1
|
Zhang Y, Peng G, Zhang R. Taraxasterol attenuates inflammatory responses in a 2,4-dinitrochlorobenzene-induced atopic dermatitis mouse model via inactivation of the MAPK and NF-κB pathways. J Mol Histol 2025; 56:115. [PMID: 40119084 DOI: 10.1007/s10735-025-10391-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/06/2025] [Indexed: 03/24/2025]
Abstract
Atopic dermatitis (AD) is an inflammatory skin disease. Taraxasterol has anti-inflammatory effects in various pathological processes. In this study, our goal is to detect the biological functions of taraxasterol and its related mechanisms in AD development. The mouse model of experimental AD was established through application of 2',4-dintrochlorobenzene (DNCB) onto the mouse dorsal skin. Taraxasterol (2.5, 5, and 10 mg/kg) was orally administrated to AD mice. Effects of taraxasterol on AD-like skin symptoms were examined through assessment of ratios of skin lesion area/dorsal skin region, skin thickness, skin hydration, and starching number. Histopathological changes were detected by performing H&E staining. ELISA kits were obtained to measure serum TNF-α and IgE levels. RT-qPCR was conducted to measure mRNA levels of proinflammatory factors. Expression of MAPKs and NF-κB signaling was evaluated by western blotting. Taraxasterol alleviated AD-like skin symptoms (erosions, erythema, scaling, dryness, pruritus) and reduced lesion area and skin thickness in mice with DNCB-induced AD. Taraxasterol decreased epidermal thickness and serum levels of IgE and TNF-α and prevented the release of proinflammatory factors in lesion sites in of DNCB-induced AD mice. Mechanistically, taraxasterol inactivated the MAPK and NF-κB pathways. Taraxasterol alleviates AD-like skin symptoms and inflammation in a DNCB-induced AD mouse model via inactivation of the MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Guoping Peng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Rusheng Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, #155 Hanzhong Road, Qinhuai District, Nanjing, 210029, China.
| |
Collapse
|
2
|
Yan Q, Xing Q, Liu Z, Zou Y, Liu X, Xia H. The phytochemical and pharmacological profile of dandelion. Biomed Pharmacother 2024; 179:117334. [PMID: 39180794 DOI: 10.1016/j.biopha.2024.117334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
Dandelion (Taraxacum genus), a perennial herb belonging to the Asteraceae family is widely distributed in hillside grasslands, roadsides, fields, and river beaches in middle and low-altitude areas. It has a long history of traditional Chinese medicine usage as a heat-clearing and detoxifying agent, often consumed as tea or vegetable. Multiple pharmacological studies have demonstrated the antiviral, antibacterial, anti-inflammatory, immune-regulating, antioxidant, anti-tumor, and other effects of the Taraxacum genus. Bioactive compounds associated with these effects include triterpenes and their saponins, phenolic acids, sterols and their glycosides, flavonoids, organic acids, volatile oils, and saccharides.
Collapse
Affiliation(s)
- Qingzi Yan
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China.
| | - Qichang Xing
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China.
| | - Zheng Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China.
| | - Yang Zou
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China.
| | - Xiang Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China.
| | - Hong Xia
- School of Biomedical Sciences, Hunan University, Changsha, China.
| |
Collapse
|
3
|
Qiu P, Mi A, Hong C, Huang S, Ma Q, Luo Q, Qiu J, Jiang H, Chen Y, Chen F, Yan H, Zhao J, Kong Y, Du Y, Li C, Kong D, Efferth T, Lou D. An integrated network pharmacology approach reveals that Ampelopsis grossedentata improves alcoholic liver disease via TLR4/NF-κB/MLKL pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155658. [PMID: 38981149 DOI: 10.1016/j.phymed.2024.155658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/22/2024] [Accepted: 04/19/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Alcohol-related liver damage is the most prevalent chronic liver disease, which creates a heavy public health burden worldwide. The leaves of Ampelopsis grossedentata have been considered a popular tea and traditional herbal medicine in China for more than one thousand years, and possess anti-inflammatory, antioxidative, hepatoprotective, and antiviral activities. PURPOSE We explored the protective effects of Ampelopsis grossedentata extract (AGE) against chronic alcohol-induced hepatic injury (alcoholic liver disease, ALD), aiming to elucidate its underlying mechanisms. METHODS Firstly, UPLC-Q/TOF-MS analysis and network pharmacology were used to identify the constituents and elucidate the potential mechanisms of AGE against ALD. Secondly, C57BL/6 mice were pair-fed the Lieber-DeCarli diet containing either isocaloric maltodextrin or ethanol, AGE (150 and 300 mg/kg/d) and silymarin (200 mg/kg) were administered to chronic ethanol-fed mice for 7 weeks to evaluate the hepatoprotective effects. Serum biochemical parameters were determined, hepatic and ileum sections were used for histologic examination, and levels of inflammatory cytokines and oxidative stress in the liver were examined. The potential molecular mechanisms of AGE in improving ALD were demonstrated by RNA-seq, Western blotting analysis, and immunofluorescence staining. RESULTS Ten main constituents of AGE were identified using UPLC-Q/TOF-MS and 274 potential ALD-related targets were identified. The enriched KEGG pathways included Toll-like receptor signaling pathway, NF-κB signaling pathway, and necroptosis. Moreover, in vivo experimental studies demonstrated that AGE significantly reduced serum aminotransferase levels and improved pathological abnormalities after chronic ethanol intake. Meanwhile, AGE improved ALD in mice by down-regulating oxidative stress and inflammatory cytokines. Furthermore, AGE notably repaired damaged intestinal epithelial barrier and suppressed the production of gut-derived lipopolysaccharide by elevating intestinal tight junction protein expression. Subsequent RNA-seq and experimental validation indicated that AGE inhibited NF-κB nuclear translocation, suppressed IκB-α, RIPK3 and MLKL phosphorylation and alleviated hepatic necroptosis in mice. CONCLUSION In this study, we have demonstrated for the first time that AGE protects against alcoholic liver disease by regulating the gut-liver axis and inhibiting the TLR4/NF-κB/MLKL-mediated necroptosis pathway. Therefore, our present work provides important experimental evidence for AGE as a promising candidate for protection against ALD.
