1
|
Tan W, Zhang J, Dai F, Yang D, Gu R, Tang L, Liu H, Cheng YX. Insights on the NF-κB system in polycystic ovary syndrome, attractive therapeutic targets. Mol Cell Biochem 2024; 479:467-486. [PMID: 37097332 DOI: 10.1007/s11010-023-04736-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/07/2023] [Indexed: 04/26/2023]
Abstract
The nuclear factor κappa B (NF-κB) signaling plays a well-known function in inflammation and regulates a wide variety of biological processes. Low-grade chronic inflammation is gradually considered to be closely related to the pathogenesis of Polycystic ovary syndrome (PCOS). In this review, we provide an overview on the involvement of NF-κB in the progression of PCOS particularly, such as hyperandrogenemia, insulin resistance, cardiovascular diseases, and endometrial dysfunction. From a clinical perspective, progressive recognition of NF-κB pathway provides opportunities for therapeutic interventions aimed at inhibiting pathway-specific mechanisms. With the accumulation of basic experimental and clinical data, NF-κB signaling pathway was recognized as a therapeutic target. Although there have been no specific small molecule NF-κB inhibitors in PCOS, a plethora of natural and synthetic compound have emerged for the pharmacologic intervention of the pathway. The traditional herbs developed for NF-κB pathway have become increasingly popular in recent years. Abundant evidence elucidated that NF-κB inhibitors can significantly improve the symptoms of PCOS. Herein, we summarized evidence relating to how NF-κB pathway is involved in the development and progression of PCOS. Furthermore, we present an in-depth overview of NF-κB inhibitors for therapy interventions of PCOS. Taken together, the NF-κB signaling may be a futuristic treatment strategy for PCOS.
Collapse
Affiliation(s)
- Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Jie Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Ran Gu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Lujia Tang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China.
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Ebrahimi N, Abdulwahid AHRR, Mansouri A, Karimi N, Bostani RJ, Beiranvand S, Adelian S, Khorram R, Vafadar R, Hamblin MR, Aref AR. Targeting the NF-κB pathway as a potential regulator of immune checkpoints in cancer immunotherapy. Cell Mol Life Sci 2024; 81:106. [PMID: 38418707 PMCID: PMC10902086 DOI: 10.1007/s00018-023-05098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/01/2023] [Accepted: 10/29/2023] [Indexed: 03/02/2024]
Abstract
Advances in cancer immunotherapy over the last decade have led to the development of several agents that affect immune checkpoints. Inhibitory receptors expressed on T cells that negatively regulate the immune response include cytotoxic T‑lymphocyte antigen 4 (CTLA4) and programmed cell death protein 1 (PD1), which have been studied more than similar receptors. Inhibition of these proteins and other immune checkpoints can stimulate the immune system to attack cancer cells, and prevent the tumor from escaping the immune response. However, the administration of anti-PD1 and anti-CTLA4 antibodies has been associated with adverse inflammatory responses similar to autoimmune diseases. The current review discussed the role of the NF-κB pathway as a tumor promoter, and how it can govern inflammatory responses and affect various immune checkpoints. More precise knowledge about the communication between immune checkpoints and NF-κB pathways could increase the effectiveness of immunotherapy and reduce the adverse effects of checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Atena Mansouri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasrin Karimi
- Department of Biology, Faculty of Basic Science, Islamic Azad University Damghan Branch, Damghan, Iran
| | | | - Sheida Beiranvand
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Vafadar
- Department of Orthopeadic Surgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Lin Y, Sheng M, Qin H, Zhang P, Wang C, Fu W, Meng X, Wang D, Hou Y. Caspase 6 promotes innate immune activation by functional crosstalk between RIPK1-IκBα axis in liver inflammation. Cell Commun Signal 2023; 21:282. [PMID: 37828624 PMCID: PMC10568785 DOI: 10.1186/s12964-023-01287-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/19/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Caspase 6 is an essential regulator in innate immunity, inflammasome activation and host defense. We aimed to characterize the causal mechanism of Caspase 6 in liver sterile inflammatory injury. METHODS Human liver tissues were harvested from patients undergoing ischemia-related hepatectomy to evaluate Caspase 6 expression. Subsequently, we created Caspase 6-knockout (Caspase 6KO) mice to