1
|
Zhang Q, Xu Z, Liu W, Cheng Z, Ding Y, Xie Y, Yan S. Gastrodin promotes ferroptosis in CRC cells by inhibiting SKP2 to reduce NCOA4 ubiquitination. Tissue Cell 2025; 95:102793. [PMID: 40048831 DOI: 10.1016/j.tice.2025.102793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Gastrodin, an important component of traditional Chinese medicine, is gaining interest because of its anti-tumor effects. Ferroptosis is a new mode of cell death, which has emerged as a promising target for colorectal cancer (CRC) treatment. This research investigates the action mechanism of gastrodin on the process of CRC by inducing ferroptosis. METHODS The mRNA and protein levels were measured via qRT-PCR and western blot. Cell viability was assessed by CCK-8 assay. The cell proliferation was examined using colony formation assay. Live-Dead cell staining was evaluated by Calcein-AM/PI staining. The effect of ferroptosis was evaluated by detecting the levels of reactive oxygen species (ROS), intracellular total iron, ferrous iron (Fe2 +), malondialdehyde (MDA), glutathione (GSH) by kits, as well as the expressions of subunit solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), ferritin light chain (FTL) and acyl-CoA synthetase long chain family member 4 (ACSL4) by western blot. Co-immunoprecipitation (Co-IP) assay was applied to analyze the binding relationship between S-phase kinase-associated protein 2 (SKP2) and nuclear receptor coactivator 4 (NCOA4). RESULTS Gastrodin could induce ferroptosis in CRC cells. SKP2 ameliorated gastrodin induced ferroptosis in CRC cells. Besides, SKP2 mediated NCOA4 degradation by ubiquitination. SKP2 was involved in ferroptosis of CRC cells by regulating NCOA4. Gastrodin induced ferroptosis in CRC cells via SKP2/NCOA4 axis. CONCLUSION Gastrodin repressed SKP2 expression, deactivated NCOA4 ubiquitination thus elevated NCOA4 expression, and promoted ferroptosis in CRC cells.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Proctology, the Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China; Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhijie Xu
- Department of Proctology, the Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China; Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Wanying Liu
- Department of Proctology, the Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China; Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhidong Cheng
- Department of Proctology, the Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China; Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Yating Ding
- Department of Proctology, the Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China; Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Yafeng Xie
- Department of Proctology, the Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China; Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Shengyu Yan
- Department of Proctology, the Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China; Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Xu N, Xie Q, Chen Y, Li J, Zhang X, Zheng H, Cheng Y, Wu M, Shen A, Wei L, Yao M, Yang Y, Sferra TJ, Jafri A, Fang Y, Peng J. Gastrodin Alleviates Angiotensin II-Induced Hypertension and Myocardial Apoptosis via Inhibition of the PRDX2/p53 Pathway In Vivo and In Vitro. Pharmaceuticals (Basel) 2024; 17:1200. [PMID: 39338362 PMCID: PMC11434704 DOI: 10.3390/ph17091200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Gastrodin, a highly potent compound found in the traditional Chinese medicine Gastrodia elata Blume, exhibits significant antihypertensive properties. However, its role and the mechanism behind its protective effects on hypertensive cardiac conditions are not well understood. This study aims to investigate the cardiac protective effects and underlying mechanisms of gastrodin in angiotensin II (Ang II)-induced hypertensive models, both in vivo and in vitro. Treatment with gastrodin significantly decreased blood pressure and the heart weight/tibial length (HW/TL) ratio and attenuated cardiac dysfunction and pathological damage in Ang II-infused C57BL/6 mice. RNA sequencing analysis (RNA-seq) revealed 697 up-regulated and 714 down-regulated transcripts, along with 1105 signaling pathways, in Ang II-infused C57BL/6 mice following gastrodin treatment, compared to Ang II-induced hypertensive mice. Furthermore, the analyses of the top 30 Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway indicated significant enrichment in apoptosis and the peroxiredoxin 2 (PRDX2)/p53 pathway. Consistently, gastrodin treatment significantly reduced myocardial apoptosis in both the cardiac tissues of Ang II-induced hypertensive mice and Ang II-stimulated H9c2 cells. Additionally, gastrodin treatment significantly decreased the protein levels of PRDX2, p53, cleaved caspase-3, cleaved caspase-9, and Bax/Bcl-2 ratio in the cardiac tissues of Ang II-infused mice and H9c2 cells stimulated with Ang II. In conclusion, gastrodin treatment can mitigate hypertension-induced myocardial apoptosis in hypertensive mice by inhibiting the PRDX2/p53 pathway.
