1
|
Alcazar-Felix RJ, Jhaveri A, Iqbal J, Srinath A, Bennett C, Bindal A, Vera Cruz D, Romanos S, Hage S, Stadnik A, Lee J, Lightle R, Shenkar R, Koskimäki J, Polster SP, Girard R, Awad IA. A Systematic Review of MicroRNAs in Hemorrhagic Neurovascular Disease: Cerebral Cavernous Malformations as a Paradigm. Int J Mol Sci 2025; 26:3794. [PMID: 40332397 PMCID: PMC12028044 DOI: 10.3390/ijms26083794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Hemorrhagic neurovascular diseases, with high mortality and poor outcomes, urge novel biomarker discovery and therapeutic targets. Micro-ribonucleic acids (miRNAs) are potent post-transcriptional regulators of gene expression. They have been studied in association with disease states and implicated in mechanistic gene interactions in various pathologies. Their presence and stability in circulating fluids also suggest a role as biomarkers. This review summarizes the current state of knowledge about miRNAs in the context of cerebral cavernous malformations (CCMs), a disease involving cerebrovascular dysmorphism and hemorrhage, with known genetic underpinnings. We also review common and distinct miRNAs of CCM compared to other diseases with brain vascular dysmorphism and hemorrhage. A systematic search, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline, queried all peer-reviewed articles published in English as of January 2025 and reported miRNAs associated with four hemorrhagic neurovascular diseases: CCM, arteriovenous malformations, moyamoya disease, and intracerebral hemorrhage. The PubMed systematic search retrieved 154 articles that met the inclusion criteria, reporting a total of 267 unique miRNAs identified in the literature on these four hemorrhagic neurovascular diseases. Of these 267 miRNAs, 164 were identified in preclinical studies, while 159 were identified in human subjects. Seventeen miRNAs were common to CCM and other hemorrhagic diseases. Common and unique disease-associated miRNAs in this systematic review motivate novel mechanistic hypotheses and have potential applications in diagnostic, predictive, prognostic, and therapeutic contexts of use. Much of current research can be considered hypothesis-generating, reflecting association rather than causation. Future areas of mechanistic investigation are proposed alongside approaches to analytic and clinical validations of contexts of use for biomarkers.
Collapse
Affiliation(s)
- Roberto J. Alcazar-Felix
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Aditya Jhaveri
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Javed Iqbal
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Abhinav Srinath
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Carolyn Bennett
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Akash Bindal
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Diana Vera Cruz
- Center for Research Informatics, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA
| | - Sharbel Romanos
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Stephanie Hage
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Agnieszka Stadnik
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Justine Lee
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Robert Shenkar
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Janne Koskimäki
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Sean P. Polster
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Issam A. Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| |
Collapse
|
2
|
Cai Y, Zhang Y, Wang S, Changyong E. MiR-23b-3p alleviates Sjögren's syndrome by targeting SOX6 and inhibiting the NF-κB signaling. Mol Immunol 2024; 172:68-75. [PMID: 38901181 DOI: 10.1016/j.molimm.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/20/2024] [Accepted: 06/01/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVE MicroRNA-23b-3p has been demonstrated to act as a safeguard against several autoimmune diseases. However, its role in Sjögren's syndrome (SS) remains unclear. METHODS In order to investigate its role in SS, we administered agomiR-23b-3p or agomiR-NC to non-obese diabetic (NOD) mice via tail vein weekly for 6 weeks. The study examined the saliva flow rate, histological changes in submandibular glands, and levels of autoantibodies. Additionally, the levels of several cytokines, cell apoptosis, and NF-κB signaling were evaluated. The protective effect of miR-23b-3p was confirmed in a cell model. RESULTS The results demonstrated that miR-23b-3p overexpression improved salivary flow rates, inhibited lymphocyte infiltration, reduced cytokine levels, and suppressed cell apoptosis in NOD mice. Moreover, NF-κB signaling was inactivated following miR-23b-3p overexpression. In a cellular model of SS, overexpression of miR-23b-3p protected submandibular gland epithelial cells exposed to IFN-γ against apoptosis and inflammation by targeting SOX6. CONCLUSIONS The study concludes that miR-23b-3p alleviates SS by targeting SOX6 and inhibiting the NF-κB signaling pathway. The miR-23b-3p/SOX6 axis represents a promising avenue for the development of novel therapeutic strategies for SS.
Collapse
Affiliation(s)
- Yan Cai
- Department of Oral and Maxillofacial Radiology, Hospital of Stomatology, Jilin University, Changchun, Jilin Province, PR China
| | - Yi Zhang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin Province, PR China
| | - Sihan Wang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin Province, PR China
| | - E Changyong
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, PR China.
| |
Collapse
|
3
|
Kim KY, Shin KY, Chang KA. Potential Exosome Biomarkers for Parkinson's Disease Diagnosis: A Systematic Review and Meta-Analysis. Int J Mol Sci 2024; 25:5307. [PMID: 38791346 PMCID: PMC11121363 DOI: 10.3390/ijms25105307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. Given its prevalence, reliable biomarkers for early diagnosis are required. Exosomal proteins within extracellular nanovesicles are promising candidates for diagnostic, screening, prognostic, and disease monitoring purposes in neurological diseases such as PD. This review aims to evaluate the potential of extracellular vesicle proteins or miRNAs as biomarkers for PD. A comprehensive literature search until January 2024 was conducted across multiple databases, including PubMed, EMBASE, Web of Science, and Cochrane Library, to identify relevant studies reporting exosome biomarkers in blood samples from PD patients. Out of 417 articles screened, 47 studies were selected for analysis. Among exosomal protein biomarkers, α-synuclein, tau, Amyloid β 1-42, and C-X-C motif chemokine ligand 12 (CXCL12) were identified as significant markers for PD. Concerning miRNA biomarkers, miRNA-24, miR-23b-3p, miR-195-3p, miR-29c, and mir-331-5p are promising across studies. α-synuclein exhibited increased levels in PD patients compared to control groups in twenty-one studies, while a decrease was observed in three studies. Our meta-analysis revealed a significant difference in total exosomal α-synuclein levels between PD patients and healthy controls (standardized mean difference [SMD] = 1.369, 95% confidence interval [CI] = 0.893 to 1.846, p < 0.001), although these results are limited by data availability. Furthermore, α-synuclein levels significantly differ between PD patients and healthy controls (SMD = 1.471, 95% CI = 0.941 to 2.002, p < 0.001). In conclusion, certain exosomal proteins and multiple miRNAs could serve as potential biomarkers for diagnosis, prognosis prediction, and assessment of disease progression in PD.