Collapse
Affiliation(s)
- Ping Qiu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ai Mi
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chunlan Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Shuo Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Qing Ma
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qihan Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Jiang Qiu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - He Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yufan Chen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fangming Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Honghao Yan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinkai Zhao
- Zhuji People's Hospital of Zhejiang Province, Shaoxing 311800, China
| | - Yu Kong
- Zhuji People's Hospital of Zhejiang Province, Shaoxing 311800, China
| | - Yu Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Desong Kong
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine affiliated with Nanjing University of Chinese Medicine, Jiangsu, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| | - Dayong Lou
- Zhuji People's Hospital of Zhejiang Province, Shaoxing 311800, China.
| |
Collapse
|
4
|
Hao F, Deng X, Yu X, Wang W, Yan W, Zhao X, Wang X, Bai C, Wang Z, Han L. Taraxacum: A Review of Ethnopharmacology, Phytochemistry and Pharmacological Activity. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:183-215. [PMID: 38351703 DOI: 10.1142/s0192415x24500083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Taraxacum refers to the genus Taraxacum, which has a long history of use as a medicinal plant and is widely distributed around the world. There are over 2500 species in the genus Taraxacum recorded as medicinal plants in China, Central Asia, Europe, and the Americas. It has traditionally been used for detoxification, diuresis, liver protection, the treatment of various inflammations, antimicrobial properties, and so on. We used the most typically reported Taraxacum officinale as an example and assembled its chemical makeup, including sesquiterpene, triterpene, steroids, flavone, sugar and its derivatives, phenolic acids, fatty acids, and other compounds, which are also the material basis for its pharmacological effects. Pharmacological investigations have revealed that Taraxacum crude extracts and chemical compounds contain antimicrobial infection, anti-inflammatory, antitumor, anti-oxidative, liver protective, and blood sugar and blood lipid management properties. These findings adequately confirm the previously described traditional uses and aid in explaining its therapeutic applications.
Collapse
Affiliation(s)
- Fusheng Hao
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Xinxin Deng
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, P. R. China
| | - Xin Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Wen Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Wei Yan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Xi Zhao
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Xiaofei Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Changcai Bai
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Zhizhong Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Lu Han
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, P. R. China
| |
Collapse
|
5
|
Ge B, Sang R, Wang W, Yan K, Yu Y, Kong L, Yu M, Liu X, Zhang X. Protection of taraxasterol against acetaminophen-induced liver injury elucidated through network pharmacology and in vitro and in vivo experiments. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154872. [PMID: 37209606 DOI: 10.1016/j.phymed.2023.154872] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Drug-induced liver injury (DILI) is primarily caused by drugs or their metabolites. Acetaminophen (APAP) is an over-the-counter antipyretic analgesic that exhibits high hepatotoxicity when used for long-term or in overdoses. Taraxasterol is a five-ring triterpenoid compound extracted from traditional Chinese medicinal herb Taraxacum officinale. Our previous studies have demonstrated that taraxasterol exerts protective effects on alcoholic and immune liver injuries. However, the effect of taraxasterol on DILI remains unclear. HYPOTHESIS/PURPOSE This study aimed to elucidate the effects and mechanisms of action of taraxasterol on APAP-induced liver injury using network pharmacology and in vitro and in vivo experiments. METHODS Online databases of drug and disease targets were used to screen the targets of taraxasterol and DILI, and a protein-protein interaction network (PPI) was constructed. Core target genes were identified using the tool of Analyze of Cytoscape, gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analyses were performed. Oxidation, inflammation and apoptosis were evaluated to determine the effect of taraxasterol on APAP-stimulated liver damage in AML12 cells and mice. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to explore the potential mechanisms of taraxasterol against DILI. RESULTS Twenty-four intersection targets for taraxasterol and DILI were identified. Among them, 9 core targets were identified. GO and KEGG analysis showed that core targets are closely related to oxidative stress, apoptosis, and inflammatory response. The in vitro findings showed that taraxasterol alleviated mitochondrial damage in AML12 cells treated with APAP. The in vivo results revealed that taraxasterol alleviated pathological changes in the livers of mice treated with APAP and inhibited the activity of serum transaminases. Taraxasterol increased the activity of antioxidants, inhibited the production of peroxides, and reduced inflammatory response and apoptosis in vitro and in vivo. Taraxasterol promoted Nrf2 and HO-1 expression, suppressed JNK phosphorylation, and decreased the Bax/Bcl-2 ratio and caspase-3 expression in AML12 cells and mice. CONCLUSION By integrating network pharmacology with in vitro and in vivo experiments, this study indicated that taraxasterol inhibits APAP-stimulated oxidative stress, inflammatory response and apoptosis in AML12 cells and mice by regulating the Nrf2/HO-1 pathway, JNK phosphorylation, and apoptosis-related protein expression. This study provides a new evidence for the use of taraxasterol as a hepatoprotective drug.
