1
|
Lu JM, Jin GN, Xin Y, Ma JW, Shen XY, Quan YZ, Liu YM, Zhou JY, Wang BZ, Li YB, Xu X, Piao LX. Lactoferrin-modified nanoemulsions enhance brain-targeting and therapeutic efficacy of arctigenin against Toxoplasma gondii-induced neuronal injury. Int J Parasitol Drugs Drug Resist 2025; 27:100575. [PMID: 39729771 PMCID: PMC11733198 DOI: 10.1016/j.ijpddr.2024.100575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
Toxoplasma gondii, a neurotropic protozoan parasite, affects the central nervous system and causes various neurological disorders. Previous studies have demonstrated that Arctigenin (AG) exhibits anti-T. gondii activity and reduces depression-like behaviors induced by T. gondii infection. This study aimed to enhance AG's brain-targeting and therapeutic efficacy by developing lactoferrin-modified nanoemulsions loaded with AG (Lf-AG-NEs). Lf-modified nanoemulsions were prepared and assessed using in vivo and in vitro infection models with the T. gondii RH strain, and a co-culture system of BV2 microglia and primary neuron cells. The effects of Lf-AG-NEs on T. gondii-induced neuronal injury were examined, and potential molecular mechanisms were elucidated through real-time quantitative PCR, western blotting, immunofluorescence, flow cytometry, immunohistochemistry, and Nissl staining. In vitro assessments showed significant increases in cellular uptake and blood-brain barrier penetration by Lf-AG-NEs. These nanoemulsions notably inhibited T. gondii proliferation in brain tissue and BV2 cells, surpassing the effects of free AG or AG-NEs alone. Additionally, Lf-AG-NEs substantially alleviated neuropathological changes and reduced microglial activation and neuroinflammation by downregulating the TLR4/NF-κB and TNFR1/NF-κB signaling pathways. Co-culturing BV2 cells with primary cortical neurons indicated that Lf-AG-NEs, similarly to CLI-095 and R7050, attenuated T. gondii-induced microglial activation and subsequent neuronal injury. In conclusion, the successfully prepared Lf-AG-NEs not only enhanced the anti-T. gondii effect but also strengthened the protective impact against neuronal injury induced by T. gondii, through the modulation of microglial signaling pathways.
Collapse
Affiliation(s)
- Jing-Mei Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Guang-Nan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yan Xin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jing-Wen Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Xin-Yu Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yan-Zhu Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yi-Ming Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jin-Yi Zhou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Bing-Zhe Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Ying-Biao Li
- Department of Neurology, Yanbian University Hospital, Yanbian University, Yanji, 133000, Jilin Province, China.
| | - Xiang Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Lian-Xun Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
2
|
Xing A, Wang F, Liu J, Zhang Y, He J, Zhao B, Sun B. The prospect and underlying mechanisms of Chinese medicine in treating periodontitis. Chin J Nat Med 2025; 23:269-285. [PMID: 40122658 DOI: 10.1016/s1875-5364(25)60842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/18/2024] [Accepted: 07/13/2024] [Indexed: 03/25/2025]
Abstract
Inflammation represents a critical immune response triggered by cellular activities and inflammatory mediators following tissue damage. It plays a central role in the pathological progression of diverse diseases, including psychiatric disorders, cancer, and immunological conditions, rendering it an essential target for therapeutic intervention. Periodontitis, a prevalent oral inflammatory disease, is a leading cause of tooth loss and poses significant health challenges globally. Traditionally, inflammatory diseases such as periodontitis have been treated with systemic administration of synthetic chemicals. However, recent years have witnessed challenges, including drug resistance and microbial dysbiosis associated with these treatments. In contrast, natural products derived from Chinese medicine offer numerous benefits, such as high safety profiles, minimal side effects, innovative pharmacological mechanisms, ease of extraction, and multiple targets, rendering them viable alternatives to conventional antibiotics for treating inflammatory conditions. Numerous effective anti-inflammatory natural products have been identified in traditional Chinese medicine (TCM), including alkaloids, flavonoids, terpenoids, lignans, and other natural products that exhibit inhibitory effects on inflammation and are potential therapeutic agents. Several studies have confirmed the substantial anti-inflammatory and immunomodulatory properties of these compounds. This comprehensive review examines the literature on the anti-inflammatory effects of TCM-derived natural products from databases such as PubMed, Web of Science, and CNKI, focusing on terms like "inflammation", "periodontitis", "pharmacology", and "traditional Chinese medicine". The analysis systematically summarizes the molecular pharmacology, chemical composition, and biological activities of these compounds in inflammatory responses, alongside their mechanisms of action. This research seeks to deepen understanding of the mechanisms and biological activities of herbal extracts in managing inflammatory diseases, potentially leading to the development of promising new anti-inflammatory drug candidates. Future applications could extend to the treatment of various inflammatory conditions, including periodontitis.
Collapse
Affiliation(s)
- Aili Xing
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Feng Wang
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Jinzhong Liu
- Preventive Dentistry, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Yuan Zhang
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Jingya He
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Bin Zhao
- Periodontics, Hospital of Stomatologyl, Jilin University, Changchun 130021, China.
| | - Bin Sun
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China.
| |
Collapse
|
3
|
Yuan Y, Zhang J, Li H, Yuan F, Cui Q, Wu D, Yuan H, Piao G. Scopoletin alleviates acetaminophen-induced hepatotoxicity through modulation of NLRP3 inflammasome activation and Nrf2/HMGB1/TLR4/NF-κB signaling pathway. Int Immunopharmacol 2025; 148:114132. [PMID: 39870009 DOI: 10.1016/j.intimp.2025.114132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 01/29/2025]
Abstract
Scopoleitin (SP), a bioactive compound from many edible plants and fruits, exerts a wide range of biological activities, however the role and mechanism of SP in acetaminophen (APAP)-induced hepatotoxicity remains unclear. In this study, we verified the protective effect of SP on APAP-induced liver injury (AILI) hepatotoxicity and explore the underlying molecular mechanisms. Here, we showed that SP alleviated AILI by reducing serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels, hepatic histopathological damage, inflammation, and liver cell apoptosis. In addition, SP attenuated the accumulation of malondialdehyde (MDA) and exhaustion of glutathione (GSH) levels and increased the superoxide dismutase (SOD) levels induced by APAP. Consistently, SP significantly reduced the gene transcription of cytochrome P450 (CYP)2E1, CYP1A2, and CYP3A11 in the livers of mice induced by APAP. Moreover, SP pretreatment effectively promoted the expression of Nrf2, Keap1, and its signal downstream HO-1, NQO1, GCLc, and GCLm, suggesting the activation of the Nrf2 signaling pathway. SP inhibited APAP-induced hepatocyte apoptosis by regulating the protein levels of apoptosis-related proteins (cytochrome C, Bax, Caspase-3, Bcl2, and PARP). SP suppressed APAP-induced expression of NLRP3 and reduced the levels of proinflammatory factors, including tumor necrosis factor-alpha (TNF-α), F4/80, Caspase-1, and interleukin (IL)-1 beta (IL-1β). Moreover, SP downregulated APAP-induced high-mobility group box 1 (HMGB1) and toll-like receptor 4 (TLR4) expression, inhibited nuclear factor kappa-B (NF-κB) and MAPK activation. Taken together, our study reveals the protective roles of SP against AILI through the downregulation of NLRP3 expression, and the inhibition of the Nrf2/HMGB1/TLR4/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Yilin Yuan
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China
| | - Jianxiu Zhang
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China
| | - Hui Li
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China
| | - Fengxia Yuan
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China
| | - Qinglong Cui
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China
| | - Di Wu
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China
| | - Haidan Yuan
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China.