Collapse
Affiliation(s)
- Nanhui Xu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
| | - Qiurong Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Youqin Chen
- Department of Pediatrics, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (Y.C.); (T.J.S.); (A.J.)
| | - Jiapeng Li
- Department of Physical Education, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
| | - Xiuli Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
| | - Huifang Zheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
| | - Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
| | - Lihui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Mengying Yao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
| | - Yanyan Yang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Thomas J. Sferra
- Department of Pediatrics, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (Y.C.); (T.J.S.); (A.J.)
| | - Anjum Jafri
- Department of Pediatrics, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (Y.C.); (T.J.S.); (A.J.)
| | - Yi Fang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|
3
|
El Menyiy N, Elouafy Y, Moubachir R, Abdnim R, Benali T, Taha D, Khalid A, Abdalla AN, Hamza SMA, Elhadi Ibrahim S, El-Shazly M, Zengin G, Bouyahya A. Chemistry, Biological Activities, and Pharmacological Properties of Gastrodin: Mechanism Insights. Chem Biodivers 2024; 21:e202400402. [PMID: 38573028 DOI: 10.1002/cbdv.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/05/2024]
Abstract
Gastrodin, a bioactive compound derived from the rhizome of the orchid Gastrodia elata, exhibits a diverse range of biological activities. With documented neuroprotective, anti-inflammatory, antioxidant, anti-apoptotic, and anti-tumor effects, gastrodin stands out as a multifaceted therapeutic agent. Notably, it has demonstrated efficacy in protecting against neuronal damage and enhancing cognitive function in animal models of Alzheimer's disease, Parkinson's disease, and cerebral ischemia. Additionally, gastrodin showcases immunomodulatory effects by mitigating inflammation and suppressing the expression of inflammatory cytokines. Its cytotoxic activity involves the inhibition of angiogenesis, suppression of tumor growth, and induction of apoptosis. This comprehensive review seeks to elucidate the myriad potential effects of Gastrodin, delving into the intricate molecular mechanisms underpinning its pharmacological properties. The findings underscore the therapeutic potential of gastrodin in addressing various conditions linked to neuroinflammation and cancer.
Collapse
Affiliation(s)
- Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate, 34025, Morocco
| | - Youssef Elouafy
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat, BP 1014, Morocco
| | - Rania Moubachir
- Bioactives and Environmental Health Laboratory, Faculty of Sciences, Moulay Ismail University, 11201, Meknes, Marocco
| | - Rhizlan Abdnim
- Laboratoire de bioressources, biotechnologie, ethnopharmacologie et santé, Département de biologie, Faculté des sciences, Université Mohamed premier, Boulevard Mohamed VI; BP:717, 60000, Oujda, Marocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Marrakesh-Safi, 46030, Morocco
| | - Douae Taha
- Molecular Modeling, Materials, Nanomaterials, Water and Environment Laboratory, CERNE2D, Department of Chemistry, Faculty of Sciences, Mohammed V University, Rabat, Rabat, 10106, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Unit, Health Research Cener, Jazan University, P.O. Box: 114, Jazan, 11111, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, 11111, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Siddiqa M A Hamza
- Department of Pathology, College of Medicine, Umm Alqura University, 24832, Alqunfudah, Saudi Arabia
| | - Salma Elhadi Ibrahim
- Department of Physiology, College of Medicine, Umm Alqura University, 24832, Alqunfudah, Saudi Arabia
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| |
Collapse
|
4
|