analyze roles and molecular mechanisms of macrophage Caspase 6 in murine models of liver ischemia/reperfusion (IR) injury. RESULTS In human liver biopsies, Caspase 6 expression was positively correlated with more severe histopathological injury and higher serum ALT/AST level at one day postoperatively. Moreover, Caspase 6 was mainly elevated in macrophages but not hepatocytes in ischemic livers. Unlike in controls, the Caspase 6-deficient livers were protected against IR injury, as evidenced by inhibition of inflammation, oxidative stress and iron overload. Disruption of macrophage NF-κB essential modulator (NEMO) in Caspase 6-deficient livers deteriorated liver inflammation and ferroptosis. Mechanistically, Caspase 6 deficiency spurred NEMO-mediated IκBα phosphorylation in macrophage. Then phosphorylated-inhibitor of NF-κBα (p-IκBα) co-localized with receptor-interacting serine/ threonine-protein kinase 1 (RIPK1) in the cytoplasm to degradate RIPK1 under inflammatory conditions. The disruption of RIPK1-IκBα interaction preserved RIPK1 degradation, triggering downstream apoptosis signal-regulating kinase 1 (ASK1) phosphorylation and inciting NIMA-related kinase 7/NOD-like receptor family pyrin domain containing 3 (NEK7/NLRP3) activation in macrophages. Moreover, ablation of macrophage RIPK1 or ASK1 diminished NEK7/NLRP3-driven inflammatory response and dampened hepatocyte ferroptosis by reducing HMGB1 release from macrophages. CONCLUSIONS Our findings underscore a novel mechanism of Caspase 6 mediated RIPK1-IκBα interaction in regulating macrophage NEK7/NLRP3 function and hepatocytes ferroptosis, which provides therapeutic targets for clinical liver IR injury. Video Abstract.
Collapse
Affiliation(s)
- Yuanbang Lin
- Department of General Surgery, Tianjin Medical University General Hospital, Anshan Road NO. 154, Tianjin, 300052, PR China, China.
| | - Mingwei Sheng
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Hua Qin
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Peng Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Anshan Road NO. 154, Tianjin, 300052, PR China, China
| | - Chunli Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Anshan Road NO. 154, Tianjin, 300052, PR China, China
| | - Wei Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Anshan Road NO. 154, Tianjin, 300052, PR China, China
| | - Xiangjun Meng
- Department of General Surgery, Tianjin Medical University General Hospital, Anshan Road NO. 154, Tianjin, 300052, PR China, China
| | - Duowei Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Anshan Road NO. 154, Tianjin, 300052, PR China, China
| | - Yachao Hou
- Department of General Surgery, Tianjin Medical University General Hospital, Anshan Road NO. 154, Tianjin, 300052, PR China, China
| |
Collapse
|
4
|
Cai M, Xiao B, Wang Y, Wang K, Luo W, Fu J, Wang S, Deng S, Li B, Gong L, Zhong J, Hu L, Pan L, Wang L, Liu Y, Huang C, Li X, Zeng Q, Kang H, Li L, Zan J, Peng T, Yang H, Li M. Epstein-Barr virus envelope glycoprotein 110 inhibits NF-κB activation by interacting with NF-κB subunit p65. J Biol Chem 2023; 299:104613. [PMID: 36931391 PMCID: PMC10173782 DOI: 10.1016/j.jbc.2023.104613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Epstein-Barr virus (EBV) is a member of the lymphotropic virus family, and is highly correlated with some human malignant tumors. It has been reported that envelope glycoprotein 110 (gp110) plays an essential role in viral fusion, DNA replication, and nucleocapsid assembly of EBV. However, it has not been established whether gp110 is involved in regulating the host's innate immunity. In this study, we found that gp110 inhibits tumor necrosis factor α (TNF-α)-mediated NF-κB promoter activity and the downstream production of NF-κB-regulated cytokines under physiological conditions. Using dual-luciferase reporter assays, we showed that gp110 might impede the NF-κB promoter activation downstream of NF-κB transactivational subunit p65. Subsequently, we used co-immunoprecipitation assays to demonstrate that gp110 interacts with p65 during EBV lytic infection, and that the C-terminal cytoplasmic region of gp110 is the key interaction domain with p65. Furthermore, we determined gp110 can bind to the N-terminal Rel homologous and C-terminal domains of p65. Alternatively, gp110 might not disturb the association of p65 with non-transactivational subunit p50, but we showed it restrains activational phosphorylation (at Ser536) and nuclear translocation of p65, which we also found to be executed by the C-terminal cytoplasmic region of gp110. Altogether, these data suggest that the surface protein gp110 may be a vital component for EBV to antagonize the host's innate immune response, which is also helpful for revealing the infectivity and pathogenesis of EBV.