| | - Guangchun Piao
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China.
| |
Collapse
|
4
|
Zhou JY, Lu YN, Shen XY, Quan YZ, Lu JM, Jin GN, Liu YM, Zhang SH, Xu GH, Xu X, Piao LX. Coixol mitigates Toxoplasma gondii infection-induced liver injury by inhibiting the Toxoplasma gondii HSP70/TLR4/NF-κB signaling pathway in hepatic macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118694. [PMID: 39147001 DOI: 10.1016/j.jep.2024.118694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/12/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coix seed, the dry mature seed kernel of the gramineous plant coix (Coix lacryma-jobi L. var. ma-yuen Stapf), is widely consumed as a traditional Chinese medicine and functional food in China and South Korea. We have previously demonstrated the protective effect of coixol, a polyphenolic compound extracted from coix, against Toxoplasma gondii (T. gondii) infection-induced lung injury. However, the protective effect of coixol on hepatic injury induced by T. gondii infection have not yet been elucidated. AIM OF THE STUDY This study explores the impact of coixol on T. gondii infection-induced liver injury and elucidates the underlying molecular mechanisms. MATERIALS AND METHODS Female BALB/c mice and Kupffer cells (KCs) were employed to establish an acute T. gondii infection model in vivo and an inflammation model in vitro. The study examined coixol's influence on the T. gondii-derived heat shock protein 70 (T.g.HSP70)/toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB signaling pathway in T. gondii-infected liver macrophages. Furthermore, a co-culture system of KCs and NCTC-1469 hepatocytes was developed to observe the impact of liver macrophages infected with T. gondii on hepatocyte injury. RESULTS Coixol notably inhibited the proliferation of tachyzoites and the expression of T.g.HSP70 in mouse liver and KCs, and attenuated pathological liver injury. Moreover, coixol decreased the production of high mobility group box 1, tumor necrosis factor-α, and inducible nitric oxide synthase by suppressing the TLR4/NF-κB signaling pathway in vitro and in vivo. Coixol also mitigated KCs-mediated hepatocyte injury. CONCLUSIONS Coixol protects against liver injury caused by T. gondii infection, potentially by diminishing hepatocyte injury through the suppression of the inflammatory cascade mediated by the T.g.HSP70/TLR4/NF-κB signaling pathway in KCs. These findings offer new perspectives for developing coixol as a lead compound for anti-T. gondii drugs.
Collapse
Affiliation(s)
- Jin-Yi Zhou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yu-Nan Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Xin-Yu Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yan-Zhu Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jing-Mei Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Guang-Nan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yi-Ming Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Si-Hui Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Guang-Hua Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Xiang Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Lian-Xun Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
5
|
Wang J, Yan W, Cheng X, Tong Y, Wang S, Jin C. The Intestinal Barrier Protective Effect of Indole Aldehyde Derivatives on Acute Toxoplasma gondii Infection. Molecules 2024; 29:5024. [PMID: 39519664 PMCID: PMC11547840 DOI: 10.3390/molecules29215024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Toxoplasmosis, a zoonotic infection caused by Toxoplasma gondii (T. gondii), poses a significant risk to human health and public safety. Despite the availability of clinical treatments, none effectively mitigate the intestinal barrier damage, which is the primary defense against T. gondii invasion. This study introduced aldehyde groups into the indole scaffold of a peptide-like structure to investigate the protective effects of these indole aldehyde derivatives on the intestinal barrier in mice with acute T. gondii infection. This approach leveraged the propensity of peptides and aldehyde groups to form hydrogen bonds. We synthesized a range of indole derivatives using the Vilsmeier-Haack reaction and evaluated their intestinal barrier protective effects both in vitro and in vivo. Our findings revealed that indole derivatives A1 (1-Formyl-1H-indole-3-acetonitrile), A3 (Indole-3-carboxaldehyde), A5 (2-Chloro-1H-indole-3-carboxaldehyde), A8 (1-Methyl-indole-3-carboxaldehyde), and A9 (1-Methyl-2-phenyl-1H-indole-3-carboxaldehyde) demonstrated a higher selectivity index compared to the positive control, spiramycin. These derivatives enhanced gastrointestinal motility, increased glutathione (GSH) levels in the small intestine, and reduced malondialdehyde (MDA) and nitric oxide (NO) levels in the small intestine tissue and diamine oxidase (DAO) and NO levels in the serum of infected mice. Notably, A3 exhibited comparable anti-T. gondii tachyzoites activity in the peritoneal cavity. Molecular docking studies indicated that the aldehyde group on the indole scaffold not only formed a hydrogen bond with NTPase-II but also interacted with TgCDPK1 through hydrogen bonding. Among the derivatives, A3 showed promising intestinal barrier protective effects in mice with acute T. gondii infection. This research suggests that indole derivatives could serve as a potential therapeutic strategy for intestinal diseases induced by T. gondii, offering a novel direction for treating intestinal barrier damage and providing valuable insights for the chemical modification of drugs targeting T. gondii. Furthermore, it contributes to the advancement of therapeutic approaches for toxoplasmosis.