Liu Q, Xu M, Qiu M, Yu J, Wang Q, Zhou Y, Lin Q, Cai X, Yang L, Zhao H, Zhao C, Xie X. Solamargine improves the therapeutic efficacy of anti-PD-L1 in lung adenocarcinoma by inhibiting STAT1 activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155538. [PMID: 38552432 DOI: 10.1016/j.phymed.2024.155538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/14/2024] [Accepted: 03/13/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE The effect of solamargine on lung adenocarcinoma and its effect on STAT1 signaling pathway mediated immune escape were studied through network pharmacology and in vitro and in vivo experiments. METHODS The solamargine targets were screened using the TCMSP and the LUAD targets were screened using the GeneCard, OMIM, PharmGkb, TTD and DrugBank databases. PPI network analysis and target prediction were performed using GO and KEGG. Colony formation assay, EDU staining, wound healing, transwell assay, Hoechst and flow cytometry were used to detect the effects of solamargine on the proliferation, migration and apoptosis of LUAD. Western blotting (WB) and quantitative reverse transcription polymerase chain reaction (RT-qPCR) were used to detect P-STAT1 and PD-L1 expression. And immunofluorescence was used to detect P-STAT1 expression. In vivo experiments, C57BL/6 mice were divided into control group, low concentration group, high concentration group, positive control group and combination group. Every other day, following seven consecutive doses, the size of the tumor was assessed. Finally, the expressions of P-STAT1, STAT1, PD-L1 and apoptosis index proteins were detected by WB. RESULTS The anti-LUAD effect of solamargine was found by wound healing, colony formation assay, transwell assay, hoechst and EdU staining. The results of network pharmacological analysis showed that solamargine could suppress STAT1 expression level. Further enrichment assay of STAT1 showed that STAT1 was associated with immune-related pathways. In addition, molecular signal analysis by WB and RT-qPCR indicated that solamargine could reduce the expression levels of P-STAT1 and PD-L1 in a concentration-dependent manner. According to the results of in vivo assays, combination of solamargine and immune checkpoint inhibitors (ICIs) durvalumab could significantly inhibit the growth of Lewis transplanted tumors in C57BL/6 mice, and no toxic side effect was recoded. CONCLUSION These results indicated that solamargine could inhibit the proliferation and promote the apoptosis of LUAD. It also could reduce the expression level of P-STAT1 protein and inhibit the expression level of PD-L1. At the same time, the combination with the ICIs can better block the expression of PD-L1 in cells, thereby inhibiting the immune escape pathway of tumor cells and achieving anti-tumor effects. This study proposed a novel combined therapeutic approach, involving the inhibition of STAT1 by solamargine in conjunction with ICIs.
Collapse
Affiliation(s)
- Qianzi Liu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Min Xu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Mengjie Qiu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Junhan Yu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Qu Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yi Zhou
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qingqing Lin
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xueding Cai
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Lehe Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Haiyang Zhao
- The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Chengguang Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Xiaona Xie
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
5
|
Wang Y, Bai M, Wang X, Peng Z, Cai C, Xi J, Yan C, Luo J, Li X. Gastrodin: a comprehensive pharmacological review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3781-3802. [PMID: 38165423 DOI: 10.1007/s00210-023-02920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Tianma is the dried tuber of Gastrodia elata Blume (G. elata), which is frequently utilized in clinical practice as a traditional Chinese medicine. Gastrodin (GAS) is the main active ingredient of Tianma, which has good pharmacological activity. Therefore, for the first time, this review focused on the extraction, synthesis, pharmacological effects, and derivatives of GAS and to investigate additional development options for GAS. The use of microorganisms to create GAS is a promising method. GAS has good efficacy in the treatment of neurological diseases, cardiovascular diseases, endocrine diseases, and liver diseases. GAS has significant anti-inflammatory, antioxidant, neuroprotective, vascular protective, blood sugar lowering, lipid-regulating, analgesic, anticancer, and antiviral effects. The mechanism involves various signaling pathways such as Nrf2, NF-κB, PI3K/AKT, and AMPK. In addition, the derivatives of GAS and biomaterials synthesized by GAS and PU suggested a broader application of GAS. The research on GAS is thoroughly summarized in this paper, which has useful applications for tackling a variety of disorders and exhibits good development value.
