1
|
Yang J, Li X, Li T, Mei J, Chen Y. Recent advances in biomimetic nanodelivery systems for cancer Immunotherapy. Mater Today Bio 2025; 32:101726. [PMID: 40270890 PMCID: PMC12017925 DOI: 10.1016/j.mtbio.2025.101726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/26/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025] Open
Abstract
Tumor immunotherapy is a developing and promising therapeutic method. However, the mechanism of tumor immune microenvironment and individual differences of patients make the clinical application of immunotherapy still very limited. The resulting targeting of the tumor environment and immune system is a suitable strategy for tumor therapy. Biomimetic nanodelivery systems (BNDS) coated with nanoparticles has brought new hope for tumor immunotherapy. Due to its high targeting, maximum drug delivery efficiency and immune escape, BNDS has become one of the options for tumor immunotherapy in the future. BNDS combines the advantages of natural cell membranes and nanoparticles and has good targeting properties. This review summarizes the relationship between tumor and immune microenvironment, classification of immunotherapy, engineering modification of cell membrane, and a comprehensive overview of different types of membrane BNDS in immunotherapy. Furthermore, the prospects and challenges of biomimetic nanoparticles coated with membranes in tumor immunotherapy are further discussed.
Collapse
Affiliation(s)
- Jiawei Yang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China, No. 508 North Second Ring East Road, Ningbo, 315302, Zhejiang, China
| | - Xueqi Li
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China, No. 508 North Second Ring East Road, Ningbo, 315302, Zhejiang, China
| | - Tongyu Li
- Department of Hematology, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, China
| | - Jin Mei
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China, No. 508 North Second Ring East Road, Ningbo, 315302, Zhejiang, China
- Institute of Engineering Medicine, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, China
| | - Ying Chen
- Institute of Engineering Medicine, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, China
| |
Collapse
|
2
|
Ribeiro MP, Canadas-Sousa A, Aluai-Cunha C, de Fátima Carvalho M, Santos AF. Immunohistochemical Expression of Programmed Death-Ligand 1 and Cytotoxic T-Lymphocyte Antigen-4 in Canine Cutaneous Mast Cell Tumours. Vet Comp Oncol 2025; 23:109-115. [PMID: 39701664 DOI: 10.1111/vco.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
Mast cell tumours (MCTs) are the most frequent cutaneous neoplasia of the dog, and they have very variable biological behaviour and survival times. Surgery is still the best treatment, and despite the several adjuvant therapies described, many cases are very aggressive and resistant to these treatments making it urgent to find new therapeutic targets. Nowadays, immunotherapy targeting immune checkpoints has been described as a complementary treatment for several human cancers, but it is still very scarcely studied in veterinary medicine. Therefore, this study aimed to investigate the expression of the checkpoint proteins programmed death-ligand 1 (PD-L1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) to evaluate their potential as therapeutic targets for MCT. Through immunohistochemical study, it was analysed the expression of PD-L1 and CTLA-4 in 74 MCT cases from the archive of the Veterinary Pathology Laboratory of the University of Porto (LabPatVet). Tumour size, histological grade, ki-67 proliferation index, mitotic count and presence of metastatic disease were also assessed. Most of the cases expressed both immune checkpoints in neoplastic cells. There was a statistically significant inverse association between the expression of CTLA-4 and MCT grade (p < 0,001) and mitotic count (p < 0.001). PD-L1 was significantly and negatively related to HG (p = 0.004), and tumour size (р = 0.014). Tumour size, histological grade and mitotic count were positively associated with metastatic disease. Additionally, it was observed that the expression of PD-L1 and CTLA-4 was interrelated (p < 0.001). This study demonstrated that MCT cells express both PD-L1 and CTLA-4 and that their expression was associated with MCT prognostic factors.