Collapse
Affiliation(s)
- Bingjie Ge
- College of Pharmacy, Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Rui Sang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, China
| | - Wei Wang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, China
| | - Kexin Yan
- College of Pharmacy, Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Yifan Yu
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, China
| | - Lin Kong
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, China
| | - Minghong Yu
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, China
| | - Xinman Liu
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, China
| | - Xuemei Zhang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, China.
| |
Collapse
|
6
|
Network Pharmacology and Molecular Docking Analysis Reveal Insights into the Molecular Mechanism of Shengma-Gegen Decoction on Monkeypox. Pathogens 2022; 11:pathogens11111342. [DOI: 10.3390/pathogens11111342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Background: A new viral outbreak caused by monkeypox has appeared after COVID-19. As of yet, no specific drug has been found for its treatment. Shengma-Gegen decoction (SMGGD), a pathogen-eliminating and detoxifying agent composed of four kinds of Chinese herbs, has been demonstrated to be effective against several viruses in China, suggesting that it may be effective in treating monkeypox, however, the precise role and mechanisms are still unknown. Methods: Network pharmacology was used to investigate the monkeypox-specific SMGGD targets. These targets were analyzed via String for protein-to-protein interaction (PPI), followed by identification of hub genes with Cytoscape software. Function enrichment analysis of the hub targets was performed. The interactions between hub targets and corresponding ligands were validated via molecular docking. Results: Through screening and analysis, a total of 94 active components and 8 hub targets were identified in the TCM-bioactive compound-hub gene network. Molecular docking results showed that the active components of SMGGD have strong binding affinity for their corresponding targets. According to functional analysis, these hub genes are mainly involved in the TNF, AGE-RAGE, IL-17, and MAPK pathways, which are linked to the host inflammatory response to infection and viral replication. Therefore, SMGGD might suppress the replication of monkeypox virus through the MAPK signaling pathway while also reducing inflammatory damage caused by viral infection. Conclusion: SMGGD may have positive therapeutic effects on monkeypox by reducing inflammatory damage and limiting virus replication.
Collapse
|
7
|
Xie T, Ding Q, Feng S, Liu Z, Shi Y. Antioxidant mechanism of modified Qiongyu paste against aging based on network pharmacology and experimental validation. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
8
|
Jiao F, Tan Z, Yu Z, Zhou B, Meng L, Shi X. The phytochemical and pharmacological profile of taraxasterol. Front Pharmacol 2022; 13:927365. [PMID: 35991893 PMCID: PMC9386448 DOI: 10.3389/fphar.2022.927365] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Taraxasterol is one of the bioactive triterpenoids found in dandelion, a member of the family Asteraceae. In the animal or cellular models of several ailments, including liver damage, gastritis, colitis, arthritis, pneumonia, tumors, and immune system diseases, taraxasterol has been shown to have significant preventive and therapeutic effects. This review aims to evaluate the current state of research and provide an overview of the possible applications of taraxasterol in various diseases. The reported phytochemical properties and pharmacological actions of taraxasterol, including anti-inflammatory, anti-oxidative, and anti-carcinogenic properties, and its potential molecular mechanisms in developing these diseases are highlighted. Finally, we further explored whether taraxasterol has protective effects on neuronal death in neurodegenerative diseases. In addition, more animal and clinical studies are also required on the metabolism, bioavailability, and safety of taraxasterol to support its applications in pharmaceuticals and medicine.