Collapse
Affiliation(s)
- Yulin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mengting Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jia Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
6
|
Xie L, Liao J, Liu W, Wang R, Li X, Li W, Zhou Z. Gastrodin overcomes chemoresistance via inhibiting Skp2-mediated glycolysis. Cell Death Discov 2023; 9:364. [PMID: 37779163 PMCID: PMC10543462 DOI: 10.1038/s41420-023-01648-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/27/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023] Open
Abstract
Aerobic glycolysis, a typical phenotype in human tumors, is associated with tumor progression and chemotherapy resistance. The present study demonstrated that cisplatin-resistant oral squamous cell carcinoma (OSCC) cells exerted a stronger glycolysis ability, which was associated with hexokinase 2 (HK2) overexpression. Additionally, the tumor growth of OSCC cells was delayed in vivo and the glycolysis was notably decreased following HK2 knockdown. The natural compound screening revealed that gastrodin could be an effective candidate for OSCC therapy since it inhibited HK2-mediated glucose metabolism and promoted endogenous OSCC cell apoptosis. Furthermore, gastrodin could bind to protein kinase B (Akt) and suppress its activity, thus downregulating HK2 at the transcriptional level. Additionally, S-phase kinase-associated protein 2 (Skp2) was highly expressed in OSCC cells, while K63-linked ubiquitination of Akt was inhibited in Skp2-depleted cisplatin-resistant OSCC cells. Gastrodin could also inhibit the cisplatin resistance of OSCC cells in vivo, particularly when combined with the Skp2 inhibitor, SZL P1-41. Overall, the aforementioned finding suggested that targeting the Skp2-Akt axis could be a potential therapeutic strategy for treating OSCC and overcoming chemoresistance.
Collapse
Affiliation(s)
- Li Xie
- Department of Head and Neck Surgery, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.
| | - Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Zhongsu Zhou
- The Third Hospital of Changsha, Changsha, Hunan, 410015, China.
| |
Collapse
|
7
|
Liao J, Qing X, Deng G, Xiao Y, Fu Y, Han S, Li X, Gan Y, Li W. Gastrodin destabilizes survivin and overcomes pemetrexed resistance. Cell Signal 2023; 110:110851. [PMID: 37586466 DOI: 10.1016/j.cellsig.2023.110851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Survivin is a bifunctional protein that plays crucial roles in tumorigenesis. In the present study, we discovered that the natural product gastrodin suppressed the cell viability and colony formation of non-small cell lung cancer (NSCLC) cell lines A549, HCC827, and H460 in a dose-dependent manner. In addition, gastrodin enhanced the protein levels of cleaved-caspase 3 by activating the endogenous mitochondrial apoptosis pathway. Gastrodin inhibits protein kinase B (Akt)/WEE1/cyclin-dependent kinase 1 (CDK1) signaling to downregulate survivin Thr34 phosphorylation. Survivin Thr34 dephosphorylation caused by gastrodin interfered with the binding of ubiquitin-specific protease 19 (USP19), which eventually destabilized survivin. We revealed that the growth of NSCLC xenograft tumors was markedly suppressed by gastrodin in vivo. Furthermore, gastrodin overcomes pemetrexed resistance in vivo or in vitro. Our results suggest that gastrodin is a potential antitumor agent by reducing survivin in NSCLC.