Collapse
Affiliation(s)
- Mariana Pinto Ribeiro
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Ana Canadas-Sousa
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Department of Veterinary Siences, Vasco da Gama University School, Coimbra, Portugal
| | - Catarina Aluai-Cunha
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Maria de Fátima Carvalho
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Andreia Ferreira Santos
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Animal Science and Study Centre/Food and Agrarian Sciences and Technologies Institute (CECA/ICETA), P. Gomes Teixeira, Porto, Portugal
| |
Collapse
|
3
|
Karabatić Knezović S, Knezović D, Ban J, Matana A, Puizina Ivić N, Glavina Durdov M, Merćep M, Drmić Hofman I. Immunological Landscape of Non-Melanoma Skin Neoplasms: Role of CTLA4+IFN-γ+ Lymphocytes in Tumor Microenvironment Suppression. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:330. [PMID: 40005446 PMCID: PMC11857809 DOI: 10.3390/medicina61020330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Background and Objectives: This study explores the immunological landscapes of non-melanoma skin neoplasms (NMSNs), specifically keratoacanthoma (KA), squamous cell carcinoma (SCC), and common warts (VV). Although benign, KA shares histological similarities with low-grade SCC. The tumor microenvironment (TME) plays a key role in tumor progression, affecting angiogenesis, inflammation, and immune evasion. Viral infections, particularly human papillomavirus (HPV), are linked to NMSN development, with various HPV types identified in KA. VV, caused by HPV, serves as a comparative model due to its similar etiopathogenesis. Materials and Methods: This research examines the expression of CTLA4, a critical regulator of T-cell homeostasis, and IFN-γ, a cytokine with immunomodulatory and antiviral effects, in the TME of 41 KA, 37 SCC, and 55 VV samples using multichannel immunofluorescence. Results: The analysis revealed distinct patterns of CTLA4 and IFN-γ expression. SCC exhibited a higher prevalence of CTLA4+IFN-γ+ double-positive lymphocytes, suggesting a more immunosuppressive TME. In contrast, VV showed the highest expression of CTLA4+ cells, while both KA and VV had lower expressions of IFN-γ+ lymphocytes compared to SCC. The increased presence of CTLA4+IFN-γ+ double-positive lymphocytes in SCC suggests that the co-expression of these markers may exert a stronger effect on TME modulation than CTLA4 alone. Conclusions: These findings underscore the potential of immune profiling as a diagnostic tool to differentiate between benign and malignant lesions, such as KA and SCC. Furthermore, the presence of CTLA4+IFN-γ+ lymphocytes, particularly in SCC, may serve as a biomarker for tumor progression and a potential target for future immunotherapy strategies aimed at modulating the immune response in NMSN.
Collapse
Affiliation(s)
| | - Dora Knezović
- Laboratory for Cancer Research, School of Medicine, University of Split, 21000 Split, Croatia
| | - Jelena Ban
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia; (J.B.); (M.M.)
| | - Antonela Matana
- University Department of Health Studies, University of Split, 21000 Split, Croatia;
| | - Neira Puizina Ivić
- Department of Dermatology, University Hospital of Split, 21000 Split, Croatia;
| | - Merica Glavina Durdov
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia;
- Department of Pathology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Mladen Merćep
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia; (J.B.); (M.M.)
| | - Irena Drmić Hofman
- University Department of Health Studies, University of Split, 21000 Split, Croatia;
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia
| |
Collapse
|
4
|
Yan X, Zhang N, Wang G, Wang J. Association of CTLA-4 polymorphisms with hematologic malignancy susceptibility: a meta-analysis. Front Oncol 2024; 14:1467740. [PMID: 39464701 PMCID: PMC11502471 DOI: 10.3389/fonc.2024.1467740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Background Recent studies have reported an association between Cytotoxic T-lymphocyte antigen-4 (CTLA-4) polymorphisms and hematologic malignancy susceptibility, while the results remain inconsistent. Hence, we performed a meta-analysis to investigate the association between CTLA-4 polymorphisms with hematologic malignancy susceptibility. Methods A comprehensive and systematic search of Cochrane Library, PubMed, Embase databases was performed up to Sep. 20, 2024. The pooled odds ratio (OR) and its 95% confidence interval (CI) were used to determine the strength of the association between CTLA-4 polymorphisms and hematologic malignancy susceptibility. Statistical analysis was performed in STATA 12.0. Results A total of 13 studies concerning the CTLA-4 49A/G, CTLA-4 60A/G, CTLA-4 318T/C, CTLA-4 1661A/G, and CTLA-4 319C/T polymorphisms were included in the meta-analysis. The pooled results suggested the CTLA-4 49A/G polymorphism was significantly associated with an increased hematologic malignancy risk (AA vs. GA+GG: OR = 1.77, 95% CI = 1.56-2.02), especially in NHL, multiple myeloma, and leukemia. Similarly, CTLA-4 319C/T polymorphism was found to be associated with decreased chronic lymphocytic leukemia risk. There was no significant association between the CTLA-4 60A/G, 318T/C, and 1661A/G polymorphism and hematologic malignancy risk. Conclusion CTLA-4 49A/G and 319C/T polymorphisms were associated with hematologic malignancy susceptibility.