Collapse
Affiliation(s)
- Mingsheng Cai
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bin Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Yuanfang Wang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China; The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Kezhen Wang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Wenqi Luo
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Jiangqin Fu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Shuai Wang
- Institutes of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, China
| | - Shenyu Deng
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Bolin Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Lan Gong
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Jiayi Zhong
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Li Hu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Lingxia Pan
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Liding Wang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Yintao Liu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Chen Huang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Xiaoqing Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Qiyuan Zeng
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Haoran Kang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China.
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China; Guangdong South China Vaccine, Guangzhou, Guangdong, China.
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Hearing and Speech-Language Science, Guangzhou Xinhua University, Guangzhou, Guangdong, China.
| | - Meili Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Fang S, Cai C, Bai Y, Zhang L, Yang L. Early Pregnancy Regulates Expression of IkappaB Family in Ovine Spleen and Lymph Nodes. Int J Mol Sci 2023; 24:ijms24065156. [PMID: 36982231 PMCID: PMC10049502 DOI: 10.3390/ijms24065156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Early pregnancy modulates the maternal immune system, including the spleen and lymph nodes, which participate in maternal innate and adaptive immune responses. Methods: Ovine spleens and lymph nodes were sampled at day 16 of the estrous cycle, and at days 13, 16 and 25 of gestation, and qRT-PCR, Western blot and immunohistochemistry analysis were used to analyze the expression of the IκB family, including BCL-3, IκBα, IκBβ, IκBε, IKKγ, IκBNS and IκBζ. Early pregnancy induced expression of BCL-3, IκBα, IκBε, IKKγ and IκBζ, and expression of BCL-3, IκBβ and IκBNS peaked at day 16 of pregnancy in the spleen. However, early pregnancy suppressed the expression of BCL-3 and IκBNS, but stimulated the expression of IκBβ and IκBζ, and expression levels of IκBα, IκBβ, IκBε and IKKγ peaked in lymph nodes at days 13 and/or 16 of pregnancy. Early pregnancy changed the expression of the IκB family in the maternal spleen and lymph node in a tissue-specific manner, suggesting that the modulation of the IκB family may be involved in regulation of maternal functions of the spleen and lymph nodes, which are necessary for the establishment of maternal immune tolerance during early pregnancy in sheep.