Collapse
Affiliation(s)
- Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiang Qing
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Gaoyan Deng
- Department of Thoracic Surgery, Hunan Chest Hospital, Changsha, Hunan, China
| | - Yeqing Xiao
- Department of Ultrasonography, Hunan Chest Hospital, Changsha, Hunan, China
| | - Yaqian Fu
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Shuangze Han
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu Gan
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Xiao G, Tang R, Yang N, Chen Y. Review on pharmacological effects of gastrodin. Arch Pharm Res 2023; 46:744-770. [PMID: 37749449 DOI: 10.1007/s12272-023-01463-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
Gastrodia elata Blume is a well-known traditional Chinese medicine that is mainly used to treat diseases related to the nervous system, such as stroke, epilepsy, and headache. Gastrodin is the main bioactive component of Gastrodia elata Blume, and studies have shown that it has extensive pharmacological activity. This narrative review aims to systematically review relevant studies on the pharmacological effects of gastrodin to provide researchers with the latest and most useful information. Studies have shown that gastrodin has prominent neuroprotective effects and can treat or improve epilepsy, Tourette syndrome, Alzheimer's disease, Parkinson's disease, emotional disorders, cerebral ischemia-reperfusion injury, cognitive impairment, and neuropathic pain. Gastrodin can also improve myocardial hypertrophy, hypertension, and myocardial ischemia-reperfusion injury. In addition, gastrodin can mitigate liver, kidney, and bone tissue damage caused by oxidative stress and inflammation. In short, gastrodin is expected to treat many diseases, and it is worth investing more effort in research on this compound.
Collapse
Affiliation(s)
- Guirong Xiao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rong Tang
- Department of Pharmacy, Sichuan Hospital of Stomatology, Chengdu, 610031, China.
| | - Nan Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yanhua Chen
- Department of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
9
|
Shen A, Wu M, Ali F, Guo Z, Fang Y, Zhou Y, Zhang S, Zhang W, Wen Y, Yu M, Peng J, Chen K. Based on network pharmacology, gastrodin attenuates hypertension-induced vascular smooth muscle cell proliferation and PI3K/AKT pathway activation. Sci Rep 2023; 13:12140. [PMID: 37495624 PMCID: PMC10372005 DOI: 10.1038/s41598-023-39202-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023] Open
Abstract
The effects and underlying mechanisms of gastrodin treatment on hypertensive vascular dysfunction and proliferation of vascular smooth muscle cells (VSMCs) were determined in vitro and in vivo. Using a pharmacological target network interaction analysis, 151 common targets and a PPI network were identified containing the top 10 hub genes. Kyoto encyclopedia of genes and genomes (KEGG) analysis identified the PI3K/AKT pathway as a significantly enriched pathway. Both spontaneous hypertensive rats (SHRs) and Wistar Kyoto rats were used to assess the therapeutic effects of gastrodin on hypertension. Gastrodin treatment of the SHRs resulted in a marked attenuation of elevated blood pressure, pulse wave velocity, and pathological changes in the abdominal aorta. Moreover, gastrodin treatment significantly inhibited cell growth and downregulated the expression of PCNA as well as the p-PI3K/PI3K and p-AKT/AKT levels in angiotensin II-stimulated VSMCs. Taken together, gastrodin treatment attenuates blood pressure elevation, vascular dysfunction, and proliferation of VSMCs and inhibits the activation of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Aling Shen
- Postdoctoral Workstation, Department of Research and development, Tianjiang Pharmaceutical Co., Ltd., No.1 Xin Sheng Road, Jiangyin, 214400, Jiangsu, China
- Department of Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 1 XiyuanCaochang, Hai Dian District, Beijing, 100091, China
- National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing, 100091, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, MinhouShangjie, Fuzhou, 350122, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, 350122, Fujian, China
| | - Meizhu Wu
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, MinhouShangjie, Fuzhou, 350122, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, 350122, Fujian, China
| | - Farman Ali
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, MinhouShangjie, Fuzhou, 350122, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, 350122, Fujian, China
| | - Zhi Guo
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, MinhouShangjie, Fuzhou, 350122, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Yi Fang
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, MinhouShangjie, Fuzhou, 350122, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, 350122, Fujian, China
| | - Yuting Zhou
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, MinhouShangjie, Fuzhou, 350122, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Siyu Zhang
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, MinhouShangjie, Fuzhou, 350122, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Wenqiang Zhang
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, MinhouShangjie, Fuzhou, 350122, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Ying Wen
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, MinhouShangjie, Fuzhou, 350122, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, 350122, Fujian, China
| | - Min Yu
- Postdoctoral Workstation, Department of Research and development, Tianjiang Pharmaceutical Co., Ltd., No.1 Xin Sheng Road, Jiangyin, 214400, Jiangsu, China.
| | - Jun Peng
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, MinhouShangjie, Fuzhou, 350122, Fujian, China.