Collapse
Affiliation(s)
- Ka Young Kim
- Department of Nursing, College of Nursing, Gachon University, Incheon 21936, Republic of Korea;
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - Ki Young Shin
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
4
|
Chen Y, Chen J, Xing Z, Peng C, Li D. Autophagy in Neuroinflammation: A Focus on Epigenetic Regulation. Aging Dis 2024; 15:739-754. [PMID: 37548945 PMCID: PMC10917535 DOI: 10.14336/ad.2023.0718-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
Neuroinflammation, characterized by the secretion of abundant inflammatory mediators, pro-inflammatory polarization of microglia, and the recruitment of infiltrating myeloid cells to foci of inflammation, drives or exacerbates the pathological processes of central nervous system disorders, especially in neurodegenerative diseases. Autophagy plays an essential role in neuroinflammatory processes, and the underlaying physiological mechanisms are closely correlated with neuroinflammation-related signals. Inhibition of mTOR and activation of AMPK and FOXO1 enhance autophagy and thereby suppress NLRP3 inflammasome activity and apoptosis, leading to the relief of neuroinflammatory response. And autophagy mitigates neuroinflammation mainly manifested by promoting the polarization of microglia from a pro-inflammatory to an anti-inflammatory state, reducing the production of pro-inflammatory mediators, and up-regulating the levels of anti-inflammatory factors. Notably, epigenetic modifications are intimately associated with autophagy and the onset and progression of various brain diseases. Non-coding RNAs, including microRNAs, circular RNAs and long noncoding RNAs, and histone acetylation have been reported to adjust autophagy-related gene and protein expression to alleviate inflammation in neurological diseases. The present review primarily focuses on the role and mechanisms of autophagy in neuroinflammatory responses, as well as epigenetic modifications of autophagy in neuroinflammation to reveal potential therapeutic targets in central nervous system diseases.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziwei Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Yan D, Shi Y, Nan C, Jin Q, Zhuo Y, Huo H, Kong S, Zhao Z. Exosomes derived from human umbilical cord mesenchymal stem cells pretreated by monosialoteterahexosyl ganglioside alleviate intracerebral hemorrhage by down-regulating autophagy. Exp Cell Res 2024; 436:113960. [PMID: 38311048 DOI: 10.1016/j.yexcr.2024.113960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
PURPOSE Intracerebral hemorrhage (ICH) results in substantial morbidity, mortality, and disability. Depleting neural cells in advanced stages of ICH poses a significant challenge to recovery. The objective of our research is to investigate the potential advantages and underlying mechanism of exosomes obtained from human umbilical cord mesenchymal stem cells (hUMSCs) pretreated with monosialoteterahexosyl ganglioside (GM1) in the prevention of secondary brain injury (SBI) resulting from ICH. PATIENTS AND METHODS In vitro, hUMSCs were cultured and induced to differentiate into neuron-like cells after they were pretreated with 150 μg/mL GM1. The exosomes extracted from the culture medium following a 6-h pretreatment with 150 μg/mL GM1 were used as the treatment group. Striatal infusion of collagenase and hemoglobin (Hemin) was used to establish in vivo and in vitro models of ICH. RESULTS After being exposed to 150 μg/mL GM1 for 6 h, specific cells displayed typical neuron-like cell morphology and expressed neuron-specific enolase (NSE). The rate of differentiation into neuron-like cells was up to (15.9 ± 5.8) %, and the synthesis of N-Acetylgalactosaminyltransferase (GalNAcT), which is upstream of GM1, was detected by Western blot. This study presented an increase in the synthesis of GalNAcT. Compared with the ICH group, apoptosis in the treatment group was remarkably reduced, as detected by TUNEL, and mitochondrial membrane potential was restored by JC-1. Additionally, Western blot revealed the restoration of up-regulated autophagy markers Beclin-1 and LC3 and the down-regulation of autophagy marker p62 after ICH. CONCLUSION These findings suggest that GM1 is an effective agent to induce the differentiation of hUMSCs into neuron-like cells. GM1 can potentially increase GalNAcT production through "positive feedback", which generates more GM1 and promotes the differentiation of hUMSCs. After pretreatment with GM1, exosomes derived from hUMSCs (hUMSCs-Exos) demonstrate a neuroprotective effect by inhibiting autophagy in the ICH model. This study reveals the potential mechanism by which GM1 induces differentiation of hUMSCs into neuron-like cells and confirms the therapeutic effect of hUMSCs-Exos pretreated by GM1 (GM1-Exos) on an ICH model, potentially offering a new direction for stem cell therapy in ICH.
Collapse
Affiliation(s)
- Dongdong Yan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yunpeng Shi
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chengrui Nan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qianxu Jin
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yayu Zhuo
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haoran Huo
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shiqi Kong
- Department of Neurosurgery, Xingtai People's Hospital, Xingtai, Hebei, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
6
|
Yu N, Tian W, Liu C, Zhang P, Zhao Y, Nan C, Jin Q, Li X, Liu Y. miR-122-5p Promotes Peripheral and Central Nervous System Inflammation in a Mouse Model of Intracerebral Hemorrhage via Disruption of the MLLT1/PI3K/AKT Signaling. Neurochem Res 2023; 48:3665-3682. [PMID: 37594575 DOI: 10.1007/s11064-023-04014-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Intracerebral hemorrhage (ICH) is a recognized central nervous system inflammation complication. Several microRNAs (miRNAs or miRs) have been documented to be vital modulators in peripheral and central nervous system inflammation. Based on whole transcriptome sequencing and bioinformatics analysis, this study aims to reveal the possible molecular mechanisms by which miR-122-5p affects the inflammatory response in the peripheral and central nervous system in a mouse model of ICH. Differentially expressed ICH-related miRNAs were screened. Adeno-associated viral vectors were used to knock down miR-122-5p in mice to evaluate the effect of miR-122-5p on peripheral and central nervous system inflammation. The downstream target gene of miR-122-5p was analyzed. Neurons were isolated from mice and treated with hemin to construct an in vitro model of ICH, followed by transduction with miR-122-5p mimic or combined with oe-MLLT1. The neurons were then co-cultured with microglia BV2 to assess their activation. It was found that miR-122-5p was highly expressed in ICH, and MLLT1 was lowly expressed. In vivo experiments showed that miR-122-5p knockdown decreased neurological deficits, BBB permeability, and inflammation in the peripheral and central nervous system in ICH mice. It involved its binding to MLLT1 and downregulation of the activity of the PI3K/AKT pathway. In vitro data exhibited that miR-122-5p stimulated the generation of inflammatory factors and microglia activation by targeting MLLT1 and inhibiting the PI3K/AKT pathway. Collectively, our work reveals a novel miR-122-5p/MLLT1-mediated regulatory network in ICH that may be a viable target for neuroinflammation alleviation.
Collapse
Affiliation(s)
- Ning Yu
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, P.R. China
| | - Wenbin Tian
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, P.R. China
| | - Chao Liu
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, P.R. China
| | - Pei Zhang
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, P.R. China
| | - Yinlong Zhao
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, P.R. China
| | - Chengrui Nan
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, P.R. China
| | - Qianxu Jin
- Department of Neurosurgery, Hebei Medical University, Shijiazhuang, 050000, P.R. China
| | - Xiaopeng Li
- Department of Neurosurgery, The First Hospital of Handan City, Handan, 056000, P.R. China
| | - Ya Liu
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, P.R. China.
| |
Collapse
|
7
|
Xia S, Xu C, Liu F, Chen G. Development of microRNA-based therapeutics for central nervous system diseases. Eur J Pharmacol 2023; 956:175956. [PMID: 37541374 DOI: 10.1016/j.ejphar.2023.175956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
MicroRNA (miRNA)-mediated gene silencing is a method of RNA interference in which a miRNA binds to messenger RNA sequences and regulates target gene expression. MiRNA-based therapeutics have shown promise in treating a variety of central nervous system diseases, as verified by results from diverse preclinical model organisms. Over the last decade, several miRNA-based therapeutics have entered clinical trials for various kinds of diseases, such as tumors, infections, and inherited diseases. However, such clinical trials for central nervous system diseases are scarce, and many central nervous system diseases, including hemorrhagic stroke, ischemic stroke, traumatic brain injury, intractable epilepsy, and Alzheimer's disease, lack effective treatment. Considering its effectiveness for central nervous system diseases in preclinical experiments, microRNA-based intervention may serve as a promising treatment for these kinds of diseases. This paper reviews basic principles and recent progress of miRNA-based therapeutics and summarizes general procedures to develop such therapeutics for treating central nervous system diseases. Then, the current obstacles in drug development are discussed. This review also provides a new perspective on possible solutions to these obstacles in the future.
