1
|
Wang NN, Wang K, Li X, Zhang C, Wang J, Chen Z, Bai Y. Ratiometric Detection of Carboxylesterase In Vitro and In Vivo via a BODIPY-Styryl Platform. LUMINESCENCE 2025; 40:e70152. [PMID: 40130756 DOI: 10.1002/bio.70152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/03/2025] [Accepted: 03/13/2025] [Indexed: 03/26/2025]
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive liver malignancy and the main form of liver cancer. Early diagnosis and treatment of HCC can effectively reduce mortality. Carboxylesterase (CE) is abundantly present in liver tissue, which shows promise as an innovative diagnostic biomarker for HCC. Herein, we designed and synthesized a novel fluorescent probe BDPPh-CES, based on a boron dipyrromethenes (BODIPY)-styryl framework, for the ratiometric detection of CE. Upon interaction with CEs, the probe demonstrates a characteristic fluorescence emission red shift, completing the reaction within 30 min. Notably, BDPPh-CES maintains specificity against acetylcholinesterase (AChE) and various biological species, while exhibiting robust performance across physiological pH conditions. Comprehensive mechanistic investigations, combining high-resolution mass spectrometry (HRMS) analysis, density functional theory (DFT) computational studies, and molecular docking simulations, provided insights into the binding and sensing mechanisms. The high sensitivity and low cytotoxicity facilitated real-time ratiometric imaging of CEs at the cellular level, successfully distinguishing elevated CE expression in Hepa 1-6 hepatic cancer cells over AML 12 normal hepatocytes. Further validation through in vivo experiments confirmed the liver-specific accumulation and efficient CE detection capabilities. This research presents an innovative approach for ratiometric CE monitoring, with potential implications for the early detection and therapeutic management of CE-associated disorders such as HCC.
Collapse
Affiliation(s)
- Ni-Ni Wang
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Kexin Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Xinyi Li
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Can Zhang
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, China
- School of Medical and Health Engineering, Changzhou University, Changzhou, China
| | - Zhongyan Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Yang Bai
- School of Pharmacy, Changzhou University, Changzhou, China
| |
Collapse
|
2
|
Li J, Ma M, Zhang Z, Xu L, Yang B, Diao Q, Ma P, Song D. A novel carboxylesterase 2-targeted fluorescent probe with cholic acid as a recognition group for early diagnosis of drug- and environment-related liver diseases. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135966. [PMID: 39342850 DOI: 10.1016/j.jhazmat.2024.135966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Due to the detrimental effects of various harmful substances-such as carcinogens, drug toxicity, and environmental pollutants-on the liver, which can trigger or exacerbate conditions like hepatocellular carcinoma (HCC), drug-induced liver injury (DILI), and non-alcoholic fatty liver disease (NAFLD), accurate detection and monitoring of these diseases are crucial for effective treatment. Carboxylesterase 2 (CES2) is primarily found in the liver and, as a potential biomarker, its accurate detection can enhance the early diagnosis and treatment efficacy of liver diseases. Traditional fluorescence probes for CES2 detection suffer from non-specific recognition groups, leading to poor targeting specificity. To address this limitation, we propose a novel CES2-responsive fluorescent probe utilizing cholic acid (CA) as a recognition group. The probe, LAN-CA, was synthesized by esterifying CA with a near-infrared fluorophore, LAN-OH. This novel fluorescent probe leverages the unique affinity of CA for hepatocytes, ensuring that LAN-CA remains and accumulates specifically within the hepatoenteric circulation. In vitro experiments showed that the probe exhibits superior optical performance compared to traditional benzoate-based probe (LAN-PH), with a detection limit of 0.015 μg/mL. Examination of 56 common biological interferents demonstrated that using CA as a recognition group offers high selectivity. Cell experiments confirmed that LAN-CA is an effective tool for monitoring endogenous CES2 in live cells. Comprehensive evaluations of fluorescence imaging in various mouse models of liver diseases, such as HCC, DILI, and NAFLD, demonstrated that LAN-CA provides exceptional imaging accuracy and therapeutic monitoring capabilities. In conclusion, this probe not only can be a promising tool for accurate liver disease diagnosis, but also can provide valuable insights into treatment efficacy.
Collapse
Affiliation(s)
- Jingkang Li
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Mo Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China; School of Pharmacy, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Zhimin Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Lanlan Xu
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Bin Yang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Quanping Diao
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China.