Collapse
Affiliation(s)
- Jieqiong Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (J.W.); (W.Y.); (X.C.); (Y.T.)
| | - Weifeng Yan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (J.W.); (W.Y.); (X.C.); (Y.T.)
| | - Xu Cheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (J.W.); (W.Y.); (X.C.); (Y.T.)
| | - Yonggang Tong
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (J.W.); (W.Y.); (X.C.); (Y.T.)
| | - Sihong Wang
- Analysis and Inspection Center, Yanbian University, Yanji 133002, China
| | - Chunmei Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (J.W.); (W.Y.); (X.C.); (Y.T.)
| |
Collapse
|
6
|
Lu JM, Xu X, Aosai F, Zhang MY, Zhou LL, Piao LX. Protective effect of arctiin against Toxoplasma gondii HSP70-induced allergic acute liver injury by disrupting the TLR4-mediated activation of cytosolic phospholipase A 2 and platelet-activating factor. Int Immunopharmacol 2024; 126:111254. [PMID: 37995571 DOI: 10.1016/j.intimp.2023.111254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Toxoplasma gondii (T. gondii)-derived heat shock protein 70 (T.g.HSP70) is a toxic protein that downregulates host defense responses against T. gondii infection. T.g.HSP70 was proven to induce fatal anaphylaxis in T. gondii infected mice through cytosolic phospholipase A2 (cPLA2) activated-platelet-activating factor (PAF) production via Toll-like receptor 4 (TLR4)-mediated signaling. In this study, we investigated the effect of arctiin (ARC; a major lignan compound of Fructus arctii) on allergic liver injury using T.g.HSP70-stimulated murine liver cell line (NCTC 1469) and a mouse model of T. gondii infection. Localized surface plasmon resonance, ELISA, western blotting, co-immunoprecipitation, and immunofluorescence were used to investigate the underlying mechanisms of action of ARC on T. gondii-induced allergic acute liver injury. The results showed that ARC suppressed the T.g.HSP70-induced allergic liver injury in a dose-dependent manner. ARC could directly bind to T.g.HSP70 or TLR4, interfering with the interaction between these two factors, and inhibiting activation of the TLR4/mitogen-activated protein kinase/nuclear factor-kappa B signaling, thereby inhibiting the overproduction of cPLA2, PAF, and interferon-γ. This result suggested that ARC ameliorates T.g.HSP70-induced allergic acute liver injury by disrupting the TLR4-mediated activation of inflammatory mediators, providing a theoretical basis for ARC therapy to improve T.g.HSP70-induced allergic liver injury.
Collapse
Affiliation(s)
- Jing-Mei Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Xiang Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Fumie Aosai
- Department of Infection and Host Defense, Graduate School of Medicine, Shinshu University, Matsumoto, Japan
| | - Ming-Yue Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Lu-Lu Zhou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Lian-Xun Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
7
|
Duan SF, Song L, Guo HY, Deng H, Huang X, Shen QK, Quan ZS, Yin XM. Research status of indole-modified natural products. RSC Med Chem 2023; 14:2535-2563. [PMID: 38107170 PMCID: PMC10718587 DOI: 10.1039/d3md00560g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 12/19/2023] Open
Abstract
Indole is a heterocyclic compound formed by the fusion of a benzene ring and pyrrole ring, which has rich biological activity. Many indole-containing compounds have been sold on the market due to their excellent pharmacological activity. For example, vincristine and reserpine have been widely used in clinical practice. The diverse structures and biological activities of natural products provide abundant resources for the development of new drugs. Therefore, this review classifies natural products by structure, and summarizes the research progress of indole-containing natural product derivatives, their biological activities, structure-activity relationship and research mechanism which has been studied in the past 13 years, so as to provide a basis for the development of new drug development.
Collapse
Affiliation(s)
- Song-Fang Duan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Lei Song
- Yanbian University Hospital, Yanbian University Yanji 133002 People's Republic of China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Xiu-Mei Yin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| |
Collapse
|
8
|
Coixol ameliorates Toxoplasma gondii infection-induced lung injury by interfering with T. gondii HSP70/TLR4/NF-κB signaling pathway. Int Immunopharmacol 2023; 118:110031. [PMID: 36933491 DOI: 10.1016/j.intimp.2023.110031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite that causes pulmonary toxoplasmosis, although its pathogenesis is incompletely understood. There is no cure for toxoplasmosis. Coixol, a plant polyphenol extracted from coix seeds, has a variety of biological activities. However, the effects of coixol on T. gondii infection have not been clarified. In this study, we infected a mouse macrophage cell line (RAW 264.7) and BALB/c mice with the T. gondii RH strain to establish infection models in vitro and in vivo, respectively, to explore protective effects and potential mechanisms of coixol on lung injury caused by T. gondii infection. Anti-T. gondii effects and underlying anti-inflammatory mechanisms of coixol were investigated by real-time quantitative PCR, molecular docking, localized surface plasmon resonance, co-immunoprecipitation, enzyme-linked immunosorbent assay, western blotting, and immunofluorescence microscopy. The results show that coixol inhibits T. gondii loads and T. gondii-derived heat shock protein 70 (T.g.HSP70) expression. Moreover, coixol reduced inflammatory cell recruitment and infiltration, and ameliorated pathological lung injury induced by T. gondii infection. Coixol can directly bind T.g.HSP70 or Toll-like receptor 4 (TLR4) to disrupt their interaction. Coixol prevented overexpression of inducible nitric oxide synthase, tumor necrosis factor-α, and high mobility group box 1 by inhibiting activation of the TLR4/nuclear factor (NF)-κB signaling pathway, consistent with effects of the TLR4 inhibitor CLI-095. These results indicate that coixol improves T. gondii infection-induced lung injury by interfering with T.g.HSP70-mediated TLR4/NF-κB signaling. Altogether, these findings suggest that coixol is a promising effective lead compound for the treatment of toxoplasmosis.