Collapse
Affiliation(s)
- Siqi Xia
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| | - Chaoran Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China; Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Fuyi Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Geng X, Zou Y, Li S, Qi R, Yu H, Li J. MALAT1 Mediates α-Synuclein Expression through miR-23b-3p to Induce Autophagic Impairment and the Inflammatory Response in Microglia to Promote Apoptosis in Dopaminergic Neuronal Cells. Mediators Inflamm 2023; 2023:4477492. [PMID: 37064502 PMCID: PMC10101752 DOI: 10.1155/2023/4477492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 04/09/2023] Open
Abstract
Background. Parkinson’s disease (PD) is a very common neurodegenerative disease that adversely affects the physical and mental health of many patients, but there is currently no effective treatment. Objective. To this end, this study focused on investigating the potential mechanisms leading to dopaminergic neuronal apoptosis in PD. Methods. Rotenone induces damage in dopaminergic neuronal MN9D cells. Apoptosis was detected by flow cytometry, and the expression of apoptosis-related proteins was detected by western blot. RT-qPCR was used to detect the expression of MALAT1 and miR-23b-3p. The expression of α-synuclein was detected by ELISA. A dual luciferase gene reporter assay was used to determine the targeted regulatory relationship between MALAT1 and miR-23b-3p and miR-23b-3p and α-synuclein. MN9D supernatant was cocultured with BV-2 cells, or BV-2 cells were treated with exogenous α-synuclein and then treated with an autophagy inhibitor (3-MA) and autophagy activator (RAPA). The expression of α-synuclein in BV-2 cells was detected by immunofluorescence. The expression of MIP-1α, a marker of microglial activation, was detected by ELISA. The nuclear translocation of NF-κB p65 was detected by immunofluorescence. The expression of proinflammatory cytokines was detected by ELISA. Western blotting was used to detect the expression of autophagy-related proteins. Apoptosis of MN9D cells was detected after coculture of BV-2 supernatant with MN9D. Results. The expression of MALAT1 and α-synuclein was upregulated, while the expression of miR-23b-3p was downregulated in damaged MN9D cells, resulting in cell apoptosis. MALAT1 can negatively regulate the expression of miR-23b-3p, while miR-23b-3p negatively regulates the expression of α-synuclein. α-synuclein can enter BV-2 cells through cell phagocytosis. Coculture of BV-2 cells with α-synuclein or with MN9D supernatant overexpressing MALAT1 resulted in a decrease in the autophagy level of BV-2 cells and an inflammatory reaction. However, miR-23b-3p mimics and knockdown of α-synuclein reversed the effect of MALAT1 on autophagy and the inflammatory response of BV-2 cells. In addition, after coculture of BV-2 cells with α-synuclein, the level of autophagy further decreased when 3-MA was added, while the opposite result occurred when RAPA was added. After coculture of α-synuclein-treated BV-2 cell supernatant with MN9D cells, autophagy-impaired BV-2 promoted the apoptosis of MN9D cells, and 3-MA aggravated the autophagy disorder of BV-2 and further promoted the apoptosis of MN9D cells, while RAPA reversed the autophagy disorder of BV-2 and alleviated the apoptosis of MN9D cells. Conclusion. MALAT1 can promote α-synuclein expression by regulating miR-23b-3p, thereby inducing microglial autophagy disorder and an inflammatory response leading to apoptosis of dopaminergic neurons. This newly discovered molecular mechanism may provide a potential target for the treatment of PD.
Collapse
Affiliation(s)
- Xin Geng
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032 Yunnan, China
| | - Yanghong Zou
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032 Yunnan, China
| | - Shipeng Li
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032 Yunnan, China
| | - Renli Qi
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032 Yunnan, China
| | - Hualin Yu
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032 Yunnan, China
| | - Jinghui Li
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032 Yunnan, China
| |
Collapse
|
9
|
miRNA-Induced Downregulation of IPMK in Macrophages Mediates Lipopolysaccharide-Triggered TLR4 Signaling. Biomolecules 2023; 13:biom13020332. [PMID: 36830701 PMCID: PMC9952907 DOI: 10.3390/biom13020332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Inositol polyphosphate multikinase (IPMK) is a pleiotropic enzyme responsible for the production of inositol polyphosphates and phosphoinositide. IPMK in macrophages was identified as a key factor for the full activation of the Toll-like receptor 4 (TLR4) signaling pathway and inflammation by directly interacting with tumor necrosis factor receptor-associated factor 6 (TRAF6). Here, dynamic changes of IPMK levels in lipopolysaccharide (LPS)-stimulated macrophages and their functional significance were investigated. Both the mRNA and protein levels of IPMK were acutely decreased in mouse and human macrophages when cells were stimulated with LPS for between 1 and 6 h. Analysis of the 3' untranslated region (UTR) of mouse IPMK mRNA revealed a highly conserved binding site for miR-181c. Transfection of miR-181c mimics into RAW 264.7 macrophages led to decreased IPMK 3'UTR-luciferase reporter activity and lowered endogenous IPMK levels. When the genomic deletion of a 33-bp fragment containing a putative miR-181c-binding site was introduced within the IPMK 3'UTR of RAW 264.7 macrophages (264.7Δ3'UTR), LPS-triggered downregulation of IPMK levels was prevented. LPS treatment in 264.7Δ3'UTR macrophages decreased TLR4-induced signaling and the expression of proinflammatory cytokines. In response to LPS stimulation, K63-linked ubiquitination of TRAF6 was impaired in 264.7Δ3'UTR macrophages, suggesting an action of IPMK in the suppression of TRAF6 activation. Therefore, our findings reveal that LPS-mediated suppression of IPMK regulates the full activation of TLR4 signaling and inflammation in macrophages.
Collapse
|
10
|
Fu K, Xu W, Lenahan C, Mo Y, Wen J, Deng T, Huang Q, Guo F, Mo L, Yan J. Autophagy regulates inflammation in intracerebral hemorrhage: Enemy or friend? Front Cell Neurosci 2023; 16:1036313. [PMID: 36726453 PMCID: PMC9884704 DOI: 10.3389/fncel.2022.1036313] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/19/2022] [Indexed: 01/18/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is the second-largest stroke subtype and has a high mortality and disability rate. Secondary brain injury (SBI) is delayed after ICH. The main contributors to SBI are inflammation, oxidative stress, and excitotoxicity. Harmful substances from blood and hemolysis, such as hemoglobin, thrombin, and iron, induce SBI. When cells suffer stress, a critical protective mechanism called "autophagy" help to maintain the homeostasis of damaged cells, remove harmful substances or damaged organelles, and recycle them. Autophagy plays a critical role in the pathology of ICH, and its function remains controversial. Several lines of evidence demonstrate a pro-survival role for autophagy in ICH by facilitating the removal of damaged proteins and organelles. However, many studies have found that heme and iron can aggravate SBI by enhancing autophagy. Autophagy and inflammation are essential culprits in the progression of brain injury. It is a fascinating hypothesis that autophagy regulates inflammation in ICH-induced SBI. Autophagy could degrade and clear pro-IL-1β and apoptosis-associated speck-like protein containing a CARD (ASC) to antagonize NLRP3-mediated inflammation. In addition, mitophagy can remove endogenous activators of inflammasomes, such as reactive oxygen species (ROS), inflammatory components, and cytokines, in damaged mitochondria. However, many studies support the idea that autophagy activates microglia and aggravates microglial inflammation via the toll-like receptor 4 (TLR4) pathway. In addition, autophagy can promote ICH-induced SBI through inflammasome-dependent NLRP6-mediated inflammation. Moreover, some resident cells in the brain are involved in autophagy in regulating inflammation after ICH. Some compounds or therapeutic targets that regulate inflammation by autophagy may represent promising candidates for the treatment of ICH-induced SBI. In conclusion, the mutual regulation of autophagy and inflammation in ICH is worth exploring. The control of inflammation by autophagy will hopefully prove to be an essential treatment target for ICH.