Collapse
Affiliation(s)
- Shengya Fang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Chunjiang Cai
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Ying Bai
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| |
Collapse
|
6
|
Wang J, Chen Z, Li M, Song Y, Xu W, Wang L, Chen S. Genome-wide identification, immune response profile and functional characterization of IL-10 from spotted knifejaw (Oplegnathus punctatus) during host defense against bacterial and viral infection. FISH & SHELLFISH IMMUNOLOGY 2022; 124:513-524. [PMID: 35472402 DOI: 10.1016/j.fsi.2022.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Interleukin 10 (IL-10), a pleiotropic cytokine, plays an essential role in multiple immunity responses. In the current study, the sequences of IL-10 family were identified from spotted knifejaw (Oplegnathus punctatus) whole genome, and O. punctatus IL-10 (OpIL-10) was cloned and characterized. OpIL-10 encodes 187 amino acids with a typical IL-10 family signature motif and predicted α-helices. It shared high identities with Notolabrus celidotus IL-10 and Epinephelus Lanceolatus IL-10. OpIL-10 was widely detected in healthy tissues, with the abundant expression in liver and skin. It was significantly up-regulated in the six immune-related tissues (liver, spleen, kidney, intestine, gill and skin) after infection against Vibrio harveyi and spotted knifejaw iridovirus (SKIV). Dual-luciferase analysis showed that OpIL-10 overexpression could suppress the activity of NF-κB. Meanwhile, OpIL-10 knockdown caused the down-regulation of five immune-related genes in JAK2/STAT3 signaling pathway and NF-κB signaling pathway, including IL-10R2, TYK2, STAT3, NOD2, and IκB. In addition, LPS and poly I:C stimulated expression of pro-inflammatory cytokines, including IL-6, IL-1β, IL-8, and IL-12, were lower with recombinant OpIL-10 (rOp IL-10) than the control group, indicating the anti-inflammatory roles of rOpIL-10. Taken together, these results indicated OpIL-10 as a negative regulator in the inflammatory responses of spotted knifejaw against bacterial and viral infection, which would help us better understand the role of IL-10 in teleost immunity.
Collapse
Affiliation(s)
- Jie Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhangfan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China.
| | - Ming Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yu Song
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Wenteng Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China
| | - Lei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China.
| |
Collapse
|
7
|
Wang Q, Huang F, Duan X, Cheng H, Zhang C, Li L, Ruan X, He Q, Niu W, Yang H, Lu D, Zheng L, Zhao H. The ERβ-CXCL19/CXCR4-NFκB pathway is critical in mediating the E2-induced inflammation response in the orange-spotted grouper (Epinephelus coioides). J Steroid Biochem Mol Biol 2021; 212:105926. [PMID: 34091027 DOI: 10.1016/j.jsbmb.2021.105926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/15/2021] [Accepted: 05/30/2021] [Indexed: 01/19/2023]
Abstract
The main physiological function of 17β-estradiol (E2) in vertebrates is to regulate sexual development and reproduction. In fish, especially hermaphroditic fish, estrogen is often used to aid reproduction, but it also can trigger an inflammatory response. However, the molecular mechanism for this E2-induced inflammatory reaction is not clear. In this study, we found that the ERβ-CXCL19/CXCR4-NFκB cascade regulated the E2-induced inflammatory response in the orange-spotted grouper (Epinephelus coioides). Strikingly, E2 treatment resulted in significantly high expression of inflammatory cytokines and induced phosphorylation and degradation of IκBα and translocation of NFκB subunit p65 to the nucleus in grouper spleen cells. However, the E2-induced inflammatory response could be prevented by the broad estrogen receptor (ER) ligand ICI 182,780. Moreover, the luciferase assay showed that E2 induced the inflammatory response by activating the promotor of chemokine CXCL19 through ERβ1 and ERβ2. Knockdown of CXCL19 blocked the E2-induced inflammatory response and NFκB nucleus translocation. Additionally, knockdown of chemokines CXCR4a and CXCR4b together, but not alone, blocked the E2-induced inflammatory response. The immunofluorescence assay and co-immunoprecipitation analysis showed that CXCL19 mediated the E2-induced inflammatory response by activating CXCR4a or CXCR4b. Taken together, these results showed that the ERβ-CXCL19/CXCR4-NFκB pathway mediated the E2-induced inflammatory response in grouper. These findings are valuable for future comparative immunological studies and provide a theoretical basis for mitigating the adverse reactions that occur when using E2 to help fish reproduce.