Collapse
|
9
|
Wang G, Ge L, Liu T, Zheng Z, Chen L. The therapeutic potential of arctigenin against multiple human diseases: A mechanistic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154647. [PMID: 36628833 DOI: 10.1016/j.phymed.2023.154647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/21/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Arctigenin (ATG), a dibenzyl butyrolactone lignan compound, is one of the major bioactive components from the medicinal plant Arctium lappa. ATG possesses remarkable therapeutic potential against a wide range of human diseases, such as cancers, immune disorders and chronical diseases. The molecular mechanisms behind the biological effects of ATG have been intensively studied. PURPOSE This review aims to systematically summarize the updated knowledge of the proteins and signaling pathways behind the curative property of ATG, and further analyze the potential connections between them. METHOD SciFinder, Pubmed, Web of Science and Cochrane Library databases were queried for publications reporting the therapeutic properties of ATG. "Arctigenin", "disease", "cancer", "inflammation", "organ damage", "infection", "toxicity" and "pharmacokinetics" were used as the searching titles. RESULT 625 publications were identified and 95 met the inclusion criteria and exclusion criteria. 42 studies described the molecular mechanisms implicated in ATG treatments. Several proteins including phosphodiesterase subtype 4D (PDE4D), estrogen receptor (ER) β, protein phosphatase 2A (PP2A), phosphoinositide 3-kinase (PI3K) and transmembrane protein 16A (TMEM16A) are targeted by ATG in different settings. The frequently described signaling pathways are TLR4/NF-κB, PI3K/AKT/mTOR, AMP-activated protein kinase (AMPK) and nuclear factor erythroid 2-related factor 2 (Nrf-2) signalings. CONCLUSION Inhibition of PI3K/AKT pathway and activation of AMPK signaling play the pivotal roles in the therapeutic effects of ATG. PI3K/AKT and AMPK signaling widely link to other signaling pathways, modulating various biological processes such as anti-inflammation, anti-oxidative stress, anti-fibrosis, anti-ER stress, anti-steatosis and pro-apoptosis, which constitute the curative mechanisms of ATG against multiple human diseases.
Collapse
Affiliation(s)
- Guanming Wang
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China.
| | - Li Ge
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Tongyu Liu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Zhihui Zheng
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Lijun Chen
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China.
| |
Collapse
|
10
|
Lu YN, Shen XY, Lu JM, Jin GN, Lan HW, Xu X, Piao LX. Resveratrol inhibits Toxoplasma gondii-induced lung injury, inflammatory cascade and evidences of its mechanism of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154522. [PMID: 36332392 DOI: 10.1016/j.phymed.2022.154522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 10/03/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Toxoplasma gondii is an opportunistic protozoan that can infect host to cause toxoplasmosis. We have previously reported that resveratrol (RSV) has protective effects against liver damage in T. gondii infected mice. However, the effect of RSV on lung injury caused by T. gondii infection and its mechanism of action remain unclear. PURPOSE In this work, we studied the protective effects of RSV on lung injury caused by T. gondii infection and explored the underlying mechanism. METHODS Molecular docking and localized surface plasmon resonance assay were used to detect the molecular interactions between RSV and target proteins. In vitro, the anti-T. gondii effects and potential anti-inflammatory mechanisms of RSV were investigated by quantitative competitive-PCR, RT-PCR, ELISA, Western blotting and immunofluorescence using RAW 264.7 cells infected with tachyzoites of T. gondii RH strain. In vivo, the effects of RSV on lung injury caused by T. gondii infection were assessed by observing pathological changes and the expression of inflammatory factors of lung. RESULTS RSV inhibited T. gondii loads and T. gondii-derived heat shock protein 70 (T.g.HSP70) expression in RAW 264.7 cells and lung tissues. Moreover, RSV interacts with T.g.HSP70 and toll-like receptor 4 (TLR4), respectively, and interferes with the interaction between T.g.HSP70 and TLR4. It also inhibited the overproduction of inducible nitric oxide synthase, TNF-α and high mobility group protein 1 (HMGB1) by down-regulating TLR4/nuclear factor kappa B (NF-κB) signaling pathway, which is consistent with the effect of TLR4 inhibitor CLI-095. In vivo, RSV improved the pathological lung damage produced by T. gondii infection, as well as decreased the number of inflammatory cells in bronchoalveolar lavage fluid and the release of HMGB1 and TNF-α. CONCLUSION These findings indicate that RSV can inhibit the proliferation of T. gondii and T.g.HSP70 expression both in vitro and in vivo. RSV can inhibit excessive inflammatory response by intervening T.g.HSP70 and HMGB1 mediated TLR4/NF-κB signaling pathway activation, thereby ameliorating lung injury caused by T. gondii infection. The present study provides new data that may be useful for the development of RSV as a new agent for the treatment of lung damage caused by T. gondii infection.
Collapse
Affiliation(s)
- Yu Nan Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR. China
| | - Xin Yu Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR. China
| | - Jing Mei Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR. China
| | - Guang Nan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR. China
| | - Hui Wen Lan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR. China
| | - Xiang Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR. China.
| | - Lian Xun Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR. China.
| |
Collapse
|
11
|
Qiu ZE, Chen L, Hou XC, Sheng J, Xu JB, Xu JW, Gao DD, Huang ZX, Lei TL, Huang ZY, Peng L, Yang HL, Lin QH, Zhu YX, Guan WJ, Lun ZR, Zhou WL, Zhang YL. Toxoplasma gondii infection triggers ongoing inflammation mediated by increased intracellular Cl - concentration in airway epithelium. J Infect 2023; 86:47-59. [PMID: 36334726 DOI: 10.1016/j.jinf.2022.10.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 10/03/2022] [Accepted: 10/28/2022] [Indexed: 12/12/2022]
Abstract
Toxoplasma gondii is a widespread parasitic protozoan causing toxoplasmosis including pulmonary toxoplasmosis. As the first line of host defense, airway epithelial cells play critical roles in orchestrating pulmonary innate immunity. However, the mechanism underlying the airway inflammation induced by the T. gondii infection remains largely unclear. This study demonstrated that after infection with T. gondii, the major anion channel located in the apical membranes of airway epithelial cells, cystic fibrosis transmembrane conductance regulator (CFTR), was degraded by the parasite-secreted cysteine proteases. The intracellular Cl- concentration ([Cl-]i) was consequently elevated, leading to activation of nuclear factor-κB (NF-κB) signaling via serum/glucocorticoid regulated kinase 1. Furthermore, the heightened [Cl-]i and activated NF-κB signaling could be sustained in a positive feedback regulatory manner resulting from decreased intracellular cAMP level through NF-κB-mediated up-regulation of phosphodiesterase 4. Conversely, the sulfur-containing compound allicin conferred anti-inflammatory effects on pulmonary toxoplasmosis by decreasing [Cl-]i via activation of CFTR. These results suggest that the intracellular Cl- dynamically modulated by T. gondii mediates sustained airway inflammation, which provides a potential therapeutic target against pulmonary toxoplasmosis.