Collapse
Affiliation(s)
- Kaijing Fu
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Yong Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jing Wen
- Department of Rheumatism, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Teng Deng
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qianrong Huang
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fangzhou Guo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ligen Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China,Ligen Mo,
| | - Jun Yan
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China,*Correspondence: Jun Yan,
| |
Collapse
|
11
|
Fan YH, He ZY, Zheng WX, Hu LT, Wang BY. Exosomal miR-23b from bone marrow mesenchymal stem cells alleviates oxidative stress and pyroptosis after intracerebral hemorrhage. Neural Regen Res 2023; 18:560-567. [DOI: 10.4103/1673-5374.346551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Wu Y, Sun Y, Wang X, Zhu C. The Regulated Cell Death and Potential Interventions in Preterm Infants after Intracerebral Hemorrhage. Curr Neuropharmacol 2023; 21:1488-1503. [PMID: 36397619 PMCID: PMC10472811 DOI: 10.2174/1570159x21666221117155209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
Intracerebral hemorrhage (ICH) in preterm infants is one of the major co-morbidities of preterm birth and is associated with long-term neurodevelopmental deficits. There are currently no widely accepted treatments to prevent ICH or therapies for the neurological sequelae. With studies broadening the scope of cell death, the newly defined concept of regulated cell death has enriched our understanding of the underlying mechanisms of secondary brain injury after ICH and has suggested potential interventions in preterm infants. In this review, we will summarize the current evidence for regulated cell death pathways in preterm infants after ICH, including apoptosis, necroptosis, pyroptosis, ferroptosis, autophagy, and PANoptosis as well as several potential intervention strategies that may protect the immature brain from secondary injury after ICH through regulating regulated cell death.
Collapse
Affiliation(s)
- Yanan Wu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou 450052, China
| | - Yanyan Sun
- Department of Human Anatomy, School of Basic Medical Science, Zhengzhou University, Zhengzhou, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou 450052, China
- Centre for Perinatal Medicine and Health, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou 450052, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Li Z, Khan S, Liu Y, Wei R, Yong VW, Xue M. Therapeutic strategies for intracerebral hemorrhage. Front Neurol 2022; 13:1032343. [PMID: 36408517 PMCID: PMC9672341 DOI: 10.3389/fneur.2022.1032343] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 09/03/2023] Open
Abstract
Stroke is the second highest cause of death globally, with an increasing incidence in developing countries. Intracerebral hemorrhage (ICH) accounts for 10-15% of all strokes. ICH is associated with poor neurological outcomes and high mortality due to the combination of primary and secondary injury. Fortunately, experimental therapies are available that may improve functional outcomes in patients with ICH. These therapies targeting secondary brain injury have attracted substantial attention in their translational potential. Here, we summarize recent advances in therapeutic strategies and directions for ICH and discuss the barriers and issues that need to be overcome to improve ICH prognosis.
Collapse
Affiliation(s)
- Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Ruixue Wei
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - V. Wee Yong
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| |
Collapse
|
14
|
Xia S, Zheng Y, Yan F, Chen G. MicroRNAs modulate neuroinflammation after intracerebral hemorrhage: Prospects for new therapy. Front Immunol 2022; 13:945860. [PMID: 36389834 PMCID: PMC9665326 DOI: 10.3389/fimmu.2022.945860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/13/2022] [Indexed: 12/03/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is the most common subtype of hemorrhagic stroke. After ICH, blood components extravasate from vessels into the brain, activating immune cells and causing them to release a series of inflammatory mediators. Immune cells, together with inflammatory mediators, lead to neuroinflammation in the perihematomal region and the whole brain, and neuroinflammation is closely related to secondary brain injury as well as functional recovery of the brain. Despite recent progress in understanding the pathophysiology of ICH, there is still no effective treatment for this disease. MicroRNAs (miRNAs) are non-coding RNAs 17-25 nucleotides in length that are generated naturally in the human body. They bind complementarily to messenger RNAs and suppress translation, thus regulating gene expression at the post-transcriptional level. They have been found to regulate the pathophysiological process of ICH, particularly the neuroinflammatory cascade. Multiple preclinical studies have shown that manipulating the expression and activity of miRNAs can modulate immune cell activities, influence neuroinflammatory responses, and ultimately affect neurological functions after ICH. This implicates the potentially crucial roles of miRNAs in post-ICH neuroinflammation and indicates the possibility of applying miRNA-based therapeutics for this disease. Thus, this review aims to address the pathophysiological roles and molecular underpinnings of miRNAs in the regulation of neuroinflammation after ICH. With a more sophisticated understanding of ICH and miRNAs, it is possible to translate these findings into new pharmacological therapies for ICH.
Collapse
Affiliation(s)
- Siqi Xia
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yonghe Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Hao Y, Xu X, Wang Y, Jin F, Tang L, Zheng W, Zhang H, He Z. Comprehensive analysis of immune-related biomarkers and pathways in intracerebral hemorrhage using weighted gene co-expression network analysis and competing endogenous ribonucleic acid. Front Mol Neurosci 2022; 15:955818. [PMID: 36226317 PMCID: PMC9549172 DOI: 10.3389/fnmol.2022.955818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
The immune response is an important part of secondary brain injury following intracerebral hemorrhage (ICH), and is related to neurological deficits and prognosis. The mechanisms underlying the immune response and inflammation are of great significance for brain injury and potential functional restoration; however, the immune-related biomarkers and competing endogenous ribonucleic acid (RNA) (ceRNA) networks in the peripheral blood of ICH patients have not yet been constructed. We collected the peripheral blood from ICH patients and controls to assess their ceRNA profiles using LCHuman ceRNA microarray, and to verify their expression with qRT-PCR. Two-hundred-eleven DElncRNAs and one-hundred-one DEmRNAs were detected in the ceRNA microarray of ICH patients. The results of functional enrichment analysis showed that the immune response was an important part of the pathological process of ICH. Twelve lncRNAs, ten miRNAs, and seven mRNAs were present in our constructed immune-related ceRNA network, combining weighted gene co-expression network analysis (WGCNA). Our study was the first to establish the network of the immune-related ceRNAs derived from WGCNA, and to identify leukemia inhibitory factor (LIF) and B cell lymphoma 2-like 13 (BCL2L13) as pivotal immune-related biomarkers in the peripheral blood of ICH patients, which are likely associated with PI3K-Akt, the MAPK signaling pathway, and oxidative phosphorylation. The MOXD2P-miR-211-3p -LIF and LINC00299-miR-198-BCL2L13 axes were indicated to participate in the immune regulatory mechanism of ICH. The goal of our study was to offer innovative insights into the underlying immune regulatory mechanism and to identify possible immune intervention targets for ICH.