Collapse
Affiliation(s)
- Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, Guangzhou, 510642, China
| | - Fengqi Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xuzhuo Duan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huitao Cheng
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Chunli Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lihua Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xinhe Ruan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qi He
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenbiao Niu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Danqi Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Leyun Zheng
- Fisheries Research Institute of Fujian, Xiamen, 361000, China
| | - Huihong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Pu T, Liu W, Wu Y, Zhao Y. A20 functions as a negative regulator in macrophage for DSS-induced colitis. Int Immunopharmacol 2021; 97:107804. [PMID: 34062371 DOI: 10.1016/j.intimp.2021.107804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/13/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
The function of A20 as a deubiquitinating enzyme in inflammatory diseases and autoimmune diseases has been reported, we therefore aimed to investigate the potential effects of A20 in macrophages and dextran sodium sulfate (DSS)-induced colitis mouse model. Colitis mouse model was induced by DSS treatment. Tnfaip3fl/fl mice were crossed with Lyz2-Cre mice to generate A20 myeloid cell-conditional knockout mice. The expression levels of indicated cytokines were analyzed by quantitative reverse transcriptase real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Phosphorylated and total protein levels in nuclear factor kappa B (NF-κB) signaling pathway were detected by Western blot. In the bone marrow of mice, A20 deficiency did not affect macrophage development. In bone marrow-derived macrophages (BMDMs) after lipopolysaccharide (LPS) treatment, A20 deficiency enhanced pro-inflammatory cytokine expression. A20 deficiency in macrophages led to severe symptoms of DSS-induced colitis in mice. A20 deficiency enhanced the NF-κB signaling pathway activity in BMDMs. The effects of A20 deficiency in DSS-induced colitis were suppressed by NF-κB pathway inhibition. A20/inhibitor of NF-κB kinase 2 (IKKβ)-double knockout mice were resistant to DSS-induced colitis. A20 suppresses pro-inflammatory cytokine expression in macrophages through the NF-κB signal pathway and alleviates the pathogenesis of DSS-induced colitis in mice.
Collapse
Affiliation(s)
- Tian Pu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Wenzheng Liu
- Department of Gastroenterology, Peking University Third Hospital, No. 49 Huayuan North Road, Beijing 100191, China
| | - Yijun Wu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Ye Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China.
| |
Collapse
|
9
|
Betzler AC, Theodoraki MN, Schuler PJ, Döscher J, Laban S, Hoffmann TK, Brunner C. NF-κB and Its Role in Checkpoint Control. Int J Mol Sci 2020; 21:ijms21113949. [PMID: 32486375 PMCID: PMC7312739 DOI: 10.3390/ijms21113949] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor-κB (NF-κB) has been described as one of the most important molecules linking inflammation to cancer. More recently, it has become clear that NF-κB is also involved in the regulation of immune checkpoint expression. Therapeutic approaches targeting immune checkpoint molecules, enabling the immune system to initiate immune responses against tumor cells, constitute a key breakthrough in cancer treatment. This review discusses recent evidence for an association of NF-κB and immune checkpoint expression and examines the therapeutic potential of inhibitors targeting either NF-κB directly or molecules involved in NF-κB regulation in combination with immune checkpoint blockade.