Collapse
Affiliation(s)
- Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Lei Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xiao-Chun Hou
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jie Sheng
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jian-Bang Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, P. R. China
| | - Jia-Wen Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Dong-Dong Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China; Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P. R. China
| | - Ze-Xin Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Tian-Lun Lei
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zi-Yang Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Lei Peng
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Hai-Long Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Qin-Hua Lin
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, P. R. China
| | - Zhao-Rong Lun
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|
12
|
Yang D, Liu X, Li J, Xie J, Jiang L. Animal venoms: a novel source of anti- Toxoplasma gondii drug candidates. Front Pharmacol 2023; 14:1178070. [PMID: 37205912 PMCID: PMC10188992 DOI: 10.3389/fphar.2023.1178070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is a nucleated intracellular parasitic protozoan with a broad host selectivity. It causes toxoplasmosis in immunocompromised or immunodeficient patients. The currently available treatments for toxoplasmosis have significant side effects as well as certain limitations, and the development of vaccines remains to be explored. Animal venoms are considered to be an important source of novel antimicrobial agents. Some peptides from animal venoms have amphipathic alpha-helix structures. They inhibit the growth of pathogens by targeting membranes to produce lethal pores and cause membrane rupture. Venom molecules generally possess immunomodulatory properties and play key roles in the suppression of pathogenic organisms. Here, we summarized literatures of the last 15 years on the interaction of animal venom peptides with T. gondii and attempt to explore the mechanisms of their interaction with parasites that involve membrane and organelle damage, immune response regulation and ion homeostasis. Finally, we analyzed some limitations of venom peptides for drug therapy and some insights into their development in future studies. It is hoped that more research will be stimulated to turn attention to the medical value of animal venoms in toxoplasmosis.
Collapse
Affiliation(s)
- Dongqian Yang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiaohua Liu
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jing Li
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jing Xie
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Liping Jiang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- *Correspondence: Liping Jiang,
| |
Collapse
|
13
|
Jin GN, Lu JM, Lan HW, Lu YN, Shen XY, Xu X, Piao LX. Protective effect of ginsenoside Rh2 against Toxoplasma gondii infection-induced neuronal injury through binding TgCDPK1 and NLRP3 to inhibit microglial NLRP3 inflammasome signaling pathway. Int Immunopharmacol 2022; 112:109176. [PMID: 36067653 DOI: 10.1016/j.intimp.2022.109176] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) is a neurotropic obligate intracellular parasite that can activate microglial and promote neuronal apoptosis, leading to central nervous system diseases. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling complex plays a key role in inducing neuroinflammation. Our previous studies have found that ginsenoside Rh2 (GRh2) inhibits T. gondii infection-induced microglial activation and neuroinflammation by downregulating the Toll-like receptor 4/nuclear factor-kappa B signaling pathway. However, whether GRh2 reduces T. gondii infection-induced neuronal injury through actions on microglial NLRP3 inflammasome signaling has not yet been clarified. METHODS In this study, we employed T. gondii RH strain to establish in vitro and in vivo infection models in BV2 microglia cell line and BALB/c mice. Molecular docking, localized surface plasmon resonance assay, quantitative competitive-PCR, ELISA, western blotting, flow cytometric analysis, and immunofluorescence were performed. RESULTS Our results showed that GRh2 alleviated neuropathological damage and neuronal apoptosis in cortical tissue of T. gondii-infected mice. GRh2 and CY-09 (an inhibitor of NLRP3) exhibited potent anti-T. gondii effects through binding T. gondii calcium-dependent protein kinase 1 (TgCDPK1). GRh2 decreased Iba-1 (a specific microglial marker) and NLRP3 inflammasome signaling pathway-related protein expression by binding NLRP3. Co-culture of microglia/primary cortical neurons revealed that T. gondii-induced microglial activation caused neuronal apoptosis, but GRh2 reduced this effect, consistent with the effects of CY-09. CONCLUSION Taken together, our results show that GRh2 has a protective effect against T. gondii infection-induced neuronal injury by binding TgCDPK1 and NLRP3 to inhibit NLRP3 inflammasome signaling pathway in microglia.
Collapse
Affiliation(s)
- Guang-Nan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Jing-Mei Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Hui-Wen Lan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Yu-Nan Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Xin-Yu Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Xiang Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China.
| | - Lian-Xun Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China.
| |
Collapse
|
14
|
He Y, Zhang Y, Zhang J, Hu X. The Key Molecular Mechanisms of Sini Decoction Plus Ginseng Soup to Rescue Acute Liver Failure: Regulating PPARα to Reduce Hepatocyte Necroptosis? J Inflamm Res 2022; 15:4763-4784. [PMID: 36032938 PMCID: PMC9417306 DOI: 10.2147/jir.s373903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose This study aimed to investigate the improvement effect of Sini Decoction plus Ginseng Soup (SNRS) on the LPS/D-GalN-induced acute liver failure (ALF) mouse model and the molecular mechanism of the SNRS effect. Methods To study the protective effect of SNRS on ALF mice, the ICR mice were firstly divided into 4 groups: Control group (vehicle-treated), Model group (LPS/D-GalN), SNRS group (LPS/D-GalN+SNRS), and Silymarin group (LPS/D-GalN+Silymarin), the therapeutic drug was administered by gavage 48h, 24h before, and 10 min after LPS/D-GalN injection. On this basis, the peroxisome proliferator-activated receptor (PPAR) α agonist (WY14643) and inhibitor (GW6471) were added to verify whether the therapeutic mechanism of SNRS is related to its promoting effect on PPARα. The animals are grouped as follows: Control group (vehicle-treated), Model group (LPS/D-GalN+DMSO), SNRS group (LPS/D-GalN+SNRS+DMSO), Inhibitor group (LPS/D-GalN+GW6471), Agonist group (LPS/D-GalN+WY14643), and Inhibitor+SNRS group (LPS/D-GalN+GW6471+SNRS). Results The protective effect of SNRS on the ALF model is mainly reflected in the reduction of serum alanine aminotransaminase (ALT) and aspartate aminotransaminase (AST) as well as the ameliorated pathology of the liver tissue. The survival rate of ALF mice treated with SNRS was significantly increased. Further mechanism studies showed that SNRS significantly promoted the protein expression of PPARα and decreased the expression of necroptosis proteins (RIP3, MLKL, p-MLKL) in ALF mice. Reduced necroptosis resulted in decreased HMGB1 release, which in turn inhibited the activation of TLR4-JNK and NLRP3 inflammasome signaling pathways and the expression of NF-κB protein induced by LPS/D-GalN. The expression of CPT1A, a key enzyme involved in fatty acid β-oxidation, was found to be significantly up-regulated in the SNRS treated group, accompanied by an increased adenosine-triphosphate (ATP) level, which may be the relevant mechanism by which SNRS reduces necroptosis. Conclusion The potential therapeutic effect of SNRS on ALF may be through promoting the expression of PPARα and increasing the level of ATP in liver tissue, thereby inhibiting necroptosis of hepatocytes, reducing hepatocyte damage, and improving liver function.