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China; Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan, China.
| |
Collapse
|
3
|
Lin X, Liu M, Yi Q, Zhou Y, Su J, Qing B, Lu Y, Pu C, Lan W, Zou L, Wang J. Design, synthesis, and evaluation of a carboxylesterase detection probe with therapeutic effects. Talanta 2024; 274:126060. [PMID: 38604044 DOI: 10.1016/j.talanta.2024.126060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
In this study, a lysosomal targeting fluorescent probe recognition on CEs was designed and synthesized. The obtained probe BF2-cur-Mor demonstrated excellent selectivity, sensitivity, pH-independence, and enzyme affinity towards CEs within 5 min. BF2-cur-Mor could enable recognition of intracellular CEs and elucidate that the CEs content of different cancer cells follows the rule of HepG2 > HCT-116 > A549 > HeLa, and the CEs expression level of hepatoma cancer cells far exceeds that of normal hepatic cells, being in good agreement with the previous reports. The ability of BF2-cur-Mor to monitor CEs in vivo was confirmed by zebrafish experiment. BF2-cur-Mor exhibits some pharmacological activity in that it can induce apoptosis in hepatocellular carcinoma cells but is weaker in normal hepatocyte cells, being expected to be a potential "diagnostic and therapeutic integration" tool for the clinical diagnosis of CEs-related diseases.
Collapse
Affiliation(s)
- Xia Lin
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning, 530004, China; Guangxi Health Science College, Nanning, 530023, China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Min Liu
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning, 530004, China
| | - Qingyuan Yi
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning, 530004, China
| | - Ying Zhou
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning, 530004, China
| | - Jinchan Su
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning, 530004, China
| | - Binyang Qing
- College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yaqi Lu
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning, 530004, China
| | - Chunxiao Pu
- College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Weisen Lan
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Lianjia Zou
- Guangxi Health Science College, Nanning, 530023, China.
| | - Jianyi Wang
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning, 530004, China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
4
|
Liu Y, Li J, Zhu HJ. Regulation of carboxylesterases and its impact on pharmacokinetics and pharmacodynamics: an up-to-date review. Expert Opin Drug Metab Toxicol 2024; 20:377-397. [PMID: 38706437 PMCID: PMC11151177 DOI: 10.1080/17425255.2024.2348491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
INTRODUCTION Carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2) are among the most abundant hydrolases in humans, catalyzing the metabolism of numerous clinically important medications, such as methylphenidate and clopidogrel. The large interindividual variability in the expression and activity of CES1 and CES2 affects the pharmacokinetics (PK) and pharmacodynamics (PD) of substrate drugs. AREAS COVERED This review provides an up-to-date overview of CES expression and activity regulations and examines their impact on the PK and PD of CES substrate drugs. The literature search was conducted on PubMed from inception to January 2024. EXPERT OPINION Current research revealed modest associations of CES genetic polymorphisms with drug exposure and response. Beyond genomic polymorphisms, transcriptional and posttranslational regulations can also significantly affect CES expression and activity and consequently alter PK and PD. Recent advances in plasma biomarkers of drug-metabolizing enzymes encourage the research of plasma protein and metabolite biomarkers for CES1 and CES2, which could lead to the establishment of precision pharmacotherapy regimens for drugs metabolized by CESs. Moreover, our understanding of tissue-specific expression and substrate selectivity of CES1 and CES2 has shed light on improving the design of CES1- and CES2-activated prodrugs.
Collapse
Affiliation(s)
- Yaping Liu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Jiapeng Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
5
|
Zhang W, Qi C, Wang X, Fu Z, Zhang J, Zhou Y, Wang Y. An ultrasensitive and selective near-infrared fluorescent probe for tracking carboxylesterases with large Stokes shift in living cells and mice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123708. [PMID: 38042124 DOI: 10.1016/j.saa.2023.123708] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Carboxylesterases (CEs) play great role in CEs-related diseases and drug metabolism. Selectively monitoring its activity is important to explore its role in CEs-related diseases and drug combination. Herein, a new "turn-on" near-infrared (NIR) fluorescent probe (CHY-1) was reported with large Stokes shift (145 nm) for CEs detection. Dicyanoisophorone-based derivative was chosen as NIR fluorophore and 4-bromobutyrate was the identifying group. What's more, CHY-1 exhibited ultra-sensitivity (LOD ∼ 9.2 × 10-5 U/mL), high selectivity against Acetylcholinesterase (AChE), Butyrylcholinesterase (BChE) and Chymotrypsin for CEs fluorescence detection under physiological pH and temperature. Furthermore, CHY-1 showed little effect on cell viability at high concentration and featured good optical imaging character for the slight change of CEs activity induced by 5-Fu (5-Fluorouridine, anti-tumor drug) and CEs inhibitor in living cells. Moreover, CHY-1 was also used to detect the activity and distribution of CEs in mice. Taken together, CHY-1 had widely applicable value in the diagnosis of CEs-related diseases and drug combination.