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China.
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, 350122, Fujian, China.
| | - Keji Chen
- Postdoctoral Workstation, Department of Research and development, Tianjiang Pharmaceutical Co., Ltd., No.1 Xin Sheng Road, Jiangyin, 214400, Jiangsu, China.
- Department of Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 1 XiyuanCaochang, Hai Dian District, Beijing, 100091, China.
- National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing, 100091, China.
| |
Collapse
|
10
|
Zheng T, Gao Y, Zhang Z, Li X, Zang P, Zhao Y, He Z. A study on the anti-skin tumor and anti-UVB damage effects of Gastrodia elata Bl. Products transformed by Armillaria mellea. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2120853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Tong Zheng
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun, People’s Republic of China
| | - Yugang Gao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun, People’s Republic of China
| | - Zhilong Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun, People’s Republic of China
| | - XinYue Li
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun, People’s Republic of China
| | - Pu Zang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun, People’s Republic of China
| | - Yan Zhao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun, People’s Republic of China
| | - Zhongmei He
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun, People’s Republic of China
| |
Collapse
|
11
|
The traditional chinese medicine monomer Ailanthone improves the therapeutic efficacy of anti-PD-L1 in melanoma cells by targeting c-Jun. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:346. [PMID: 36522774 PMCID: PMC9753288 DOI: 10.1186/s13046-022-02559-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND C-Jun, a critical component of AP-1, exerts essential functions in various tumors, including melanoma, and is believed to be a druggable target for cancer therapy. Unfortunately, no effective c-Jun inhibitors are currently approved for clinical use. The advent of immune checkpoint inhibitor (ICI) has brought a paradigm shift in melanoma therapy, but more than half of patients fail to exhibit clinical responses. The exploration of new combination therapies has become the current pursuit of melanoma treatment strategy. This study aims to screen out Chinese herbal monomers that can target c-Jun, explore the combined effect of c-Jun inhibitor and ICI, and further clarify the related molecular mechanism. METHODS: We adopted a combinatorial screening strategy, including molecular docking, ligand-based online approaches and consensus quantitative structure-activity relationship (QSAR) model, to filter out c-Jun inhibitors from a traditional Chinese medicine (TCM) library. A mouse melanoma model was used to evaluate the therapeutic efficacy of monotherapy and combination therapy. Multicolor flow cytometry was employed to assess the tumor microenvironment (TME). Multiple in vitro assays were performed to verify down-streaming signaling pathway. CD4 + T-cell differentiation assay was applied to investigate Treg differentiation in vitro. RESULTS Ailanthone (AIL) was screened out as a c-Jun inhibitor, and inhibited melanoma cell growth by directly targeting c-Jun and promoting its degradation. Surprisingly, AIL also facilitated the therapeutic efficacy of anti-programmed death ligand-1 (PD-L1) in melanoma cells by reducing the infiltration of Tregs in TME. Additionally, AIL treatment inhibited c-Jun-induced PD-L1 expression and secretion. As a consequence, Treg differentiation was attenuated after treatment with AIL through the c-Jun/PD-L1 axis. CONCLUSION Our findings identified AIL as a novel c-Jun inhibitor, and revealed its previously unrecognized anti-melanoma effects and the vital role in regulating TME by Treg suppression, which provides a novel combination therapeutic strategy of c-Jun inhibition by AIL with ICI. AIL down-regulates c-Jun by reducing its stability, and inhibits the function of Tregs via AIL-c-Jun-PD-L1 pathway, ultimately suppressing melanoma progression and enhancing the efficacy of anti-PD-L1.
