited cell proliferation by 45-70% and HA synthesis by 55-80% in all four PDAC cell lines, and enhanced γδ T-cell-rich PBMC-mediated cytotoxicity against PDAC cells. In vivo, MU reduced intratumoral HA and promoted infiltration of inoculated γδ T-cells into tumor tissue, and consequently suppressed tumor growth. CONCLUSIONS 4-methylumbelliferone may be an effective immunosensitizer against PDAC through induction of structural changes in the ECM.
Collapse
|
9
|
Sanchez-Martinez D, Allende-Vega N, Orecchioni S, Talarico G, Cornillon A, Vo DN, Rene C, Lu ZY, Krzywinska E, Anel A, Galvez EM, Pardo J, Robert B, Martineau P, Hicheri Y, Bertolini F, Cartron G, Villalba M. Expansion of allogeneic NK cells with efficient antibody-dependent cell cytotoxicity against multiple tumors. Theranostics 2018; 8:3856-3869. [PMID: 30083264 PMCID: PMC6071536 DOI: 10.7150/thno.25149] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/26/2018] [Indexed: 01/09/2023] Open
Abstract
Monoclonal antibodies (mAbs) have significantly improved the treatment of certain cancers. However, in general mAbs alone have limited therapeutic activity. One of their main mechanisms of action is to induce antibody-dependent cell-mediated cytotoxicity (ADCC), which is mediated by natural killer (NK) cells. Unfortunately, most cancer patients have severe immune dysfunctions affecting NK activity. This can be circumvented by the injection of allogeneic, expanded NK cells, which is safe. Nevertheless, despite their strong cytolytic potential against different tumors, clinical results have been poor. Methods: We combined allogeneic NK cells and mAbs to improve cancer treatment. We generated expanded NK cells (e-NK) with strong in vitro and in vivo ADCC responses against different tumors and using different therapeutic mAbs, namely rituximab, obinutuzumab, daratumumab, cetuximab and trastuzumab. Results: Remarkably, e-NK cells can be stored frozen and, after thawing, armed with mAbs. They mediate ADCC through degranulation-dependent and -independent mechanisms. Furthermore, they overcome certain anti-apoptotic mechanisms found in leukemic cells. Conclusion: We have established a new protocol for activation/expansion of NK cells with high ADCC activity. The use of mAbs in combination with e-NK cells could potentially improve cancer treatment.
Collapse
|
10
|
Preethy S, Dedeepiya VD, Senthilkumar R, Rajmohan M, Karthick R, Terunuma H, Abraham SJK. Natural killer cells as a promising tool to tackle cancer-A review of sources, methodologies, and potentials. Int Rev Immunol 2017; 36:220-232. [PMID: 28471248 DOI: 10.1080/08830185.2017.1284209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immune cell-based therapies are emerging as a promising tool to tackle malignancies, both solid tumors and selected hematological tumors. Vast experiences in literature have documented their safety and added survival benefits when such cell-based therapies are combined with the existing treatment options. Numerous methodologies of processing and in vitro expansion protocols of immune cells, such as the dendritic cells, natural killer (NK) cells, NKT cells, αβ T cells, so-called activated T lymphocytes, γδ T cells, cytotoxic T lymphocytes, and lymphokine-activated killer cells, have been reported for use in cell-based therapies. Among this handful of immune cells of significance, the NK cells stand apart from the rest for not only their direct cytotoxic ability against cancer cells but also their added advantage, which includes their capability of (i) action through both innate and adaptive immune mechanism, (ii) tackling viruses too, giving benefits in conditions where viral infections culminate in cancer, and (iii) destroying cancer stem cells, thereby preventing resistance to chemotherapy and radiotherapy. This review thoroughly analyses the sources of such NK cells, methods for expansion, and the future potentials of taking the in vitro expanded allogeneic NK cells with good cytotoxic ability as a drug for treating cancer and/or viral infection and even as a prophylactic tool for prevention of cancer after initial remission.
Collapse
Affiliation(s)
- Senthilkumar Preethy
- a The Fujio-Eiji Academic Terrain (FEAT) , Nichi-In Centre for Regenerative Medicine (NCRM) , Chennai , Tamil Nadu , India.,b Hope Foundation (Trust) , Chennai , Tamil Nadu , India
| | - Vidyasagar Devaprasad Dedeepiya
- d The Mary-Yoshio Translational Hexagon (MYTH) , Nichi-In Centre for Regenerative Medicine (NCRM) , Chennai , Tamil Nadu , India
| | - Rajappa Senthilkumar
- a The Fujio-Eiji Academic Terrain (FEAT) , Nichi-In Centre for Regenerative Medicine (NCRM) , Chennai , Tamil Nadu , India
| | - Mathaiyan Rajmohan
- a The Fujio-Eiji Academic Terrain (FEAT) , Nichi-In Centre for Regenerative Medicine (NCRM) , Chennai , Tamil Nadu , India
| | - Ramalingam Karthick
- a The Fujio-Eiji Academic Terrain (FEAT) , Nichi-In Centre for Regenerative Medicine (NCRM) , Chennai , Tamil Nadu , India
| | | | - Samuel J K Abraham
- a The Fujio-Eiji Academic Terrain (FEAT) , Nichi-In Centre for Regenerative Medicine (NCRM) , Chennai , Tamil Nadu , India.,e II Department of Surgery, School of Medicine , Yamanashi University , Chuo , Japan
| |
Collapse
|
11
|
Wang JZ, Zhang YH, Guo XH, Zhang HY, Zhang Y. The double-edge role of B cells in mediating antitumor T-cell immunity: Pharmacological strategies for cancer immunotherapy. Int Immunopharmacol 2016; 36:73-85. [PMID: 27111515 DOI: 10.1016/j.intimp.2016.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/10/2016] [Accepted: 04/13/2016] [Indexed: 12/22/2022]
Abstract
Emerging evidence reveals the controversial role of B cells in antitumor immunity, but the underlying mechanisms have to be explored. Three latest articles published in the issue 521 of Nature in 2015 reconfirmed the puzzling topic and put forward some explanations of how B cells regulate antitumor T-cell responses both positively and negatively. This paper attempts to demonstrate that different B-cell subpopulations have distinct immunological properties and that they are involved in either antitumor responses or immunosuppression. Recent studies supporting the positive and negative roles of B cells in tumor development were summarized comprehensively. Several specific B-cell subpopulations, such as IgG(+), IgA(+), IL-10(+), and regulatory B cells, were described in detail. The mechanisms underlying the controversial B-cell effects were mainly attributed to different B-cell subpopulations, different B-cell-derived cytokines, direct B cell-T cell interaction, different cancer categories, and different malignant stages, and the immunological interaction between B cells and T cells is mediated by dendritic cells. Promising B-cell-based antitumor strategies were proposed and novel B-cell regulators were summarized to present interesting therapeutic targets. Future investigations are needed to make sure that B-cell-based pharmacological strategies benefit cancer immunotherapy substantially.
Collapse
Affiliation(s)
- Jing-Zhang Wang
- Department of Medical Technology, College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China.
| | - Yu-Hua Zhang
- Department of Library, Hebei University of Engineering, Handan 056038, PR China
| | - Xin-Hua Guo
- Department of Medicine, College of Medicine, Hebei University of Engineering, Handan 056002, PR China
| | - Hong-Yan Zhang
- Department of Medical Technology, College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China
| | - Yuan Zhang
- Department of Medical Technology, College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China
| |
Collapse
|