Collapse
Affiliation(s)
- Wenda Zhang
- Department of Pharmacy, Henan Key Laboratory for Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China.
| | - Chongzhen Qi
- Department of Pharmacy, Henan Key Laboratory for Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China
| | - Xinru Wang
- Department of Pharmacy, Henan Key Laboratory for Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China
| | - Zhe Fu
- Department of General Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingmin Zhang
- Department of Pharmacy, Henan Key Laboratory for Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China
| | - Yubing Zhou
- Department of Pharmacy, Henan Key Laboratory for Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China.
| | - Yu Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China.
| |
Collapse
|
6
|
Gao P, Li M, Lu J, Xiang D, Wang X, Xu Y, Zu Y, Guan X, Li G, Zhang C. IL-33 Downregulates Hepatic Carboxylesterase 1 in Acute Liver Injury via Macrophage-derived Exosomal miR-27b-3p. J Clin Transl Hepatol 2023; 11:1130-1142. [PMID: 37577217 PMCID: PMC10412689 DOI: 10.14218/jcth.2022.00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/19/2023] [Accepted: 02/23/2023] [Indexed: 07/03/2023] Open
Abstract
Background and Aims We previously reported that carboxylesterase 1 (CES1) expression was suppressed following liver injury. The study aimed to explore the role of interleukin (IL)-33 in liver injury and examine the mechanism by which IL-33 regulates CES1. Methods IL-33 and CES1 levels were determined in the livers of patients and lipopolysaccharide (LPS)-, acetaminophen (APAP)-treated mice. We constructed IL-33 and ST2 knockout (KO) mice. ST2-enriched immune cells in livers were screened to identify the responsible cells. Macrophage-derived exosome (MDE) activity was tested by adding exosome inhibitors. Micro-RNAs (miRs) were extracted from control and IL-33-stimulated MDEs (IL-33-MDEs) and subjected miR sequencing (miR-Seq). Candidate miR was tested in vitro and in vivo and its binding of a target gene was assessed by luciferase reporter assays. Lentivirus-vector cellular transfection and transcript silencing were used to examine pathways mediating IL-33 suppression of miR-27b-3p. Results Patient liver IL-33 and CES1 expression levels were inversely correlated. CES1 downregulation in liver injury was rescued in both IL-33-deficient and ST2 KO mice. Macrophages were shown to be responsible for IL-33 effects. IL-33-MDEs reduced CES1 levels in hepatocytes. Exosomal miR-Seq and qRT-PCR demonstrated increased miR-27b-3p levels in IL-33-MDEs; miR-27b-3p was implicated in Nrf2 targeting. IL-33 inhibition of miR-27b-3p was found to be GATA3-dependent. Conclusions IL-33-ST2-GATA3 pathway signaling increases miR-27b-3p content in MDEs, which upon being internalized by hepatocytes reduce CES1 expression by inhibiting Nrf2. The elucidation of this mechanism in this study contributes to a better understanding of CES1 dysregulation in liver injury.
Collapse
Affiliation(s)
- Ping Gao
- Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Li
- Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingli Lu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Daochun Xiang
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ximin Wang
- Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanjiao Xu
- Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Zu
- Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | - Guodong Li
- Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chengliang Zhang
- Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
7
|
Zhang L, Yan JL, Wang Y, Zhao XL, Wu WN, Fan YC, Xu ZH, Yan LL. A novel indene-chalcone-based fluorescence probe with lysosome-targeting for detection of endogenous carboxylesterases and bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121329. [PMID: 35576837 DOI: 10.1016/j.saa.2022.121329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
An indene-chalcone-based fluorescence probe 1 was synthesized and characterized. Under physiological conditions (containing 5% DMSO), probe 1 showed satisfactory stability with a low background signal and recognized carboxylesterases (CEs) based on the catalytic hydrolysis of ester groups, releasing a significant green fluorescence. Probe 1 presents several features including a short response time (within 20 min), low detection limit (1.3 × 10-4 U/mL) and large stokes shift (over 155 nm). Notably, commercial lysosomal dye co-staining experiments illustrated the lysosomal localization function of 1, with the probe also being used for cell and zebrafish imaging of endogenous CEs.