Collapse
Affiliation(s)
- Fengjuan Jiao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
- *Correspondence: Fengjuan Jiao,
| | - Zengyue Tan
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Zhonghua Yu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Bojie Zhou
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Lingyan Meng
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Xinyue Shi
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| |
Collapse
|
9
|
Li Y, Chen Y, Sun-Waterhouse D. The potential of dandelion in the fight against gastrointestinal diseases: A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115272. [PMID: 35405251 DOI: 10.1016/j.jep.2022.115272] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dandelion (Taraxacum officinale Weber ex F. H. Wigg.), as a garden weed grown globally, has long been consumed as a therapeutic herb. Its folkloric uses include treatments of digestive disorders (dyspepsia, anorexia, stomach disorders, gastritis and enteritis) and associate complex ailments involving uterine, liver and lung disorders. AIM OF THE STUDY The present study aims to critically assess the current state of research and summarize the potential roles of dandelion and its constituents in gastrointestinal (GI) -protective actions. A focus is placed on the reported bioactive components, pharmacological activities and modes of action (including molecular mechanisms and interactions among bioactive substances) of dandelion products/preparations and derived active constituents related to GI protection. MATERIALS AND METHODS The available information published prior to August 2021 was reviewed via SciFinder, Web of Science, Google Scholar, PubMed, Elsevier, Wiley On-line Library, and The Plant List. The search was based on the ethnomedical remedies, pharmacological activities, bioactive compounds of dandelion for GI protection, as well as the interactions of the components in dandelion with the gut microbiota or biological regulators, and with other ingested bioactive compounds. The key search words were "Taraxacum" and "dandelion". RESULTS T. coreanum Nakai, T. mongolicum and T. officinale are the most commonly used species for folkloric uses, with the whole plant, leaves and root of dandelion being used more frequently. GI-protective substances of dandelion include taraxasterol, taraxerol, caffeic acid, chicoric acid, chlorogenic acid, luteolin and its glucosides, polysaccharides, inulin, and β-sitosterol. Dandelion products and derived constituents exhibit pharmacological effects against GI disorders, mainly including dyspepsia, gastroesophageal reflux disease, gastritis, small intestinal ulcer, ulcerative colitis, liver diseases, gallstones, acute pancreatitis, and GI malignancy. The underlying molecular mechanisms may include immuno-inflammatory mechanisms, apoptosis mechanism, autophagy mechanism, and cholinergic mechanism, although interactions of dandelion's constituents with GI health-related biological entities (e.g., GI microbiota and associated biological modulators) or other ingested bioactive compounds shouldn't be ignored. CONCLUSION The review reveals some in vivo and in vitro studies on the potential of dandelion derived products as complementary and alternative medicines/therapeutics against GI disorders. The whole herb may alleviate some symptoms related GI immuno-inflammatory basing on the abundant anti-inflammatory and anti-oxide active substances. Dandelion root could be a nontoxic and effective anticancer alternative, owing to its abundant terpenoids and polysaccharides. However, research related to GI protective dandelion-derived products remains limited. Besides the need of identifying bioactive compounds/complexes in various dandelion species, more clinical studies are also required on the metabolism, bioavailability and safety of these substances to support their applications in food, medicine and pharmaceuticals.
Collapse
Affiliation(s)
- Yanni Li
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong Province, China
| | - Yilun Chen
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong Province, China.
| | - Dongxiao Sun-Waterhouse
- School of Chemical Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand.
| |
Collapse
|
10
|
Li C, Wang M, Chen X, Chen W. Taraxasterol ameliorates dextran sodium sulfate-induced murine colitis via improving intestinal barrier and modulating gut microbiota dysbiosis. Acta Biochim Biophys Sin (Shanghai) 2022; 54:340-349. [PMID: 35538040 PMCID: PMC9827818 DOI: 10.3724/abbs.2022019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Taraxasterol (TAX) has been proven to prevent and treat inflammatory diseases. However, the effects of TAX on intestinal barrier and the diversity, structure, and function of gut microbiota have yet to be elucidated in dextran sodium sulfate (DSS)-induced colitis mice. Our objectives are to evaluate the effect of TAX on intestinal barrier and its impact on gut microbiota. Herein, immunofluorescence analysis is conducted to determine the expressions of tight junction (ZO-1) and mucin (Mucin-2) proteins. The abundance, diversity, and function of fecal colonies are investigated by using 16S rDNA sequencing, and the influence of TAX on the gut microbiota in mice is also analyzed. Our results suggest that TAX attenuates the symptoms in DSS-induced colitis mice by reducing the DAI score, increasing colon length, alleviating histopathological damage of colon tissues, and improving intestinal barrier. 16S rDNA sequencing of fecal samples indicates that TAX intervention has a regulatory effect on DSS-induced gut microbiota dysbiosis at different taxonomic levels. TAX increases microbial diversity that is reduced by DSS. It normalizes the relative abundance of and the ratio of /. In addition, treatment with TAX has a better effect on the function of metabolisms, such as nucleotide, lipid, and bile acid metabolism. These findings suggest that TAX may be a good candidate for the remission of colitis, which is related to improving intestinal barrier and modulating gut microbiota.