Collapse
|
12
|
Sun K, Wu L, Wang S, Deng W. Antitumor effects of Chinese herbal medicine compounds and their nano-formulations on regulating the immune system microenvironment. Front Oncol 2022; 12:949332. [PMID: 36212483 PMCID: PMC9540406 DOI: 10.3389/fonc.2022.949332] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Traditional Chinese medicine (TCM), including herbal medicine, acupuncture and meditation, has a wide range of applications in China. In recent years, herbal compounding and active ingredients have been used to control tumor growth, reduce suffering, improve quality of life, and prolong the life span of cancer patients. To reduce side effects, herbal medicine can be used in conjunction with radiotherapy and chemotherapy or can be used as an adjuvant to strengthen the immune effect of anticancer vaccines. In particular, in the immunosuppressed tumor microenvironment, herbal medicine can have antitumor effects by stimulating the immune response. This paper reviews the advances in research on antitumor immunomodulation in Chinese herbal medicine, including the regulation of the innate immune system, which includes macrophages, MDSCs, and natural killer cells, and the adaptive immune system, which includes CD4+ T cells, CD8+ T cells, and regulatory T cells (Tregs), to influence tumor-associated inflammation. In addition, a combination of active ingredients of herbal medicine and modern nanotechnology alter the tumor immune microenvironment. In recent years, immunological antitumor therapy in TCM has been applied on a reasonably large scale both nationally and internationally, and there is potential for further clinical expansion. Investigation of immune modulation mechanisms in Chinese herbal medicine will provide novel perspectives of how herbal medicine controls tumor growth and metastasis, which will contribute to the evolution of tumor research.
Collapse
|
13
|
Zhao T, Wang B, Shen J, Wei Y, Zhu Y, Tian X, Wen G, Xu B, Fu C, Xie Z, Xi Y, Li Z, Peng J, Wu Y, Tang X, Wan C, Pan L, Zhu W, Li Z, Qin D. Third dose of anti-SARS-CoV-2 inactivated vaccine for patients with RA: Focusing on immunogenicity and effects of RA drugs. Front Med (Lausanne) 2022; 9:978272. [PMID: 36117981 PMCID: PMC9470915 DOI: 10.3389/fmed.2022.978272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES To evaluate the immunogenicity of the third dose of inactivated SARS-CoV-2 vaccine in rheumatoid arthritis (RA) patients and explore the effect of RA drugs on vaccine immunogenicity. METHODS We recruited RA patients (n = 222) and healthy controls (HC, n = 177) who had been injected with a third dose of inactivated SARS-CoV-2 vaccine, and their neutralizing antibody (NAb) titer levels were assessed. RESULTS RA patients and HC were age- and gender-matched, and the mean interval between 3rd vaccination and sampling was comparable. The NAb titers were significantly lower in RA patients after the third immunization compared with HC. The positive rate of NAb in HC group was 90.4%, while that in RA patients was 80.18%, and the difference was significant. Furthermore, comparison of NAb titers between RA treatment subgroups and HC showed that the patients in the conventional synthetic (cs) disease-modifying anti-rheumatic drugs (DMARDs) group exhibited no significant change in NAb titers, while in those receiving the treatment of biological DMARDs (bDMARDs), Janus Kinase (JAK) inhibitors, and prednisone, the NAb titers were significantly lower. Spearman correlation analysis revealed that NAb responses to SARS-CoV-2 in HC did differ significantly according to the interval between 3rd vaccination and sampling, but this finding was not observed in RA patients. In addition, NAb titers were not significantly correlated with RA-related laboratory indicators, including RF-IgA, RF-IgG, RF-IgM, anti-CCP antibody; C-RP; ESR; NEUT% and LYMPH%. CONCLUSION Serum antibody responses to the third dose of vaccine in RA patients were weaker than HC. Our study will help to evaluate the efficacy and safety of booster vaccination in RA patients and provide further guidance for adjusting vaccination strategies.