Collapse
Affiliation(s)
- Ling Zhang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Jin-Long Yan
- Institute of Synthetic Technology, Jiaozuo Normal College, Jiaozuo 454001, PR China
| | - Yuan Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Xiao-Lei Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Wei-Na Wu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Yun-Chang Fan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Zhi-Hong Xu
- Key Laboratory of Chemo/Biosensing and Detection, School of Chemistry and Chemical Engineering, Xuchang University, Xuchang 461000, PR China; College of Chemistry, Zhengzhou University, Zhengzhou 450052, PR China.
| | - Ling-Ling Yan
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| |
Collapse
|
8
|
Zhou H, Tang J, Zhang J, Chen B, Kan J, Zhang W, Zhou J, Ma H. A red lysosome-targeted fluorescent probe for carboxylesterase detection and bioimaging. J Mater Chem B 2019. [DOI: 10.1039/c9tb00310j] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A red lysosome-targeting probe for carboxylesterase activity has been successfully applied in complex biological samples.
Collapse
Affiliation(s)
- Hui Zhou
- College of Pharmacy
- Weifang Medical University
- Weifang
- China
| | - Jinbao Tang
- College of Pharmacy
- Weifang Medical University
- Weifang
- China
| | - Jie Zhang
- College of Pharmacy
- Weifang Medical University
- Weifang
- China
| | - Bochao Chen
- College of Pharmacy
- Weifang Medical University
- Weifang
- China
| | - Jianfei Kan
- College of Pharmacy
- Weifang Medical University
- Weifang
- China
| | - Weifen Zhang
- College of Pharmacy
- Weifang Medical University
- Weifang
- China
| | - Jin Zhou
- College of Pharmacy
- Weifang Medical University
- Weifang
- China
| | - Huimin Ma
- Beijing National laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Bejing 100190
| |
Collapse
|
9
|
Xiao Q, Zhou Q, Yang L, Tian Z, Wang X, Xiao Y, Shi D. Breed Differences in Pig Liver Esterase (PLE) between Tongcheng (Chinese Local Breed) and Large White Pigs. Sci Rep 2018; 8:16364. [PMID: 30397234 PMCID: PMC6218520 DOI: 10.1038/s41598-018-34695-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/04/2018] [Indexed: 01/24/2023] Open
Abstract
Human carboxylesterases has been proven to be age and race-related and a sound basis of clinical medication. PLE involve in signal transduction and highly catalyze hydrolysis. Therefore, the expression level of PLE most probably exist age and breed difference and lead to significant differences of pharmacology and physiology. Four age groups of Tongcheng (TC) and Large White (LW) pigs were selected to explore PLE breed and age differences, and it was found that PLE mRNA was most abundant in liver in both breeds. In liver, PLE levels and hydrolytic activities increased with age, and PLE levels (except for 3 month) and the hydrolytic activities were higher in LW than in TC across all age groups. Abundance of PLE isoenzymes was obvious different between breeds and among age groups. The most abundant PLE isoenzyme in LW and TC pigs was PLE-A1 (all age groups) and PLE-B9 (three early age groups) or PLE-G3 (adult groups), respectively. 103 new PLE isoenzymes were found, and 55 high-frequency PLE isoenzymes were accordingly classified into seven categories (A-G). The results of this research provide a necessary basis not only for clinical medication of pigs but also for pig breeding purposes.