Collapse
Affiliation(s)
- Ying He
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, People's Republic of China.,Department of College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yang Zhang
- Department of Infectious Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Junli Zhang
- Department of College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xiaoyu Hu
- Department of Infectious Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
15
|
Hou Z, Zhang H, Xu K, Zhu S, Wang L, Su D, Liu J, Su S, Liu D, Huang S, Xu J, Pan Z, Tao J. Cluster analysis of splenocyte microRNAs in the pig reveals key signal regulators of immunomodulation in the host during acute and chronic Toxoplasma gondii infection. Parasit Vectors 2022; 15:58. [PMID: 35177094 PMCID: PMC8851844 DOI: 10.1186/s13071-022-05164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Toxoplasma gondii is an obligate intracellular protozoan parasite that can cause a geographically widespread zoonosis. Our previous splenocyte microRNA profile analyses of pig infected with T. gondii revealed that the coordination of a large number of miRNAs regulates the host immune response during infection. However, the functions of other miRNAs involved in the immune regulation during T. gondii infection are not yet known. METHODS Clustering analysis was performed by K-means, self-organizing map (SOM), and hierarchical clustering to obtain miRNA groups with the similar expression patterns. Then, the target genes of the miRNA group in each subcluster were further analyzed for functional enrichment by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway to recognize the key signaling molecules and the regulatory signatures of the innate and adaptive immune responses of the host during T. gondii infection. RESULTS A total of 252 miRNAs were successfully divided into 22 subclusters by K-means clustering (designated as K1-K22), 29 subclusters by SOM clustering (designated as SOM1-SOM29), and six subclusters by hierarchical clustering (designated as H1-H6) based on their dynamic expression levels in the different infection stages. A total of 634, 660, and 477 GO terms, 15, 26, and 14 KEGG pathways, and 16, 15, and 7 Reactome pathways were significantly enriched by K-means, SOM, and hierarchical clustering, respectively. Of note, up to 22 miRNAs mainly showing downregulated expression at 50 days post-infection (dpi) were grouped into one subcluster (namely subcluster H3-K17-SOM1) through the three algorithms. Functional analysis revealed that a large group of immunomodulatory signaling molecules were controlled by the different miRNA groups to regulate multiple immune processes, for instance, IL-1-mediated cellular response and Th1/Th2 cell differentiation partly depending on Notch signaling transduction for subclusters K1 and K2, innate immune response involved in neutrophil degranulation and TLR4 cascade signaling for subcluster K15, B cell activation for subclusters SOM17, SOM1, and SOM25, leukocyte migration, and chemokine activity for subcluster SOM9, cytokine-cytokine receptor interaction for subcluster H2, and interleukin production, chemotaxis of immune cells, chemokine signaling pathway, and C-type lectin receptor signaling pathway for subcluster H3-K17-SOM1. CONCLUSIONS Cluster analysis of splenocyte microRNAs in the pig revealed key regulatory properties of subcluster miRNA molecules and important features in the immune regulation induced by acute and chronic T. gondii infection. These results contribute new insight into the identification of physiological immune responses and maintenance of tolerance in pig spleen tissues during T. gondii infection.
Collapse
Affiliation(s)
- Zhaofeng Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Hui Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Kangzhi Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Shifan Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Lele Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Dingzeyang Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Jiantao Liu
- YEBIO Bioengineering Co., Ltd. of QINGDAO, Qingdao, 266109, People's Republic of China
| | - Shijie Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Siyang Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Zhiming Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
16
|
Ginsenoside Rh2 reduces depression in offspring of mice with maternal toxoplasma infection during pregnancy by inhibiting microglial activation via the HMGB1/TLR4/NF-κB signaling pathway. J Ginseng Res 2022; 46:62-70. [PMID: 35035240 PMCID: PMC8753429 DOI: 10.1016/j.jgr.2021.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
Background Maternal Toxoplasma gondii (T. gondii) infection during pregnancy has been associated with various mental illnesses in the offspring. Ginsenoside Rh2 (GRh2) is a major bioactive compound obtained from ginseng that has an anti-T. gondii effect and attenuates microglial activation through toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway. GRh2 also alleviated tumor-associated or lipopolysaccharide-induced depression. However, the effects and potential mechanisms of GRh2 on depression-like behavior in mouse offspring caused by maternal T. gondii infection during pregnancy have not been investigated. Methods We examined GRh2 effects on the depression-like behavior in mouse offspring, caused by maternal T. gondii infection during pregnancy, by measuring depression-like behaviors and assaying parameters at the neuronal and molecular level. Results We showed that GRh2 significantly improved behavioral measures: sucrose consumption, forced swim time and tail suspended immobility time of their offspring. These corresponded with increased tissue concentrations of 5-hydroxytryptamine and dopamine, and attenuated indoleamine 2,3-dioxygenase or enhanced tyrosine hydroxylase expression in the prefrontal cortex. GRh2 ameliorated neuronal damage in the prefrontal cortex. Molecular docking results revealed that GRh2 binds strongly to both TLR4 and high mobility group box 1 (HMGB1). Conclusion This study demonstrated that GRh2 ameliorated the depression-like behavior in mouse offspring of maternal T. gondii infection during pregnancy by attenuating the excessive activation of microglia and neuroinflammation through the HMGB1/TLR4/NF-κB signaling pathway. It suggests that GRh2 could be considered a potential therapy in preventing and treating psychiatric disorders in the offspring mice of mothers with prenatal exposure to T. gondii infection.