Collapse
Affiliation(s)
| | | | | | - Jiaheng Wang
- Department of Hematology, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| |
Collapse
|
5
|
Srivastava P, Rütter M, Antoniraj G, Ventura Y, David A. Dendritic Cell-Targeted Nanoparticles Enhance T Cell Activation and Antitumor Immune Responses by Boosting Antigen Presentation and Blocking PD-L1 Pathways. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53577-53590. [PMID: 39344665 DOI: 10.1021/acsami.4c12821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Dendritic cells (DCs) within the tumor microenvironment (TME) have an insufficient capacity to activate T cells through antigen presentation. Furthermore, the programmed cell-death ligand 1 (PD-L1), abundantly expressed on tumor-associated DCs, binds the programmed cell-death 1 (PD-1)-positive T cells and suppresses their immune function. The binding of PD-L1 to CD80 (B7.1) on the same DC via cis-interactions further prevents T cell costimulation through CD28. Here, we present a strategy to simultaneously promote antigen cross-presentation and block the inhibitory interactions of PD-L1 on DCs to amplify T cell-mediated antitumor responses within the TME. Mesoporous silica nanoparticles (MSNPs) were loaded with clotrimazole (CLT) to boost MHC II-mediated antigen presentation by DCs, surface-modified with mannose to target CD206 on DCs, and then decorated with PD-L1 binding peptide (PDL1bp) to block PD-L1-mediated interactions. PDL1bp was cleaved from the mannosylated and CLT-loaded MSNPs (MSNP-MaN/CLT) under conditions simulating the TME and tethered to PD-L1 to reverse CD80 sequestration on DC2.4 cells. The blocking of PD-L1 by PDL1bp-decorated NPs (MSNP-MaN-PDL1bp) increased the cellular interactions between DC2.4 and EL4 T cells and the amount of IL-2 secretion. The MSNP-MaN/CLT were taken up rapidly by DC2.4 cells, promoted MHC II presentation of hen egg lysozyme (HEL), and increased IL-2 production from HEL antigen-primed 3A9 T cells, which was further enhanced by PDL1bp. In vivo investigation revealed that administration of the CLT-loaded and PDL1bp-functionalized MSNPs remarkably inhibited subcutaneous B16-F10 melanoma tumor growth when compared with anti-PD-L1 therapy. MSNP-MaN-PDL1bp/CLT treatment upregulated the levels of effector molecules such as granzyme B and proinflammatory cytokines (IFNγ and INFα) in the tumor tissue, indicating antitumoral T cell responses. This strategy of utilizing nanoparticles to trigger DC activation while promoting T cell stimulation can be used to amplify the antitumor T cell responses and represents a promising alternative to anti-PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Prateek Srivastava
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Marie Rütter
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Gover Antoniraj
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Yvonne Ventura
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ayelet David
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
6
|
Lan J, Zeng R, Li Z, Yang X, Liu L, Chen L, Sun L, Shen Y, Zhang T, Ding Y. Biomimetic Nanomodulators With Synergism of Photothermal Therapy and Vessel Normalization for Boosting Potent Anticancer Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408511. [PMID: 39180264 DOI: 10.1002/adma.202408511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Indexed: 08/26/2024]
Abstract
Combination therapy using photothermal therapy (PTT) and immunotherapy is one of the most promising approaches for eliciting host immune responses to ablate tumors. However, its therapeutic efficacy is limited due to inefficient immune cell infiltration and cellular immune responses. In this study, a biomimetic immunostimulatory nanomodulator, Tm@PDA-GA (4T1 membrane@polydopamine-gambogic acid), with homologous targeting is developed. The 4T1 membrane (Tm) coating reduced immunogenicity and facilitated uptake of Tm@PDA-GA by tumor cells. Polydopamine (PDA) as a drug carrier can induce PTT under near-infrared ray (NIR) irradiation and immunogenic cell death (ICD) to activate dendritic cells (DCs). Moreover, Tm@PDA-GA on-demand released gambogic acid (GA) in an acidic tumor microenvironment, inhibiting the expression of heat shock proteins (HSPs) for synergetic chemo-photothermal anti-tumor activity and increasing the ICD of 4T1 cells. More importantly, GA can normalize the vessels via HIF-1α and VEGF inhibition to enhance immune infiltration and alleviate hypoxia stress. Thus, Tm@PDA-GA induced ICD, activated DCs, stimulated cytotoxic T cells, and suppressed Tregs. Moreover, Tm@PDA-GA is combined with anti-PD-L1 to further augment the tumor immune response and effectively suppress tumor growth and lung metastasis. In conclusion, biomaterial-mediated PTT combined with vessel normalization is a promising strategy for effective immunotherapy of triple-negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ruifeng Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xuguang Yang
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lixia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liyan Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- National Innovation Platform for Medical Industry-Education Integration, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
7
|
Hu Y, Zhang Y, Shi F, Yang R, Yan J, Han T, Guan L. Reversal of T-cell exhaustion: Mechanisms and synergistic approaches. Int Immunopharmacol 2024; 138:112571. [PMID: 38941674 DOI: 10.1016/j.intimp.2024.112571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