Collapse
Affiliation(s)
- Yuehan Hao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaoxue Xu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuye Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Feng Jin
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ling Tang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenxu Zheng
- Department of Geriatric, Dalian Friendship Hospital, Dalian, China
| | - Heyu Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
- *Correspondence: Heyu Zhang,
| | - Zhiyi He
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Zhiyi He,
| |
Collapse
|
16
|
Kan Y, Feng L, Si Y, Zhou Z, Wang W, Yang J. Pathogenesis and Therapeutic Targets of Focal Cortical Dysplasia Based on Bioinformatics Analysis. Neurochem Res 2022; 47:3506-3521. [PMID: 35945307 DOI: 10.1007/s11064-022-03715-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022]
Abstract
Focal cortical dysplasia (FCD), a malformation of cortical development, is the most common cause of intractable epilepsy in children. However, the causes and underlying molecular events of FCD need further investigation. The microarray dataset GSE62019 and GSE97365 were obtained from Gene Expression Omnibus. To examine critical genes and signaling pathways, bioinformatics analysis tools such as protein-protein interaction (PPI) networks, miRNA-mRNA interaction networks, and immune infiltration in FCD samples were used to fully elucidate the pathogenesis of FCD. A total of 534 differentially expressed genes (DEGs) and 71 differentially expressed miRNAs (DEMs) were obtained. The DEGs obtained were enriched in ribosomal, protein targeting, and pathways of neurodegeneration multiple diseases, whereas the target genes of DEMs were enriched in signaling pathways such as transforming growth factor beta, Wnt, PI3K-Akt, etc. Finally, four hub genes (RPL11, FAU, RPS20, RPL27) and five key miRNAs (hsa-let-7b, hsa-miR-185, hsa-miR-23b, hsa-miR-222 and hsa-miR-92b) were obtained by PPI network, miRNA-mRNA network, and ROC analysis. The immune infiltration results showed that the infiltration levels of five immune cells (MDSC, regulatory T cells, activated CD8+ T cells, macrophage and effector memory CD8+ T cells) were slightly higher in FCD samples than in control samples. Moreover, the gene expressions of RPS19, RPL19, and RPS24 were highly correlated with the infiltration levels and immune characteristics of 28 immune cells. It broadens the understanding of the molecular mechanisms underlying the development of FCD and enlightens the identification of molecular targets and diagnostic biomarkers for FCD.
Collapse
Affiliation(s)
- Ying Kan
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Lijuan Feng
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yukun Si
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Ziang Zhou
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Wei Wang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
17
|
Zhao X, Qiao D, Guan D, Wang K, Cui Y. Chrysophanol Ameliorates Hemin-Induced Oxidative Stress and Endoplasmic Reticulum Stress by Regulating MicroRNA-320-5p/Wnt3a Pathway in HT22 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9399658. [PMID: 35936221 PMCID: PMC9355772 DOI: 10.1155/2022/9399658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Oxidative stress, endoplasmic reticulum (ER) stress, and neuronal cell apoptosis have been considered as the main pathogenesis factors of brain injury after intracerebral hemorrhage (ICH). Chrysophanol (CHR) has been proved to have neuroprotective effects, but the role and underlying mechanisms of CHR in ICH remain unclear. HT22 cells were dealt with hemin to mimic an in vitro ICH model and then subjected to treatment with or without CHR. The cell viability, apoptosis, ER stress, and oxidative stress were evaluated by conducting the cell counting kit-8 (CCK-8), TdT-mediated dUTP nick end labeling (TUNEL) staining assays, western blot, and corresponding kit, respectively. Further, microRNA-sequencing, bioinformatic analysis, dual-luciferase reporter method, and rescue experiments were conducted to explore the molecular mechanisms of CHR alleviating hemin-induced ER in HT22 cell. Our data revealed that CHR increased cells viability, antiapoptosis, anti-ER stress, and antioxidative stress under conditions of hemin-induced HT22 cell injury. Mechanically, it was observed that Wnt3a was competitively sponged by miR-320-5p, and CHR activated β-catenin pathway by regulating miR-320-5p/Wnt3a molecular axis. Finally, results from the rescue experiment suggested that CHR inhibited hemin-induced cells apoptosis, ER stress, and oxidative stress through regulating the miR-320-5p/Wnt3a axis in HT22 cells. In conclusion, CHR prevented hemin-induced apoptosis, ER stress, and oxidative stress via inhibiting the miR-320-5p/Wnt3a/β-catenin pathway in HT22 cells. Our results certified that CHR could be served as a promising treatment for brain damage following ICH.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Pharmacy, Henan Province Hospital of TCM (The Second Clinical Medical College, Henan University of Traditional Chinese Medicine), Zhengzhou 450002, China
| | - Dongge Qiao
- Nursing Department, Henan Province Hospital of TCM (The Second Clinical Medical College, Henan University of Traditional Chinese Medicine), Zhengzhou 450002, China
| | - Dongsheng Guan
- Department of Encephalopathy, Henan Province Hospital of TCM (The Second Clinical Medical College, Henan University of Traditional Chinese Medicine), Zhengzhou 450002, China
| | - Kun Wang
- Department of Pharmacy, Henan Province Hospital of TCM (The Second Clinical Medical College, Henan University of Traditional Chinese Medicine), Zhengzhou 450002, China
| | - Yinglin Cui
- Department of Encephalopathy, Henan Province Hospital of TCM (The Second Clinical Medical College, Henan University of Traditional Chinese Medicine), Zhengzhou 450002, China
| |
Collapse
|
18
|
Zeng C, Hu J, Chen F, Huang T, Zhang L. The Coordination of mTOR Signaling and Non-Coding RNA in Regulating Epileptic Neuroinflammation. Front Immunol 2022; 13:924642. [PMID: 35898503 PMCID: PMC9310657 DOI: 10.3389/fimmu.2022.924642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy accounts for a significant proportion of the burden of neurological disorders. Neuroinflammation acting as the inflammatory response to epileptic seizures is characterized by aberrant regulation of inflammatory cells and molecules, and has been regarded as a key process in epilepsy where mTOR signaling serves as a pivotal modulator. Meanwhile, accumulating evidence has revealed that non-coding RNAs (ncRNAs) interfering with mTOR signaling are involved in neuroinflammation and therefore articipate in the development and progression of epilepsy. In this review, we highlight recent advances in the regulation of mTOR on neuroinflammatory cells and mediators, and feature the progresses of the interaction between ncRNAs and mTOR in epileptic neuroinflammation.
Collapse
Affiliation(s)
- Chudai Zeng
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jason Hu
- Department of Neonatology, Yale School of Medicine, New Haven, CT, United States
| | - Fenghua Chen
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Fenghua Chen, ; Tianxiang Huang, ; Longbo Zhang,
| | - Tianxiang Huang
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Fenghua Chen, ; Tianxiang Huang, ; Longbo Zhang,
| | - Longbo Zhang
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, United States
- *Correspondence: Fenghua Chen, ; Tianxiang Huang, ; Longbo Zhang,
| |
Collapse
|
19
|
Tsamou M, Carpi D, Pistollato F, Roggen EL. Sporadic Alzheimer's Disease- and Neurotoxicity-Related microRNAs Affecting Key Events of Tau-Driven Adverse Outcome Pathway Toward Memory Loss. J Alzheimers Dis 2022; 86:1427-1457. [PMID: 35213375 DOI: 10.3233/jad-215434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND A complex network of aging-related homeostatic pathways that are sensitive to further deterioration in the presence of genetic, systemic, and environmental risk factors, and lifestyle, is implicated in the pathogenesis of progressive neurodegenerative diseases, such as sporadic (late-onset) Alzheimer's disease (sAD). OBJECTIVE Since sAD pathology and neurotoxicity share microRNAs (miRs) regulating common as well as overlapping pathological processes, environmental neurotoxic compounds are hypothesized to exert a risk for sAD initiation and progression. METHODS Literature search for miRs associated with human sAD and environmental neurotoxic compounds was conducted. Functional miR analysis using PathDip was performed to create miR-target interaction networks. RESULTS The identified miRs were successfully linked to the hypothetical starting point and key events of the earlier proposed tau-driven adverse outcome pathway toward memory loss. Functional miR analysis confirmed most of the findings retrieved from literature and revealed some interesting findings. The analysis identified 40 miRs involved in both sAD and neurotoxicity that dysregulated processes governing the plausible adverse outcome pathway for memory loss. CONCLUSION Creating miR-target interaction networks related to pathological processes involved in sAD initiation and progression, and environmental chemical-induced neurotoxicity, respectively, provided overlapping miR-target interaction networks. This overlap offered an opportunity to create an alternative picture of the mechanisms underlying sAD initiation and early progression. Looking at initiation and progression of sAD from this new angle may open for new biomarkers and novel drug targets for sAD before the appearance of the first clinical symptoms.