Collapse
Affiliation(s)
- Qiling Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agricultural, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Qiongqiong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agricultural, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Lu Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agricultural, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Zhongyuan Tian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agricultural, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Xiliang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agricultural, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Yuncai Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agricultural, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Deshi Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agricultural, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
| |
Collapse
|
10
|
Kang A, Xie T, Zhu D, Dong Y, Wen H, Pei Y, Shan J, Di L. Comparative pharmacokinetic study of pyranocoumarins and khellactone in normal and acute lung injury rats after oral administration of Peucedanum praeruptorum Dunn extracts using a rapid and sensitive liquid chromatography-tandem mass spectrometry method. Biomed Chromatogr 2017; 31. [PMID: 28321891 DOI: 10.1002/bmc.3977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/24/2017] [Accepted: 03/16/2017] [Indexed: 01/03/2023]
Abstract
Pyranocoumarins are the main constitutes in Peucedanum praeruptorum Dunn and possess various biological activities. In this article, we developed and validated a rapid and sensitive liquid chromatography-tandem mass spectrometry method for the targeted quantification of the pyranocoumarins, praeruptorin A, praeruptorin B and praeruptorin E, and khellactone, which is a common metabolite of these pyranocoumarins in rat plasma samples. We then performed a comparative pharmacokinetic study of these pyranocoumarins and khellactone in normal and lipopolysaccharide-induced acute lung injury (ALI) in rats following oral administration of P. praeruptorum Dunn extracts. Calibration curves gave desirable linearity (r > 0.99) and the lower limit of quantifications were sufficient for quantitative analysis. The precision and accuracy were assessed by intra-batch and inter-batch assays, and the relative standard deviations were all within 10.23% and the accuracy (relative error) was between -5.52% and 8.68%. The extraction recoveries, matrix effects and stability were also acceptable. The pharmacokinetic study revealed that the area under the concentration-time curve (0-t) of khellactone in ALI rats was significantly decreased compared with the normal rats. Meanwhile, the systemic exposures of these pyranocoumarins were slightly higher in the ALI rats than those in normal rats were. The pharmacokinetic study in the pathological state might provide information that was more comprehensive to guide the clinical usage of P. praeruptorum Dunn.
Collapse
Affiliation(s)
- An Kang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory for Functional Substance of Chinese Medicine, Nanjing, China
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Dong Zhu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Dong
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongmei Wen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuqiong Pei
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Key Laboratory for Functional Substance of Chinese Medicine, Nanjing, China
| | - Liuqing Di
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory for Functional Substance of Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Luo W, Xin Y, Zhao X, Zhang F, Liu C, Fan H, Xi T, Xiong J. Suppression of carboxylesterases by imatinib mediated by the down-regulation of pregnane X receptor. Br J Pharmacol 2017; 174:700-717. [PMID: 28128444 DOI: 10.1111/bph.13731] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSE Imatinib mesylate (IM) is a first-line treatment for chronic myeloid leukaemia (CML) as a specific inhibitor of BCR-ABL tyrosine kinase. As IM is widely used in CML, in combination with other drugs, the effects of IM on drug-metabolizing enzymes (DMEs) are crucial to the design of rational drug administration. Carboxylesterases (CESs) are enzymes catalysing the hydrolytic biotransformation of several clinically useful drugs. Although IM is known to inhibit cytochromes P450 (CYPs), its effects on DMEs, and CESs in particular, are still largely undefined. EXPERIMENTAL APPROACH Hepatoma cell lines (HepG2 and Huh7) and primary mouse hepatocytes were used. mRNA and protein expression were evaluated by quantitative RT-PCR and Western blot analysis. Reporter luciferase activity was determined by transient co-transfection experiment. Pregnane X receptor (PXR) expression was regulated by overexpression and RNA interference. The activity of CESs was determined by enzymic and toxicological assays. Mice were treated with a range of doses of IM to analyse expression of CESs in mouse liver. KEY RESULTS The expression and activity of CESs were markedly repressed by IM, along with the down-regulation of PXR and inhibited expression and activity of CYP3A4 and P-gp. CONCLUSIONS AND IMPLICATIONS Down-regulation of PXR mediates IM-induced suppression of CESs. IM may inhibit expression of other genes targeted by PXR, thus inducing a wide range of potential drug-drug interactions during treatment of CML. The data deserve further elucidation including clinical trials.
Collapse
Affiliation(s)
- Wenjing Luo
- Department of Pharmacology, Nanjing Medical University, Nanjing, China.,Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yu Xin
- Department of Pharmacology, Nanjing Medical University, Nanjing, China.,Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xia Zhao
- Department of Pharmacy, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, China
| | - Feng Zhang
- Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Changqing Liu
- Clinical Pharmacology Laboratory, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Hongwei Fan
- Clinical Pharmacology Laboratory, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Tao Xi
- Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jing Xiong
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Regulations of Xenobiotics and Endobiotics on Carboxylesterases: A Comprehensive Review. Eur J Drug Metab Pharmacokinet 2016; 41:321-30. [DOI: 10.1007/s13318-016-0326-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|