T cells suffer from long-term antigen stimulation and insufficient energy supply, leading to a decline in their effector functions, memory capabilities, and proliferative capacity, ultimately resulting in T cell exhaustion and an inability to perform normal immune functions in the tumor microenvironment. Therefore, exploring how to restore these exhausted T cells to a state with effector functions is of great significance. Exhausted T cells exhibit a spectrum of molecular alterations, such as heightened expression of inhibitory receptors, shifts in transcription factor profiles, and modifications across epigenetic, metabolic, and transcriptional landscapes. This review provides a comprehensive overview of various strategies to reverse T cell exhaustion, including immune checkpoint blockade, and explores the potential synergistic effects of combining multiple approaches to reverse T cell exhaustion. It offers new insights and methods for achieving more durable and effective reversal of T cell exhaustion.
Collapse
Affiliation(s)
- Yang Hu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yaqi Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang 453003, China
| | - Fenfen Shi
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ruihan Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jiayu Yan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Tao Han
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang 453003, China.
| | - Liping Guan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
8
|
Nguyen YTM, Sibley L, Przanowski P, Zhao XY, Kovacs M, Wang S, Jones MK, Cowan M, Liu W, Merchak AR, Gaultier A, Janes K, Zang C, Harris T, Ewald SE, Zong H. Toxoplasma gondii infection supports the infiltration of T cells into brain tumors. J Neuroimmunol 2024; 393:578402. [PMID: 38996717 PMCID: PMC11318612 DOI: 10.1016/j.jneuroim.2024.578402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024]
Abstract
Few T cells infiltrate into primary brain tumors, fundamentally hampering the effectiveness of immunotherapy. We hypothesized that Toxoplasma gondii, a microorganism that naturally elicits a Th1 response in the brain, can promote T cell infiltration into brain tumors despite their immune suppressive microenvironment. Using a mouse genetic model for medulloblastoma, we found that T. gondii infection induced the infiltration of activatable T cells into the tumor mass and led to myeloid cell reprogramming toward a T cell-supportive state, without causing severe health issues in mice. The study provides a concrete foundation for future studies to take advantage of the immune modulatory capacity of T. gondii to facilitate brain tumor immunotherapy.
Collapse
Affiliation(s)
- Yen T M Nguyen
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Lydia Sibley
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Piotr Przanowski
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Xiao-Yu Zhao
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Michael Kovacs
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Shengyuan Wang
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Marieke K Jones
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Maureen Cowan
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Wenjie Liu
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Andrea R Merchak
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alban Gaultier
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kevin Janes
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Chongzhi Zang
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA; Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Tajie Harris
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sarah E Ewald
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Hui Zong
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
9
|
Afshari AR, Sanati M, Ahmadi SS, Kesharwani P, Sahebkar A. Harnessing the capacity of phytochemicals to enhance immune checkpoint inhibitor therapy of cancers: A focus on brain malignancies. Cancer Lett 2024; 593:216955. [PMID: 38750720 DOI: 10.1016/j.canlet.2024.216955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
Brain cancers, particularly glioblastoma multiforme (GBM), are challenging health issues with frequent unmet aspects. Today, discovering safe and effective therapeutic modalities for brain tumors is among the top research interests. Immunotherapy is an emerging area of investigation in cancer treatment. Since immune checkpoints play fundamental roles in repressing anti-cancer immunity, diverse immune checkpoint inhibitors (ICIs) have been developed, and some monoclonal antibodies have been approved clinically for particular cancers; nevertheless, there are significant concerns regarding their efficacy and safety in brain tumors. Among the various tools to modify the immune checkpoints, phytochemicals show good effectiveness and excellent safety, making them suitable candidates for developing better ICIs. Phytochemicals regulate multiple immunological checkpoint-related signaling pathways in cancer biology; however, their efficacy for clinical cancer immunotherapy remains to be established. Here, we discussed the involvement of immune checkpoints in cancer pathology and summarized recent advancements in applying phytochemicals in modulating immune checkpoints in brain tumors to highlight the state-of-the-art and give constructive prospects for future research.