Collapse
|
10
|
Shokri S, Mahmoudvand S, Taherkhani R, Farshadpour F, Jalalian FA. Complexity on modulation of NF-κB pathways by hepatitis B and C: A double-edged sword in hepatocarcinogenesis. J Cell Physiol 2019; 234:14734-14742. [PMID: 30741410 DOI: 10.1002/jcp.28249] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
Nuclear factor-κB (NF-κB), a family of master regulated dimeric transcription factors, signaling transduction pathways are active players in the cell signaling that control vital cellular processes, including cell growth, proliferation, differentiation, apoptosis, morphogenesis, angiogenesis, and immune responses. Nevertheless, aberrant regulation of the NF-κB signaling pathways has been associated with a significant number of human cancers. In fact, NF-κB acts as a double-edged sword in the vital cellular processes and carcinogenesis. This review provides an overview on the modulation of the NF-κB signaling pathways by proteins of hepatitis B and C viruses. One of the major NF-κB events that are modulated by these viruses is the induction of hepatocellular carcinoma. Given the central function of NF-κB in carcinogenesis, it has turned out to be a considerable therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Somayeh Shokri
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahab Mahmoudvand
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Taherkhani
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Fatemeh Farshadpour
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farid Azizi Jalalian
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
11
|
He L, Liang Y, Yu X, Peng W, He J, Fu L, Lin H, Zhang Y, Lu D. Vibrio parahaemolyticus flagellin induces cytokines expression via toll-like receptor 5 pathway in orange-spotted grouper, Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2019; 87:573-581. [PMID: 30721777 DOI: 10.1016/j.fsi.2019.01.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Vibrio parahaemolyticus is the major pathogen of vibriosis in aquatic animals and causes inflammation that may be related to tissue damage. Here, we have established a V. parahaemolyticus flagellin stimulation model using grouper spleen (GS) cell line. Purified V. parahaemolyticus flagellin was used to stimulate GS cells. Our results showed that the mRNA levels of orange-spotted grouper (Epinephelus coioides) toll-like receptor 5M (EcTLR5M), EcTLR5S and downstream cytokines, such as interferon-γ2 (IFN-γ2), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), were all significantly increased after stimulation with V. parahaemolyticus flagellin in GS cells. Gene silencing of the EcTLR5M and EcTLR5S in GS cells by using small interfering RNA resulted in suppression of the V. parahaemolyticus flagellin-induced cytokines expression. We further demonstrated that activation of both mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) were required for cytokines expression. We observed that the phosphorylation of NF-κB inhibitor-α (IκBα), extracellular signal-regulated kinase (ERK) and p38 were induced following treatment with flagellin. Additionally, most of p65, a NF-κB subunit, was found to translocate to the nucleus after 60 min stimulation. Overall, our results suggest that V. parahaemolyticus flagellin influences cytokines expression, such as IFN-γ2, IL-6 and TNF-α, via EcTLR5s recognition and MAPKs/NF-κB signaling pathway activation in GS cells.
Collapse
Affiliation(s)
- Liangge He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Yaosi Liang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Xue Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Wan Peng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jianan He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Lijun Fu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China; College of Ocean, Hainan University, Haikou, 570228, PR China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; Key Laboratory for Tropical Marine Fishery Resource Protection and Utilization of Hainan Province, Hainan Tropical Ocean University, Sanya, 570228, PR China.
| | - Danqi Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
12
|
Indirubin-3'-monoxime prevents aberrant activation of GSK-3β/NF-κB and alleviates high fat-high fructose induced Aβ-aggregation, gliosis and apoptosis in mice brain. Int Immunopharmacol 2019; 70:396-407. [PMID: 30856390 DOI: 10.1016/j.intimp.2019.02.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/13/2019] [Accepted: 02/28/2019] [Indexed: 02/05/2023]
Abstract
Deciphering the molecular mechanisms of amyloid pathology and glial cell-mediated neuroinflammation, offers a novel avenue for therapeutic intervention against neurodegeneration. Recent findings demonstrate a crucial link between activation of glycogen synthase kinase-3β (GSK-3β), amyloid deposition and a neuroinflammatory state. However, studies demonstrating the pharmacological effects of GSK-3β inhibition and the interlinked molecular mechanisms still remain elusive. The present study explores whether high fat-high fructose diet (HFFD)-induced neuropathological changes could be alleviated by indirubin-3'-monoxime (IMX), a GSK-3β inhibitor. Male Swiss albino mice (8 weeks old) were fed with normal pellet or HFFD for 60 days. HFFD mice were treated with IMX once daily for last 7 days of the experimental period. HFFD fed-mice had significant amyloid deposits in cerebral cortex and hippocampus, and protein expression analyses showed activation of GSK-3β, nuclear translocation of NF-κB p65 and upregulation of inflammatory (TNF-α, IL-6, COX-2), astrocytic (GFAP), glial surface (CD-68) and pro-apoptotic markers (Bax and caspase-3). IMX treatment promotes the inhibitory phosphorylation of GSK-3β at Ser9 and moreover, a marked reduction in the phosphorylation of IKK-β, which prevents translocation and activation of NF-κB. Protein expression studies in IMX-treated brain tissues positively correlate with the anti-neuroinflammatory effects of GSK-3β inhibition. Taken together, our results provide substantial evidence that IMX could potentially attenuate neuroinflammation in coordination with the master transcription factor-NF-κB.