Collapse
Affiliation(s)
- Chen Li
- Department of General SurgeryAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinan250014China
| | - Meng Wang
- Department of General SurgeryAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinan250014China
| | - Xiqi Chen
- Department of General SurgeryAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinan250014China
| | - Wei Chen
- Department of GastroenterologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China,Correspondence address. Tel: +86-18217789965; E-mail:
| |
Collapse
|
11
|
Yi YC, Liang R, Chen XY, Fan HN, Chen M, Zhang J, Zhu JS. Dihydroartemisinin Suppresses the Tumorigenesis and Cycle Progression of Colorectal Cancer by Targeting CDK1/CCNB1/PLK1 Signaling. Front Oncol 2021; 11:768879. [PMID: 34796115 PMCID: PMC8592930 DOI: 10.3389/fonc.2021.768879] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
Dihydroartemisinin (DHA), a well-known antimalarial drug, has been widely investigated for its antitumor effects in multiple malignancies. However, its effects and regulatory mechanisms in colorectal cancer (CRC) are still unproved. In this study, in vitro experiments including CCK8, EdU, Transwell, and flow cytometry analyses and an in vivo tumorigenesis model were conducted to assess the effects of DHA on the bio-behaviors of CRC cells. Additionally, RNA-seq combined with gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses was used to obtain the targets of DHA, and these were verified by molecular docking, qRT-PCR, and Western blotting. As a result, we found that DHA significantly suppressed the proliferation, DNA synthesis, and invasive capabilities and induced cell apoptosis and cell cycle arrest in HCT116, DLD1, and RKO cells in vitro and in vivo. Further analyses indicated that the targets of DHA were predominantly enriched in cell cycle-associated pathways, including CDK1, CCNB1, and PLK1; and DHA could bind with the CDK1/CCNB1 complex and inhibit the activation of CDK1/CCNB1/PLK1 signaling. Moreover, cucurbitacin E, a specific inhibitor of the CDK1/CCNB1 axis, enhanced the inhibitory effects of DHA on DNA synthesis and colony formation in HCT116 and DLD1 cells. In short, DHA could suppress the tumorigenesis and cycle progression of CRC cells by targeting CDK1/CCNB1/PLK1 signaling.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jin-Shui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
12
|
Chen W, Li J, Li C, Fan HN, Zhang J, Zhu JS. Network pharmacology-based identification of the antitumor effects of taraxasterol in gastric cancer. Int J Immunopathol Pharmacol 2021; 34:2058738420933107. [PMID: 32701378 PMCID: PMC7378706 DOI: 10.1177/2058738420933107] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Taraxasterol (TAX), a pentacyclic triterpene, has been reported to exhibit potent antitumor activity. However, the effects and molecular mechanisms of TAX in gastric cancer (GC) remain undocumented. A network pharmacology approach was applied to identify the collective targets of TAX and GC. Nude mice were subcutaneously injected with MKN-28 cells to establish GC subcutaneous xenograft model, which were treated with TAX for 16 days. Tumor volume was then examined every other day. The pathological scoring was assessed by using hematoxylin and eosin (H&E) staining, and the expression levels of Ki-67 and the target genes of TAX were confirmed by immunohistochemistry analysis. Five collective targets of TAX and GC were identified, such as epidermal growth factor receptor (EGFR), matrix metalloproteinase 2 (MMP2), B-Raf proto-oncogene, serine/threonine kinase (BRAF), fibroblast growth factor receptor 2 (FGFR2), and AKT serine/threonine kinase 1 (AKT1). Further investigations showed that, TAX administration repressed xenograft tumor growth and decreased Ki-67 levels, followed by the downregulation of EGFR and AKT1 expression in xenograft tumor tissues as compared with the untreated group. Our findings demonstrated that TAX inhibited the growth of GC by inhibition of EGFR/AKT1 signaling and might provide a novel therapeutic strategy for treatment of GC.