Collapse
Affiliation(s)
- Ting Zhao
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Bo Wang
- The Department of Educational Administration, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiayan Shen
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Youyang Zhu
- The Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaofang Tian
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Guangfen Wen
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Bonan Xu
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Chenyang Fu
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yujiang Xi
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhenmin Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiangyun Peng
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yang Wu
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaohu Tang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Chunping Wan
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Lei Pan
- The Second School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Wenxin Zhu
- Department of Rehabilitation, The People's Hospital of Yunxian, Yunxian, China
| | - Zhaofu Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
14
|
Lu R, Wang S, Jiang S, Li C, Wang Y, Li L, Wang Y, Ma G, Qiao H, Leng Z, Niu J, Tian Z, Wang B. Chrysin Enhances Anti-tumor Immunity Response through IL-12-STAT4 Signal Pathway in B16F10 Melanoma Mouse Model. Scand J Immunol 2022; 96:e13177. [PMID: 35484925 DOI: 10.1111/sji.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022]
Abstract
Chrysin (CHR) is a flavonoid with extensive pharmacological activity. The molecular formula of CHR is C15 H10 O4 . CHR is reported to have antioxidative, anti-tumor and anti-viral functions. To evaluate its potential function as a vaccine adjuvant, we prepared a melanoma vaccine using a soluble protein extract of B16F10 melanoma cells as antigen and CHR as an adjuvant. The melanoma model was developed after two immunisations, and it was discovered that combining B16F10 soluble protein antigen-mixed CHR vaccine could inhibit tumor growth in the mouse model, and the overall survival rate was higher than that of the B16F10 antigen vaccine alone. In vivo and in vitro experiments were conducted to determine whether CHR functioned as an adjuvant by activating antigen-presenting cells (APCs). We discovered that CHR activated APCs both in vivo and in vitro and may enhance Th1 cell function by activating the IL12-STAT4 signal pathway, thereby enhancing the anti-tumor response of cytotoxic T lymphocytes (CTL) in vivo. Next, to verify the critical role of CD8+ T cells in suppressing melanoma development, we transplanted CD8+ T cells from immunised mice to B16F10 tumor-bearing mice and discovered that the survival rate of tumor-bearing mice was significantly prolonged. In summary, our experimental results indicate that CHR can be used as a potential adjuvant to enhance antigen immunogenicity, inhibit B16F10 tumor growth in mice and improve tumor immune response.
Collapse
Affiliation(s)
- Ran Lu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Shuang Wang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Shasha Jiang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Chenglin Li
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Yashuo Wang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Ling Li
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Yunyang Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Guixin Ma
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Hongye Qiao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Zhe Leng
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Junyun Niu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bin Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
15
|
Bailly C. Regulation of PD-L1 expression on cancer cells with ROS-modulating drugs. Life Sci 2020; 246:117403. [DOI: 10.1016/j.lfs.2020.117403] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
|
16
|
Liu S, Li J, Zhang S, Zhang X, Ma J, Wang N, Wang S, Wang B, Chen S. Template-Assisted Magnetron Sputtering of Cotton Nonwovens for Wound Healing Application. ACS APPLIED BIO MATERIALS 2019; 3:848-858. [DOI: 10.1021/acsabm.9b00942] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shangpeng Liu
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Jiwei Li
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
- Department of Biochemistry and Microbiology, Qingdao University, Qingdao 266071, P. R. China
| | - Shaohua Zhang
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| | - Xiying Zhang
- Department of Pathology, The Second Hospital of Shandong University, Jinan 250033, P. R. China
| | - Jianwei Ma
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Na Wang
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Shuang Wang
- Department of Biochemistry and Microbiology, Qingdao University, Qingdao 266071, P. R. China
| | - Bin Wang
- Department of Biochemistry and Microbiology, Qingdao University, Qingdao 266071, P. R. China
| | - Shaojuan Chen
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|