Collapse
|
13
|
Zheng Z, Zeng YZ, Ren K, Zhu X, Tan Y, Li Y, Li Q, Yi GH. S1P promotes inflammation-induced tube formation by HLECs via the S1PR1/NF-κB pathway. Int Immunopharmacol 2018; 66:224-235. [PMID: 30476824 DOI: 10.1016/j.intimp.2018.11.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 12/28/2022]
Abstract
Inflammation-induced lymphangiogenesis is a widely accepted concept. However, most of the inflammatory factors and their related mechanisms have not been clarified. It has been reported that sphingosine-1-phosphate (S1P) is not only closely related to the chronic inflammatory process but also affects angiogenesis. Therefore, we investigated the inflammatory effects of S1P on human lymphatic endothelial cells (HLECs). Our results showed that S1P promotes tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) secretion in HLECs. We also confirmed that S1P-stimulated TNF-α and IL-1β secretion is mediated through S1P receptor 1 (S1PR1). Using TNF-α siRNA and IL-1β siRNA, we found that TNF-α and IL-1β play essential roles in S1P-induced HLEC proliferation, migration, and tube formation. S1P induces phosphorylation of NF-κB p65 and activation of NF-κB nuclear translocation. A S1PR1 antagonist (W146) and NF-κB inhibitor (BAY11-7082) inhibited S1P-induced TNF-α and IL-1β secretion and prevented NF-κB nuclear translocation. Taken together, the results demonstrated for the first time that S1P promotes the secretion of TNF-α and IL-1β in HLECs via S1PR1-mediated NF-κB signaling pathways, thus affecting lymphangiogenesis. The study provides a new strategy for finding treatments for lymphangiogenesis-related diseases.
Collapse
Affiliation(s)
- Zhi Zheng
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Yong-Zhi Zeng
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Kun Ren
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Xiao Zhu
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Ying Tan
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Yi Li
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Qian Li
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Guang-Hui Yi
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
14
|
Wang H, Zhu Y, Xu X, Wang X, Hou Q, Xu Q, Sun Z, Mi Y, Hu C. Ctenopharyngodon idella NF-κB subunit p65 modulates the transcription of IκBα in CIK cells. FISH & SHELLFISH IMMUNOLOGY 2016; 54:564-572. [PMID: 27142933 DOI: 10.1016/j.fsi.2016.04.132] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/20/2016] [Accepted: 04/29/2016] [Indexed: 06/05/2023]
Abstract
NF-κB is an important transcription factor for regulating the multiple inflammatory and immune related gene transcription. It can bind with the nuclear factor κB site within the promoter of target genes to regulate their transcriptions. p65, the all-important subunit of NF-κB, is ubiquitously expressed in cells. In the present study, we cloned and identified the p65 subunit from grass carp (Ctenopharyngodon idella) (named Cip65) by homologous cloning and RACE technique. The full length of Cip65 cDNA is 2481 bp along with 9 bp 5' UTR, 639 bp 3' UTR and the largest open reading frame (1833 bp) encoding a polypeptide of 610 amino acids with a well conserved Rel-homology domain (RHD) in N-terminal and a putative transcription activation domain (TAD) in C-terminal. Cip65 gathers with other teleost p65 proteins to form a fish-specific clade clearly distinct from those of mammalian and amphibian counterparts on the phylogenetic tree. In CIK (C. idellus kidney) cells, the expression of Cip65 was significantly up-regulated under the stimulation with Poly I:C. As one member of the NF-κB inhibitor protein (IκB) family, IκBα can dominate the activity of NF-κB by interacting with it. To study the molecular mechanisms of negative feedback loop of NF-κB signaling in fish, we cloned grass carp IκBα (CiIκBα) promoter sequence. CiIκBα promoter is 414 bp in length containing two