Collapse
Affiliation(s)
- Wei Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| | - Jingwei Li
- Cardiac Function Room, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Li
- Department of General Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui-Ning Fan
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| | - Jin-Shui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| |
Collapse
|
13
|
Tang CT, Yang J, Liu ZD, Chen Y, Zeng C. Taraxasterol acetate targets RNF31 to inhibit RNF31/p53 axis-driven cell proliferation in colorectal cancer. Cell Death Discov 2021; 7:66. [PMID: 33824292 PMCID: PMC8024285 DOI: 10.1038/s41420-021-00449-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/22/2021] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Several studies have suggested that taraxasterol acetate (TA) can inhibit the growth of tumor cells. However, to date, it remains unclear how TA inhibits cell growth and how RNF31 functions as an oncogene. We examined the expression of RNF31 in CRC tissue samples via immunohistochemistry and elucidated the function of RNF31 in CRC cells by constructing a cell model with RNF31 depletion. A cycloheximide (CHX)-chase analysis and immunofluorescence assays were conducted to demonstrate that TA can promote RNF31 degradation by activating autophagy. We used the PharmMapper website to predict targets of TA and identified RNF31. CHX-chase experiments showed that TA could facilitate RNF31 degradation, which was inhibited by the administration of chloroquine. Immunofluorescence assays showed that RNF31 protein was colocalized with LC3I/II and p62, suggesting that TA promoted RNF31 degradation by activating autophagy. We also found that CRC patients with RNF31 overexpression had poorer survival than those with low RNF31 expression. The results of the CHX-chase experiment showed that depletion of RNF31 alleviated p53 degradation, which was inhibited by MG132. A series of co-immunoprecipitation (Co-IP) assays revealed that RNF31 interacts with p53 and promotes p53 ubiquitination and degradation. A Co-IP assay performed with a truncated RNF31 plasmid showed that the PUB domain interacts with p53. Moreover, the PUB domain is the key structure in the induction of p53 ubiquitination. Our findings reveal a key role of RNF31 in CRC cell growth and indicate a mechanism through which TA inhibits cell growth.
Collapse
Affiliation(s)
- Chao-Tao Tang
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Yang
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zi-De Liu
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Youxiang Chen
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Chunyan Zeng
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
14
|
Liang R, Chen W, Chen XY, Fan HN, Zhang J, Zhu JS. Dihydroartemisinin inhibits the tumorigenesis and invasion of gastric cancer by regulating STAT1/KDR/MMP9 and P53/BCL2L1/CASP3/7 pathways. Pathol Res Pract 2021; 218:153318. [PMID: 33370709 DOI: 10.1016/j.prp.2020.153318] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/28/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022]
Abstract
Dihydroartemisinin (DHA), an effective antimalarial drug, has been widely investigated as an anti-tumor agent. Although previous studies have indicated the potential therapeutic effects of DHA on multiple malignancies, its detailed molecular mechanisms in gastric cancer (GC) are still undocumented. In the present study, we applied network pharmacology and bioinformatics (gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses) to obtain the collective targets of DHA and GC and analyzed their involvement in constructing a protein-protein interaction (PPI) network. The top 10% hub targets in this network were identified, and TCGA database was utilized for the single gene analysis of their correlation with the prognosis of GC. CCK8, EdU, Transwell, and flow cytometry analyses were conducted, and subcutaneous xenograft tumor models were constructed to assess the effects of DHA on the tumorigenesis and invasion of GC. Furthermore, the targets of DHA were verified by molecular docking, quantitative real-time PCR (qPCR) and western blot analyses in GC cells. The results indicated that the common targets of DHA and GC were enriched in multiple cancer-related pathways including KDR, STAT1 and apoptosis signaling pathways, where the core genes included KDR, MMP9, STAT1, TP53, CASP3/7 and BCL2L1. The lowered expression of KDR and increased expression of TP53 and CASP7 harbored a favorable survival for patients with GC patients. CASP7 showed a positive correlation with CASP3 but a negative correlation with KDR and could be regarded as an independent protective factor for overall survival in GC. Moreover, DHA treatment induced cell apoptosis and suppressed the cell proliferation, DNA synthesis, cycle progression and invasive capabilities both in vitro and in vivo. DHA also upregulated p53, CASP3, and cleaved-CASP3 and downregulated BCL2L1, MMP9, KDR, p-KDR, STAT1 and p-STAT1 in GC cell lines. In conclusion, DHA could suppress the tumorigenesis and invasion of GC by regulating STAT1/KDR/MMP9 and p53/BCL2L1/CASP3/7 pathways. Our findings might provide a novel approach for the treatment of GC.
Collapse
Affiliation(s)
- Rui Liang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiao-Yu Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hui-Ning Fan
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Jin-Shui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
15
|
Fan HN, Zhu MY, Peng SQ, Zhu JS, Zhang J, Qu GQ. Dihydroartemisinin inhibits the growth and invasion of gastric cancer cells by regulating cyclin D1-CDK4-Rb signaling. Pathol Res Pract 2020; 216:152795. [PMID: 31879047 DOI: 10.1016/j.prp.2019.152795] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/29/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Dihydroartemisinin (DHA), a semisynthetic derivative of artemisinin, has a broad range of biological properties, including antitumor activity. However, the mechanisms by which DHA affects the tumorigenesis of gastric carcinoma (GC) are poorly understood. MATERIAL AND METHODS The targets of DHA were identified by network pharmacology, and the association of CDK4 with clinicopathological characteristics and prognosis in patients with GC was analyzed by using TCGA data. CCK8, Transwell and flow cytometric analyses, as well as a tumor xenograft model, were used to assess the effects of DHA on the growth and migration of GC cells. qRT-PCR and Western blot analyses were used to determine the effects of DHA on the cyclin D1-CDK4-Rb signaling pathway. RESULTS We identified 13 DHA targets and measured their expression of whichCDK4 expression levels were substantially higher in GC tissues than those in adjacent normal tissues, and high CDK4 expression acted as an independent prognostic factor of poor survival in patients with GC. DHA suppressed cell proliferation, migration and invasion in vitro and in vivo and induced G1 phase cell cycle arrest in a dose-dependent manner by regulating cyclin D1-CDK4-Rb signaling. CONCLUSIONS DHA inhibits the tumorigenesis and invasion of GC by regulating cyclin D1-CDK4-Rb signaling and may provide therapeutic strategies for the treatment of GC.