Collapse
Affiliation(s)
- Maria Tsamou
- ToxGenSolutions (TGS), Maastricht, The Netherlands
| | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), Ispra VA, Italy
| | | | | |
Collapse
|
20
|
Cai M, Chai S, Xiong T, Wei J, Mao W, Zhu Y, Li X, Wei W, Dai X, Yang B, Liu W, Shu B, Wang M, Lu T, Cai Y, Zheng Z, Mei Z, Zhou Y, Yang J, Zhao J, Shen L, Ho JWK, Chen J, Xiong N. Aberrant Expression of Circulating MicroRNA Leads to the Dysregulation of Alpha-Synuclein and Other Pathogenic Genes in Parkinson's Disease. Front Cell Dev Biol 2021; 9:695007. [PMID: 34497805 PMCID: PMC8419519 DOI: 10.3389/fcell.2021.695007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
A group of circulating microRNAs (miRNAs) have been implicated in the pathogenesis of Parkinson’s disease. However, a comprehensive study of the interactions between pathogenic miRNAs and their downstream Parkinson’s disease (PD)-related target genes has not been performed. Here, we identified the miRNA expression profiles in the plasma and circulating exosomes of Parkinson’s disease patients using next-generation RNA sequencing. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses showed that the miRNA target genes were enriched in axon guidance, neurotrophin signaling, cellular senescence, and the Transforming growth factor-β (TGF-β), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) and mechanistic target of rapamycin (mTOR) signaling pathways. Furthermore, a group of aberrantly expressed miRNAs were selected and further validated in individual patient plasma, human neural stem cells (NSCs) and a rat model of PD. More importantly, the full scope of the regulatory network between these miRNAs and their PD-related gene targets in human neural stem cells was examined, and the findings revealed a similar but still varied downstream regulatory cascade involving many known PD-associated genes. Additionally, miR-23b-3p was identified as a novel direct regulator of alpha-synuclein, which is possibly the key component in PD. Our current study, for the first time, provides a glimpse into the regulatory network of pathogenic miRNAs and their PD-related gene targets in PD. Moreover, these PD-associated miRNAs may serve as biomarkers and novel therapeutic targets for PD.
Collapse
Affiliation(s)
- Meng Cai
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,iRegene Therapeutics, Wuhan, China
| | - Songshan Chai
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tao Xiong
- Department of Neurology, Fifth Hospital in Wuhan, Wuhan, China
| | - Jun Wei
- iRegene Therapeutics, Wuhan, China
| | | | | | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuan Dai
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bangkun Yang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wen Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bing Shu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengyang Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Taojunjin Lu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuankun Cai
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhixin Zheng
- The Second Clinical College of Wuhan University, Wuhan, China
| | - Zhimin Mei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yixuan Zhou
- The Second Clinical College of Wuhan University, Wuhan, China
| | - Jingyi Yang
- The Second Clinical College of Wuhan University, Wuhan, China
| | - Jingwei Zhao
- The Second Clinical College of Wuhan University, Wuhan, China
| | - Lei Shen
- The Second Clinical College of Wuhan University, Wuhan, China
| | - Joshua Wing Kei Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Nanxiang Xiong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Kashif H, Shah D, Sukumari-Ramesh S. Dysregulation of microRNA and Intracerebral Hemorrhage: Roles in Neuroinflammation. Int J Mol Sci 2021; 22:8115. [PMID: 34360881 PMCID: PMC8347974 DOI: 10.3390/ijms22158115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/23/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a major public health problem and devastating subtype of stroke with high morbidity and mortality. Notably, there is no effective treatment for ICH. Neuroinflammation, a pathological hallmark of ICH, contributes to both brain injury and repair and hence, it is regarded as a potential target for therapeutic intervention. Recent studies document that microRNAs, small non-coding RNA molecules, can regulate inflammatory brain response after ICH and are viable molecular targets to alter brain function. Therefore, there is an escalating interest in studying the role of microRNAs in the pathophysiology of ICH. Herein, we provide, for the first time, an overview of the microRNAs that play roles in ICH-induced neuroinflammation and identify the critical knowledge gap in the field, as it would help design future studies.
Collapse
Affiliation(s)
| | | | - Sangeetha Sukumari-Ramesh
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.K.); (D.S.)
| |
Collapse
|
22
|
Sha S, Tan J, Miao Y, Zhang Q. The Role of Autophagy in Hypoxia-Induced Neuroinflammation. DNA Cell Biol 2021; 40:733-739. [PMID: 33989049 DOI: 10.1089/dna.2020.6186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Autophagy is a critical cytoprotective mechanism that takes a hand in innate or adaptive immune responses. Hypoxia is a common pathophysiological mechanism that can lead to systemic pathological reactions. In recent years, the impact of hypoxia on the central nervous system has attracted more attention. In the past, autophagy was thought to be directly involved in the apoptosis of nerve cells under hypoxia. An increasing amount of evidence shows that the neuroinflammatory response plays an indispensable role in the neural damage caused by hypoxia. There are many mechanisms related to the neuroinflammatory response induced by hypoxia, among which autophagy is an important aspect, but the role of autophagy is still unclear. This article focuses on how autophagy flux of central immune cells is modified under hypoxic conditions, and how this autophagy affects neuroinflammatory response.
Collapse
Affiliation(s)
- Sha Sha
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Jin Tan
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | | | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| |
Collapse
|
23
|
Walsh KB, Zimmerman KD, Zhang X, Demel SL, Luo Y, Langefeld CD, Wohleb E, Schulert G, Woo D, Adeoye O. miR-181a Mediates Inflammatory Gene Expression After Intracerebral Hemorrhage: An Integrated Analysis of miRNA-seq and mRNA-seq in a Swine ICH Model. J Mol Neurosci 2021; 71:1802-1814. [PMID: 33755911 DOI: 10.1007/s12031-021-01815-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/15/2021] [Indexed: 12/22/2022]
Abstract
Intracerebral hemorrhage (ICH) is a severe neurological disorder with no proven treatment. Inflammation after ICH contributes to clinical outcomes, but the relevant molecular mechanisms remain poorly understood. In studies of peripheral leukocyte counts and mRNA-sequencing (mRNA-seq), our group previously reported that monocytes and Interleukin-8 (IL-8) were important contributors to post-ICH inflammation. microRNA (miRNA) are powerful regulators of gene expression and promising therapeutic targets. We now report findings from an integrated analysis of miRNA-seq and mRNA-seq in peripheral blood mononuclear cells (PBMCs) from a swine ICH model. In 10 pigs, one PBMC sample was collected immediately prior to ICH induction and a second 6 h later; miRNA-seq and mRNA-seq were completed for each sample. An aggregate score calculation determined which miRNA regulated the differentially expressed mRNA. Networks of molecular interactions were generated for the combined miRNA/target mRNA. A total of 227 miRNA were identified, and 46 were differentially expressed after ICH (FDR < 0.05). The anti-inflammatory miR-181a was decreased post-ICH, and it was the most highly connected miRNA in the miRNA/mRNA bioinformatic network analysis. miR-181a has interconnected pathophysiology with IL-8 and monocytes; in prior studies, we found that IL-8 and monocytes contributed to post-ICH inflammation and ICH clinical outcome, respectively. miR-181a was a significant mediator of post-ICH inflammation and is promising for further study, including as a potential therapeutic target. This investigation also demonstrated feasible methodology for miRNA-seq/mRNA-seq analysis in swine that is innovative, and with unique challenges, compared with transcriptomics research in more established species.