Collapse
|
17
|
Zhong Y, Zhang ZH, Wang JY, Xing Y, Ri MH, Jin HL, Zuo HX, Li MY, Ma J, Jin X. Zinc finger protein 91 mediates necroptosis by initiating RIPK1-RIPK3-MLKL signal transduction in response to TNF receptor 1 ligation. Toxicol Lett 2021; 356:75-88. [PMID: 34942311 DOI: 10.1016/j.toxlet.2021.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/03/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022]
Abstract
Necroptosis is a form of regulated programmed cell death that is mediated by receptor-interacting protein kinase 1 (RIPK1), receptor-interacting serine/threonine protein kinase-3 (RIPK3), and mixed lineage kinase domain-like protein (MLKL); however, it is not known whether zinc finger protein 91 (ZFP91) is involved in this process. Here, we investigated ZFP91 as a potential mediator of necroptosis. Our mechanistic study demonstrates that ZFP91 promotes RIPK1-RIPK3 interaction, thereby stabilizing the RIPK1 and RIPK3 proteins and facilitating necroptosis. ZFP91 stabilized RIPK1 to promote cell death by inducing RIPK1 de-ubiquitination. ZFP91 also significantly increased production of mitochondrial reactive oxygen species (ROS). Accumulation of ROS promoted RIPK3-independent necroptosis triggered by tumor necrosis factor (TNF). in vivo, ZFP91 knockdown alleviated TNFα-induced systemic inflammatory response syndrome (SIRS). These results provide direct evidence that ZFP91 plays an important role in the initiation of RIPK1/RIPK3-dependent necroptosis in vitro and in vivo. We discussed the potential of ZFP91 as a novel therapeutic target for necroptosis-associated diseases.
Collapse
Affiliation(s)
- Yi Zhong
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Zhi Hong Zhang
- Department of Pharmacology, College of Pharmacy, Beihua University, No. 3999 Binjiang East Road, Jilin, Jilin Province, 132013, China
| | - Jing Ying Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yue Xing
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Myong Hak Ri
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Hong Lan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Hong Xiang Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Ming Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
18
|
Xing Y, Wang JY, Li MY, Zhang ZH, Jin HL, Zuo HX, Ma J, Jin X. Convallatoxin inhibits IL-1β production by suppressing zinc finger protein 91-mediated pro-IL-1β ubiquitination and caspase-8 inflammasome activity. Br J Pharmacol 2021; 179:1887-1907. [PMID: 34825365 DOI: 10.1111/bph.15758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/27/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE ZFP91 positively regulates IL-1β production in macrophages and may be a potential therapeutic target to treat inflammatory-related diseases. Therefore, we investigated whether this process is modulated by convallatoxin, which is a cardiac glycoside isolated from the traditional Chinese medicinal plant Adonis amurensis Regel et Radde. EXPERIMENTAL APPROACH In vitro, the underlying mechanisms by which convallatoxin inhibits ZFP91-regulated IL-1β expression were investigated using molecular docking, western blotting, RT-PCR, ELISA, immunofluorescence, and immunoprecipitation assays. In vivo, liver injury was induced by an intraperitoneal injection of D-GalN and LPS, colitis was induced by oral administration of DSS in drinking water, and peritonitis was induced by an intraperitoneal injection of alum. KEY RESULTS We confirmed that convallatoxin inhibited the release of IL-1β by downregulating ZFP91. Importantly, we found that convallatoxin significantly reduced K63-linked polyubiquitination of pro-IL-1β regulated by ZFP91 and decreased the efficacy of pro-IL-1β cleavage. Moreover, convallatoxin suppressed ZFP91-mediated activation of the non-canonical caspase-8 inflammasome and MAPK signaling pathways in macrophages. Furthermore, we showed that ZFP91 promoted the assembly of the caspase-8 inflammasome complex, whereas convallatoxin treatment reversed this result. In vivo studies further demonstrated that convallatoxin ameliorated D-GalN/LPS-induced liver injury, DSS-induced colitis, and alum-induced peritonitis by downregulating ZFP91. CONCLUSION AND IMPLICATIONS We report for the first time that convallatoxin-mediated inhibition of ZFP91 is an important regulatory event that prevents inappropriate inflammatory responses to maintain of immune homeostasis. This mechanism provides new perspectives for the development of convallatoxin as a novel anti-inflammatory drug targeting ZFP91.
Collapse
Affiliation(s)
- Yue Xing
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Jing Ying Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Ming Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Zhi Hong Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Hong Lan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Hong Xiang Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| |
Collapse
|
19
|
Lu JM, Jin GN, Lu YN, Zhao XD, Lan HW, Mu SR, Shen XY, Xu GH, Jin CH, Ma J, Jin X, Xu X, Piao LX. Resveratrol modulates Toxoplasma gondii infection induced liver injury by intervening in the HMGB1/TLR4/NF-κB signaling pathway. Eur J Pharmacol 2021; 910:174497. [PMID: 34508751 DOI: 10.1016/j.ejphar.2021.174497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/28/2021] [Accepted: 09/06/2021] [Indexed: 01/07/2023]
Abstract
Toxoplasma gondii (T. gondii) is an obligate intracellular parasite that can cause liver diseases in the host, including hepatitis and hepatomegaly. High mobility group box 1 (HMGB1) is the main inflammatory mediator causing cell injury or necrosis. HMGB1 binds to toll like receptor 4 (TLR4), then activates the nuclear factor-κB (NF-κB) signaling pathway, which promotes the release of inflammatory factors. Our previous studies showed that HMGB1 mediated TLR4/NF-κB signaling pathway plays an important role in liver injury induced by T. gondii infection. Resveratrol (RSV) is a small polyphenol, which has anti-inflammatory, anti-cancer, anti-T. gondii effect. However, the effect of RSV on liver injury caused by T. gondii infection is unclear. This study used the RH strain tachyzoites of T. gondii to infect murine liver line, NCTC-1469 cells to establish an in vitro model and acute infection of mice for the in vivo model to explore the protective effect of RSV on liver injury induced by T. gondii infection. The results showed that RSV inhibited the proliferation of T. gondii in the liver, reduced the alanine aminotransferase/aspartate aminotransferase levels and pathological liver damage. Additionally, RSV inhibited the production of tumor necrosis factor-α, inducible nitric oxide synthase and HMGB1 by interfering with the TLR4/NF-κB signaling pathway. These results indicate that RSV can protect liver injury caused by T. gondii infection by intervening in the HMGB1/TLR4/NF-κB signaling pathway. This study will provide a theoretical basis for RSV treatment of T. gondii infection induced liver injury.