Collapse
Affiliation(s)
- Hui-Ning Fan
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Mei-Ying Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Shi-Qiao Peng
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jin-Shui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Guo-Qiang Qu
- Department of Gastroenterology, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital East Campus, Shanghai 201603, China.
| |
Collapse
|
16
|
Zhang W, Chen Y, Jiang H, Yang J, Wang Q, Du Y, Xu H. Integrated strategy for accurately screening biomarkers based on metabolomics coupled with network pharmacology. Talanta 2020; 211:120710. [PMID: 32070601 DOI: 10.1016/j.talanta.2020.120710] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 01/10/2023]
Abstract
Screening diagnostic biomarkers can be challenging due to the complexity of traditional Chinese medicine (TCM) and ambiguous pharmacological mechanisms. In this study, we reported an integrated strategy for accurately screening diagnostic biomarkers based on metabolomics coupled with network pharmacology. First, a feasible pharmacological model was established through systems pharmacology and based on metabolomics-based techniques to explore diagnostic biomarkers. While the components satisfying the q-value < 0.05, fold change (FC) ≥ 1.2 or FC ≤ 0.8, coefficient of variance (CV) ≤ 30%(QC) and the variable importance in the project (VIP) value > 1 are considered to be diagnostic biomarkers. Second, the ingredients were retained only when oral bioavailability (OB), Caco-2 permeability, drug half-life, TPSA and drug likeness (DL) satisfied the criteria (OB ≥ 40%; Caco-2 ≥ -0.4; HL ≥ 4 h; TPSA˂140; DL ≥ 0.18) suggested by the TCMSP database. Moreover, ingredients that exhibit extensive biological activity in TCM are also retained. Third, the effect targets of TCM were screened using the TCMSP database, Swiss Target Prediction and STICH online software. Disease targets were gathered from the therapeutic target database (TTD), PharmGkb and TCMSP database. Hub genes were screened by potential protein-protein interaction (PPI) network pharmacology analysis. Finally, a metabolic network pathway is established between the diagnostic biomarker and the hub gene. In the network analysis of metabolic pathways, most of the genes involved in this pathway are the second-step-obtained hub genes, which can explain the accuracy of the identified biomarkers. The proposed integrated strategy was successfully applied to explore the mechanism of action of Pulsatilla decoction (PD) in the treatment of acute ulcerative colitis (UC). Based on this integrated strategy, 23 potential biomarkers of acute UC treated with PD were identified. In conclusion, the integrated strategy provides novel insights into network pharmacology and metabolomics as effective tools to illuminate the mechanism of action of TCM.
Collapse
Affiliation(s)
- Wendan Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yu Chen
- Department of Ultrasound, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, PR China
| | - Honghong Jiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Jianxi Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Qiao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yingfeng Du
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Huijun Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China.
| |
Collapse
|
17
|
Fan HN, Chen W, Fan LN, Wu JT, Zhu JS, Zhang J. Macrophages-derived p38α promotes the experimental severe acute pancreatitis by regulating inflammation and autophagy. Int Immunopharmacol 2019; 77:105940. [PMID: 31655340 DOI: 10.1016/j.intimp.2019.105940] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Severe acute pancreatitis (SAP) is a common threat to human health. In the present study, we aimed to investigate the underlying mechanisms by which p38α in macrophages contributes to SAP. We used conditional knockout of p38α in macrophages and p38 MAPK inhibitors to understand the effects of p38α in macrophages on caerulein-induced inflammatory responses in SAP mice models. METHODS AND MATERIALS Wild-type (WT) mice were randomly divided into three groups: a control group, SAP group, and SAP + p38MAPK inhibitor (SB203580) group, and mice with a conditional knockout (KO) of p38α in macrophages were included in a KO + SAP group. We evaluated pancreatic pathology and ultra-structure by hematoxylin and eosin staining and transmission electron microscopy. The pulmonary wet-to-dry weight ratio was calculated. The serum levels of TNF-α and IL-1β were determined by ELISA. The mRNA and protein expression of inflammatory cytokines TNF-α, IL-1β, IL-17, IL-18, MIF, and MCP-1 in pancreatic tissues were tested by qRT-PCR and immunohistochemistry analysis. The protein expression of p38, caspase-1, ULK1, LC3B and p62 in pancreatic tissues was examined by Western blotting. RESULTS The results indicated that the severity of SAP as well as the expression of the cytokines TNF-α, IL-1β, IL-17, IL-18 and MCP-1 were higher in the SAP group than those in the control group, but were lower in the SAP + SB203580 and KO + SAP groups as compared with the SAP group. The protein expression of p38, caspase-1, LC3B and p62 was increased in the SAP group than that in the control group, but this result was reversed in the SAP + SB203580 and KO + SAP groups as compared with the SAP group. In addition, the ULK1 level was significantly lower in the SAP group than that in the control group, but was increased in the SAP + SB203580 and KO + SAP groups as compared with the SAP group. CONCLUSIONS Our findings demonstrated that, macrophage derived p38α promoted the experimental severe acute pancreatitis by regulating inflammation and autophagy.