RelA binding sites and a putative atypical TATA-box. Meanwhile, Cip65 and its mutant proteins including C-terminus deletion mutant of Cip65 (Cip65-ΔC) and N-terminus deletion mutant of Cip65 (Cip65-ΔN) were expressed in Escherichia coli BL21 and purified by affinity chromatography with the Ni-NTA His-Bind resin. In vitro, Cip65 rather than Cip65-ΔC and Cip65-ΔN showed high affinity with CiIκBα promoter sequence by gel mobility shift assays. In vivo, the cotransfection of pcDNA3.1-Cip65 (or pcDNA3.1-Cip65-ΔC, pcDNA3.1-Cip65-ΔN respectively) with pGL3-CiIκBα and pRL-TK renilla luciferase plasmid into CIK cells showed that pcDNA3.1-Cip65 rather than pcDNA3.1-Cip65-ΔC and pcDNA3.1-Cip65-ΔN, can increase the luciferase activity. Taken together, these results suggested that Cip65 can regulate the expression of CiIκBα and works as a negative feedback loop in NF-κB pathway.
Collapse
Affiliation(s)
- Haizhou Wang
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, China
| | - Youlin Zhu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiaowen Xu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiangqin Wang
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Qunhao Hou
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Qun Xu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Zhicheng Sun
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yichuan Mi
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Chengyu Hu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
15
|
Sikora AS, Delos M, Martinez P, Carpentier M, Allain F, Denys A. Regulation of the Expression of Heparan Sulfate 3-O-Sulfotransferase 3B (HS3ST3B) by Inflammatory Stimuli in Human Monocytes. J Cell Biochem 2015; 117:1529-42. [PMID: 26575945 DOI: 10.1002/jcb.25444] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/16/2015] [Indexed: 12/20/2022]
Abstract
Heparan sulfate (HS) is recognized as an important player in a wide range of dynamic steps of inflammatory reactions. Thereby, structural HS remodeling is likely to play an important role in the regulation of inflammatory and immune responses; however, little is known about underlying mechanism. In this study, we analyzed the regulation of expression of HS 3-O-sulfotransferases (HS3STs) in response to inflammatory stimuli. We found that among the seven HS3ST isoenzymes, only the expression of HS3ST3B was markedly up-regulated in human primary monocytes and the related cell line THP1 after exposure to TLR agonists. TNF-α was also efficient, to a lesser extent, to increase HS3ST3B expression, while IL-6, IL-4, and IFN-γ were poor inducers. We then analyzed the molecular mechanisms that regulate the high expression of HS3ST3B in response to LPS. Based on the expression of HS3ST3B transcripts and on the response of a reporter gene containing the HS3ST3B1 promoter, we provide evidence that LPS induces a rapid and strong transcription of HS3ST3B1 gene, which was mainly dependent on the activation of NF-κB and JNK signaling pathways. Additionally, active p38 MAPK and de novo synthesized proteins are involved in post-transcriptional mechanisms to maintain a high level of HS3ST3B mRNA to a steady state. Altogether, our findings indicate that HS3ST3B1 gene behaves as a primary response gene, suggesting that it may play an important role in making 3-O-sulfated HS with specific functions in the regulation of inflammatory and immune responses. J. Cell. Biochem. 117: 1529-1542, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anne-Sophie Sikora
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Maxime Delos
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Pierre Martinez
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Mathieu Carpentier
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Fabrice Allain
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Agnès Denys
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| |
Collapse
|