Collapse
Affiliation(s)
- Jing-Mei Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Guang-Nan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Yu-Nan Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Xu-Dong Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Hui-Wen Lan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Shuai-Ru Mu
- College of Integration Science, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Xin-Yu Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Guang-Hua Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China.
| | - Xiang Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China.
| | - Lian-Xun Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China; College of Integration Science, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
20
|
Lan HW, Lu YN, Zhao XD, Jin GN, Lu JM, Jin CH, Ma J, Jin X, Xu X, Piao LX. New role of sertraline against Toxoplasma gondii-induced depression-like behaviours in mice. Parasite Immunol 2021; 43:e12893. [PMID: 34637545 DOI: 10.1111/pim.12893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022]
Abstract
Toxoplasma gondii (T. gondii) is a neurotropic protozoan parasite, which can cause mental and behavioural disorders. The present study aimed to elucidate the effects and underlying molecular mechanisms of sertraline (SERT) on T. gondii-induced depression-like behaviours. In the present study, a mouse model and a microglial cell line (BV2 cells) model were established by infecting with the T. gondii RH strain. In in vivo and in vitro experiments, the underlying molecular mechanisms of SERT in inhibiting depression-like behaviours and cellular perturbations caused by T. gondii infection were investigated in the mouse brain and BV2 cells. The administration of SERT significantly ameliorated depression-like behaviours in T. gondii-infected mice. Furthermore, SERT inhibited T. gondii proliferation. Treatment with SERT significantly inhibited the activation of microglia and decreased levels of pro-inflammatory cytokines such as tumour necrosis factor-alpha, and interferon-gamma, by down-regulating tumour necrosis factor receptor 1/nuclear factor-kappa B signalling pathway, thereby ameliorating the depression-like behaviours induced by T. gondii infection. Our study provides insight into the underlying molecular mechanisms of the newly discovered role of SERT against T. gondii-induced depression-like behaviours.
Collapse
Affiliation(s)
- Hui-Wen Lan
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Yu-Nan Lu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Xu-Dong Zhao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Guang-Nan Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Jing-Mei Lu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Juan Ma
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Xuejun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Xiang Xu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Lian-Xun Piao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
21
|
Li Y, Wang Q, Wei HC, Liang YY, Niu FJ, Li KW, Zhou SJ, Zhou CZ. Fructus arctii: an overview on its traditional uses, pharmacology and phytochemistry. J Pharm Pharmacol 2021; 74:321-336. [PMID: 34612502 DOI: 10.1093/jpp/rgab140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/02/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Fructus arctii (F. arctii) is the dried ripe fruit of Arctium lappa Willd (Asteraceae). It is being used as a traditional medicine in China, Japan, Iran, Europe, Afghanistan, India, etc. for cough, inflammation, clearing the heat, detoxification, cancer and diabetes. This review summarized the botanical description, distribution, ethnopharmacology, bioactive constituents and pharmacological actions of F. arctii including methods to assess its quality. In addition, this review also provides insights into future research directions on F. arctii to further explore its bioactive constituents, mechanism involved in pharmacological activity, and clinical use including the development of new analytical methods for assessing the quality. KEY FINDINGS The comprehensive analysis of the literature revealed that F. arctii contains lignans, volatile oil, flavonoids, sesquiterpenoids, triterpenes, phenolic acids, etc. Experimental studies on various extracts and drug formulations showed that it has antioxidant, antimicrobial, hypoglycaemic, lipid-lowering, anti-inflammatory, analgesic, antiviral, anti-tumour activity, etc. SUMMARY The pharmacological activity of a few major constituents in F. arctii have been identified. However, there are still need more studies and more new technologies to prove the pharmacological activity and the effective mechanism of the other constituents that undergoing uncertain. Except for the animal experiments, clinical studies should be carried out to provide the evidence for clinical application.
Collapse
Affiliation(s)
- Ying Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qi Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hao-Cheng Wei
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi-Yu Liang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feng-Jv Niu
- Institute of Acupuncture, Shandong Institute of Traditional Chinese Medicine, Jinan, China
| | - Kun-Wei Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sheng-Jun Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chang-Zheng Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
22
|
Xu X, Piao HN, Aosai F, Zeng XY, Cheng JH, Cui YX, Li J, Ma J, Piao HR, Jin X, Piao LX. Arctigenin protects against depression by inhibiting microglial activation and neuroinflammation via HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB pathways. Br J Pharmacol 2020; 177:5224-5245. [PMID: 32964428 DOI: 10.1111/bph.15261] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/19/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Arctigenin, a major bioactive component of Fructus arctii, has been reported to have antidepressant-like effects. However, the mechanisms underlying these effects are still unclear. Neuroinflammation can be caused by excessive production of proinflammatory cytokines in microglia via high-mobility group box 1 (HMGB1)/TLR4/NF-κB and TNF-α/TNFR1/NF-κB signalling pathways, leading to depression. In this study, we have investigated the antidepressant mechanism of arctigenin by conducting in vitro and in vivo studies. EXPERIMENTAL APPROACH The effects of chronic unpredictable mild stress (CUMS) on wild-type (WT) and TLR4-/- mice were examined. Antidepressant-like effects of arctigenin were tested using the CUMS-induced model of depression in WT mice. The effects of arctigenin were assessed on the HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB signalling pathways in the prefrontal cortex (PFC) of mouse brain and HMGB1- or TNF-α-stimulated primary cultured microglia. The interaction between HMGB1 and TLR4 or TNF-α and TNFR1 with or without arctigenin was examined by localized surface plasmon resonance (LSPR) and co-immunoprecipitation assays. KEY RESULTS The immobility times in the tail suspension test (TST) and forced swimming test (FST) were reduced in TLR4-/- mice, compared with WT mice. Arctigenin exhibited antidepressant-like effects. Arctigenin also inhibited microglia activation and inflammatory responses in the PFC of mouse brain. Arctigenin inhibited HMGB1 and TLR4 or TNF-α and TNFR1 interactions, and suppressed both HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB signalling pathways. CONCLUSIONS AND IMPLICATIONS Arctigenin has antidepressant-like effects by attenuating excessive microglial activation and neuroinflammation through the HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB signalling pathways. This suggests that arctigenin has potential as a new drug candidate suitable for clinical trials to treat depression.
Collapse
Affiliation(s)
- Xiang Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Hu-Nan Piao
- Department of Neurology, Affliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Fumie Aosai
- Department of Infection and Host Defense, Graduate School of Medicine, Shinshu University, Matsumoto, Japan
| | - Xiao-Yu Zeng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Jia-Hui Cheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Yue-Xian Cui
- Department of Neurology, Affliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Jing Li
- Department of Neurology, Affliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Hu-Ri Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Lian-Xun Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| |
Collapse
|