Collapse
Affiliation(s)
- Hui-Ning Fan
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wei Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Li-Na Fan
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen 361004, China
| | - Jing-Tong Wu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Jin-Shui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
18
|
Fan H, Chen W, Zhu J, Zhang J, Peng S. Toosendanin alleviates dextran sulfate sodium-induced colitis by inhibiting M1 macrophage polarization and regulating NLRP3 inflammasome and Nrf2/HO-1 signaling. Int Immunopharmacol 2019; 76:105909. [PMID: 31520988 DOI: 10.1016/j.intimp.2019.105909] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/22/2022]
Abstract
Toosendanin (TSN), a triterpenoid extracted from the bark of fruit of Melia toosendan Sieb et Zucc, has been proven to have various biological activities including anti-inflammatory activity. But its effects on experimental colitis remain unreported. Herein, we investigated the role and potential mechanisms of TSN in dextran sulfate sodium (DSS) induced colitis in mice. The results showed that, TSN reduced colitis-associated disease activity index (DAI), shortened colon length, and weakened the pathological damage of the colon tissues in murine colitis models. Further studies disclosed that, TSN inhibited the secretion of proinflammatory cytokines and oxidative stress, and suppressed M1 macrophage polarization and the activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome, but upregulated HO-1/Nrf2 expression in murine colitis. In addition, TSN maintained intestinal barrier by regulating zonula occludens-1 (ZO-1) and occludin expression. In conclusion, our findings demonstrated that, TSN alleviates DSS-induced experimental colitis by inhibiting M1 macrophage polarization and regulating NLRP3 inflammasome and Nrf2/HO-1 signaling, and may provide a novel Chinese patent medicine for the treatment of murine colitis.
Collapse
Affiliation(s)
- Huining Fan
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wei Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jinshui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Shiqiao Peng
- Department of Endocrinology and metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Disease, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 11001, PR China.
| |
Collapse
|
19
|
Song X, Zhang Y, Dai E, Du H, Wang L. Mechanism of action of celastrol against rheumatoid arthritis: A network pharmacology analysis. Int Immunopharmacol 2019; 74:105725. [PMID: 31276975 DOI: 10.1016/j.intimp.2019.105725] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/16/2019] [Accepted: 06/26/2019] [Indexed: 12/17/2022]
Abstract
Network pharmacology uses bioinformatics to broaden our understanding of drug actions and thereby to advance drug discovery. Here we apply network pharmacology to generate testable hypotheses about the multi-target mechanism of celastrol against rheumatoid arthritis. We reconstructed drug-target pathways and networks to predict the likely protein targets of celastrol and the main interactions between those targets and the drug. Then we validated our predictions of four candidate targets (IKK-β, JNK, COX-2, MEK1) by performing docking studies with celastrol. The results suggest that celastrol acts against rheumatoid arthritis by regulating the function of several signaling proteins, including MMP-9, COX-2, c-Myc, TGF-β, c-JUN, JAK-1, JAK-3, IKK-β, SYK, MMP-3, JNK and MEK1, which regulate the functions of Th1 and Th2 cells, macrophages, fibroblasts and endothelial cells in rheumatoid arthritis. Celastrol is predicted to affect networks involved mainly in cancer, connective tissue disorders, organismal injury and abnormalities, tissue development, cell death and survival. This network pharmacology strategy may be useful for discovery of multi-target drugs against complex diseases.
Collapse
Affiliation(s)
- Xinqiang Song
- Department of Biological Sciences, Xinyang Normal University, Xinyang 464000, China; Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang 464000, China.
| | - Yu Zhang
- Department of Biological Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Erqin Dai
- Department of Biological Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Hongtao Du
- Department of Biological Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Lei Wang
- Department of Biological Sciences, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|