Collapse
Affiliation(s)
- Kyle B Walsh
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA.
- Department of Emergency Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - Kip D Zimmerman
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Xiang Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Stacie L Demel
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Yu Luo
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Eric Wohleb
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- University of Cincinnati Neurobiology Research Center, Cincinnati, OH, USA
| | - Grant Schulert
- Division of Pediatric Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel Woo
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Opeolu Adeoye
- Department of Emergency Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
24
|
Shi H, Su Z, Su H, Chen H, Zhang Y, Cheng Y. Mild hypothermia improves brain injury in rats with intracerebral hemorrhage by inhibiting IRAK2/NF-κB signaling pathway. Brain Behav 2021; 11:e01947. [PMID: 33319491 PMCID: PMC7821569 DOI: 10.1002/brb3.1947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE To explore the effect of mild hypothermia on nerve injury by establishing a rat model of intracerebral hemorrhage (ICH), and to clarify the specific molecular mechanism of mild hypothermia in improving brain injury in ICH rats. METHODS The rat model of ICH was established by collagenase injection. The neurological deficit score (NDS), brain tissue water detection, and Nissl staining were applied to detect the degree of brain injury. ELISA was used to analyze the expression of proinflammatory cytokines and serum nerve injury indexes. Flow cytometry and Western Blot were used to detect neuronal apoptosis. RESULTS Mild hypothermia treatment significantly improved the brain injury of the ICH rats and down-regulated the inflammatory response and oxidative stress in the brain tissue. Moreover, mild hypothermia also effectively inhibited IRAK2/NF-κB signaling pathway and thus affect neuronal apoptosis. CONCLUSION Mild hypothermia alleviates inflammatory response and neuronal apoptosis by inhibiting IRAK2/NF-κB signaling pathway in the ICH rats thus improving brain injury.
Collapse
Affiliation(s)
- Hui Shi
- Department of Neurosurgery, YongChuan Hospital, Chongqing Medical University, Chongqing, China
| | - Zulu Su
- Department of Neurosurgery, YongChuan Hospital, Chongqing Medical University, Chongqing, China
| | - Hai Su
- Department of Neurosurgery, YongChuan Hospital, Chongqing Medical University, Chongqing, China
| | - Hao Chen
- Department of Neurosurgery, YongChuan Hospital, Chongqing Medical University, Chongqing, China
| | - Yi Zhang
- Department of Neurosurgery, YongChuan Hospital, Chongqing Medical University, Chongqing, China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Withers SE, Parry-Jones AR, Allan SM, Kasher PR. A Multi-Model Pipeline for Translational Intracerebral Haemorrhage Research. Transl Stroke Res 2020; 11:1229-1242. [PMID: 32632777 PMCID: PMC7575484 DOI: 10.1007/s12975-020-00830-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
Apart from acute and chronic blood pressure lowering, we have no specific medications to prevent intracerebral haemorrhage (ICH) or improve outcomes once bleeding has occurred. One reason for this may be related to particular limitations associated with the current pre-clinical models of ICH, leading to a failure to translate into the clinic. It would seem that a breakdown in the 'drug development pipeline' currently exists for translational ICH research which needs to be urgently addressed. Here, we review the most commonly used pre-clinical models of ICH and discuss their advantages and disadvantages in the context of translational studies. We propose that to increase our chances of successfully identifying new therapeutics for ICH, a bi-directional, 2- or 3-pronged approach using more than one model species/system could be useful for confirming key pre-clinical observations. Furthermore, we highlight that post-mortem/ex-vivo ICH patient material is a precious and underused resource which could play an essential role in the verification of experimental results prior to consideration for further clinical investigation. Embracing multidisciplinary collaboration between pre-clinical and clinical ICH research groups will be essential to ensure the success of this type of approach in the future.
Collapse
Affiliation(s)
- Sarah E Withers
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Adrian R Parry-Jones
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Stott Lane, Salford, M6 8HD, UK
| | - Stuart M Allan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Paul R Kasher
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
26
|
Zhou W, Huang G, Ye J, Jiang J, Xu Q. Protective Effect of miR-340-5p against Brain Injury after Intracerebral Hemorrhage by Targeting PDCD4. Cerebrovasc Dis 2020; 49:593-600. [PMID: 33176298 DOI: 10.1159/000508210] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/25/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Intracerebral hemorrhage (ICH) is a common cerebrovascular disease. Increasing evidence has documented the crucial role of microRNAs in ICH. The present study aimed to investigate the role and underlying mechanism of miR-340-5p in ICH. METHODS The collagenase-induced ICH rat model was established. The neurological function of rats and the cerebral water content of rat brain tissue were measured to assess the brain injury. BV-2 cells were recruited and treated by LPS to mimic ICH-induced inflammatory response. qRT-PCR was used for the measurement of miR-340-5p. The protein levels of TNF-α, IL-6, and IL-1β were detected using ELISA. Luciferase reporter gene assay was performed to confirm the target gene. RESULTS Downregulation of miR-340-5p was detected in the serum of ICH patients and the brain tissues of ICH rats. Overexpression of miR-340-5p reversed the influence of ICH on the neurological function score and cerebral water content and inhibited the production of proinflammatory cytokines (TNF-α, IL-6, and IL-1β), which were induced by ICH in vivo. In in vitro study, levels of TNF-α, IL-6, and IL-1β were significantly enhanced in cells after LPS treatment, but these increases were eliminated by overexpression of miR-340-5p. PDCD4 was a direct target gene of miR-340-5p. CONCLUSION miR-340-5p protects against brain injury after ICH. miR-340-5p might exert an anti-inflammatory effect during the occurrence of ICH via targeting PDCD4.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, Shanghai, China
| | - Guandong Huang
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, Shanghai, China
| | - Jueming Ye
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, Shanghai, China
| | - Jiamei Jiang
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, Shanghai, China,
| | - Qing Xu
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, Shanghai, China
| |
Collapse
|
27
|
Zhang H, Lu X, Hao Y, Tang L, He Z. MicroRNA-26a-5p alleviates neuronal apoptosis and brain injury in intracerebral hemorrhage by targeting RAN binding protein 9. Acta Histochem 2020; 122:151571. [PMID: 32622424 DOI: 10.1016/j.acthis.2020.151571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/15/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023]
Abstract
Emerging evidence has unraveled the important implications of microRNAs (miRNAs/miRs) in intracerebral hemorrhage (ICH). The aim of the present study was to assess the possible regulatory role of miR-26a-5p in ICH both in vivo and in vitro. ICH model of rats was constructed using stereotactic injection of VII collagenase, and ICH condition of PC-12 cells was stimulated by hemin. Exogenous overexpression of miR-26a-5p was achieved utilizing the transfection with miR-26a-5p agomir or miR-26a-5p mimics. We detected decreased miR-26a-5p and increased RAN binding protein 9 (RANBP9) levels in perihematomal tissues of ICH rats and in PC-12 cells following ICH. While miR-26a-5p overexpression alleviated behavioral deficits and neuronal apoptosis of rats with ICH. Apoptosis-related proteins Bax, Bcl-2 and cleaved caspase-3 in perihematomal region were also measured to further confirm the inhibitory effect of miR-26a-5p on neuronal apoptosis. In ICH models in vitro, we found that miR-26a-5p overexpression significantly decreased hemin-stimulated apoptosis of PC-12 cells. Additionally, RANBP9 knockdown could suppress the apoptosis of PC-12 cells, similar to the effects of PC-12 cells transfected with miR-26a-5p mimics. With dual-luciferase reporter assay, we identified that miR-26a-5p directly targeted RANBP9. In conclusion, exogenous miR-26a-5p alleviated neuronal apoptosis and brain injury partially by targeting RANBP9, and miR-26a-5p/RANBP9 axis may be a potential target for ICH treatment.
Collapse
|
28
|
Lee SY, Lu RB, Wang LJ, Chang CH, Lu T, Wang TY, Tsai KW. Serum miRNA as a possible biomarker in the diagnosis of bipolar II disorder. Sci Rep 2020; 10:1131. [PMID: 31980721 PMCID: PMC6981268 DOI: 10.1038/s41598-020-58195-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
The diagnosis of Bipolar II disorder (BD-II) is currently based on the patients' description of symptoms and clinical behavioral observations. This study explored the possibility of miRNA in peripheral blood (serum) as a specific biomarker for BD-II. We identified 6 candidate miRNAs to differentiate BD-II patients from controls using next-generation sequencing. We then examined these candidate miRNAs using real-time PCR in the first cohort (as training group) of 79 BD-II and 95 controls. A diagnostic model was built based on these candidate miRNAs and then tested on an individual testing group (BD-II: n = 20, controls: n = 20). We found that serum expression levels of miR-7-5p, miR-23b-3p, miR-142-3p, miR-221-5p, and miR-370-3p significantly increased in BD-II compared with controls in the first cohort, whereas that of miR-145-5p showed no significant difference. The diagnostic power of the identified miRNAs was further analyzed using receiver-operating characteristic (ROC). Support vector machine (SVM) measurements revealed that a combination of the significant miRNAs reached good diagnostic accuracy (AUC: 0.907). We further examined an independent testing group and the diagnostic power reached fair for BD-II (specificity = 90%, sensitivity = 85%). We constructed miRNA panels using SVM model, which may aid in the diagnosis for BD-II.
Collapse
Affiliation(s)
- Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Psychiatry, Faculty of Medicine, Kaohsiung Medical University Kaohsiung, Kaohsiung, Taiwan.,Department of Psychiatry, College of Medicine and Hospital, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ru-Band Lu
- Department of Psychiatry, College of Medicine and Hospital, National Cheng Kung University, Tainan, Taiwan.,Yanjiao Furen Hospital, Hebei, China
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Ho Chang
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ti Lu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Tzu-Yun Wang
- Department of Psychiatry, College of Medicine and Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Kuo-Wang Tsai
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan. .,Department of Research, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan.
| |
Collapse
|
29
|
Hu L, Zhang H, Wang B, Ao Q, He Z. MicroRNA-152 attenuates neuroinflammation in intracerebral hemorrhage by inhibiting thioredoxin interacting protein (TXNIP)-mediated NLRP3 inflammasome activation. Int Immunopharmacol 2020; 80:106141. [PMID: 31982825 DOI: 10.1016/j.intimp.2019.106141] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/30/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022]
Abstract
Neuroinflammation significantly contributes to brain injury and neurological deterioration following intracerebral hemorrhage (ICH). MicroRNA-152(miR-152) was reported to be downregulated in ICH patients and to possess anti-inflammatory properties in other diseases. In this study, we aimed to explore the role of miR-152 in ICH, and the underlying mechanisms, using a collagenase-induced rat ICH model and hemin-exposure as a cell model. We first confirmed that miR-152 was consistently downregulated in both models. Overexpression of miR-152 in microglial BV2 cells reduced hemin-induced inflammatory response and reactive oxygen species (ROS) generation, thus protecting co-cultured neuronal HT22 cells. Moreover, overexpression of miR-152 by intracerebroventricular lentivirus injection in ICH rats significantly alleviated neurodecifits, brain edema, and hematoma. These changes were associated with a marked reduction in ICH-induced neuronal death, as detected by co-staining of NeuN and TUNEL, and ICH-induced neuroinflammation, as revealed by inflammatory cytokine levels as well as by the number of Iba1 positive-stained cells in the perihematomal region. Mechanistically, miR-152 significantly inhibited ICH-induced TXNIP expression, and its overexpression blocked the interaction between TXNIP and NOD-like receptor pyrin domain containing 3(NLRP3), thus inhibiting NLRP3-driven inflammasome activation to attenuate neuroinflammation in vivo and in vitro. Moreover, the results of si-TXNIP transfection further confirmed that TXNIP inhibition was involved in the reduction of NLRP3 inflammasome activation by the overexpression of miR-152. Collectively, the present study demonstrates that miR-152 confers protection against ICH-induced neuroinflammation and brain injury by inhibiting TXNIP-mediated NLRP3 inflammasome activation, indicating a potential strategy for ICH treatment.
Collapse
Affiliation(s)
- Liuting Hu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110000, People's Republic of China
| | - Heyu Zhang
- Department of Neurology, The First Affiliated Hospital Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Bingyang Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110000, People's Republic of China
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang 110122, People's Republic of China
| | - Zhiyi He
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110000, People's Republic of China.
| |
Collapse
|
30
|
Wang L, Tian M, Hao Y. Role of p75 neurotrophin receptor in neuronal autophagy in intracerebral hemorrhage in rats through the mTOR signaling pathway. Cell Cycle 2020; 19:376-389. [PMID: 31924125 DOI: 10.1080/15384101.2019.1711318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Rupture of weakened blood vessels could lead to severe intracerebral hemorrhage (ICH) and brain injuries. This study was designed to explore the roles of p75 neurotrophin receptor (p75NTR) in neuronal autophagy in ICH rats. An ICH rat model was established, and then gain and loss of functions of p75NTR in rat tissues were performed. Then, the pathologic morphology, water content, and inflammation in brain tissues were assessed. Western blot analysis was applied to detect the levels of inflammatory proteins, apoptosis- and autophagy-related proteins, and the mammalian target of rapamycin (mTOR) pathway-related proteins. Neuronal autophagy was further measured with mTOR activated. In vitro experiments were also performed on brain microvascular endothelial cells (BMECs) and astrocytes. Consequently, we found p75NTR knockdown improved the pathologic morphology with reduced neuron damage, water content, permeability of blood-brain barrier and inflammation in ICH rat brain tissues. Besides, Knockdown of p75NTR decreased neuronal apoptosis and inactivated mTOR signaling pathway, but it elevated the levels of autophagy-related proteins. In vivo results were reproduced in in vitro experiments. This study demonstrated that knockdown of p75NTR could promote neuronal autophagy and reduce neuronal apoptosis via inactivating the mTOR pathway. We hope these findings could provide new therapeutic options for ICH treatment.
Collapse
Affiliation(s)
- Lei Wang
- Department of emergency medicine, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, P.R. China
| | - Meilei Tian
- Department of emergency medicine, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, P.R. China
| | - Yugui Hao
- Department of emergency medicine, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, P.R. China
| |
Collapse
|