Collapse
Affiliation(s)
- Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Gómez-Valenzuela F, Wichmann I, Suárez F, Kato S, Ossandón E, Hermoso M, Fernández EA, Cuello MA. Cyclooxygenase-2 Blockade Is Crucial to Restore Natural Killer Cell Activity before Anti-CTLA-4 Therapy against High-Grade Serous Ovarian Cancer. Cancers (Basel) 2023; 16:80. [PMID: 38201508 PMCID: PMC10778357 DOI: 10.3390/cancers16010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic inflammation influences the tumor immune microenvironment (TIME) in high-grade serous ovarian cancer (HGSOC). Specifically, cyclooxygenase-2 (COX-2) overexpression promotes cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) expression. Notably, elevated COX-2 levels in the TIME have been associated with reduced response to anti-CTLA-4 immunotherapy. However, the precise impact of COX-2, encoded by PTGS2, on the immune profile remains unknown. To address this, we performed an integrated bioinformatics analysis using data from the HGSOC cohorts (TCGA-OV, n = 368; Australian cohort AOCS, n = 80; GSE26193, n = 62; and GSE30161, n = 45). Employing Gene Set Variation Analysis (GSVA), MIXTURE and Ecotyper cell deconvolution algorithms, we concluded that COX-2 was linked to immune cell ecosystems associated with shorter survival, cell dysfunction and lower NK cell effector cytotoxicity capacity. Next, we validated these results by characterizing circulating NK cells from HGSOC patients through flow cytometry and cytotoxic assays while undergoing COX-2 and CTLA-4 blockade. The blockade of COX-2 improved the cytotoxic capacity of NK cells against HGSOC cell lines. Our findings underscore the relevance of COX-2 in shaping the TIME and suggest its potential as a prognostic indicator and therapeutic target. Increased COX-2 expression may hamper the effectivity of immunotherapies that require NK cell effector function. These results provide a foundation for experimental validation and clinical trials investigating combined therapies targeting COX-2 and CTLA-4 in HGSOC.
Collapse
Affiliation(s)
- Fernán Gómez-Valenzuela
- Department of Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (F.S.); (S.K.); (E.O.)
| | - Ignacio Wichmann
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 833150, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 833150, Chile
- Division of Oncology, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Felipe Suárez
- Department of Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (F.S.); (S.K.); (E.O.)
| | - Sumie Kato
- Department of Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (F.S.); (S.K.); (E.O.)
| | - Enrique Ossandón
- Department of Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (F.S.); (S.K.); (E.O.)
| | - Marcela Hermoso
- Innate Immunity Laboratory, Immunology Program, Biomedical Sciences Institute, Faculty of Medicine, Universidad de Chile, Santiago 8900085, Chile;
| | - Elmer A. Fernández
- Fundación para el Progreso de la Medicina (CONICET), Córdoba X5000, Argentina;
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba X5000, Argentina
| | - Mauricio A. Cuello
- Department of Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (F.S.); (S.K.); (E.O.)
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 833150, Chile
- Center for Cancer Prevention and Control (CECAN), Santiago 8330023, Chile
| |
Collapse
|
11
|
Xu C, Xu H, Liu B. Head and neck squamous cell carcinoma-specific prognostic signature and drug sensitive subtypes based on programmed cell death-related genes. PeerJ 2023; 11:e16364. [PMID: 38025757 PMCID: PMC10668860 DOI: 10.7717/peerj.16364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Background As a complex group of malignancies, head and neck squamous cell carcinoma (HNSC) is one of the leading causes of cancer mortality. This study aims to establish a reliable clinical classification and gene signature for HNSC prognostic prediction and precision treatments. Methods A consensus clustering analysis was performed to group HNSC patients in The Cancer Genome Atlas (TCGA) database based on genes linked to programmed cell death (PCD). Differentially expressed genes (DEGs) between subtypes were identified using the "limma" R package. The TCGA prognostic signature and PCD-related prognostic genes were found using a least absolute shrinkage and selection operator (LASSO) regression analysis and univariate Cox regression analysis. The robustness of the LASSO analysis was validated using datasets GSE65858 and GSE41613. A cell counting kit-8 (CCK-8) test, Western blot, and real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) were used to evaluate the expression and viability of prognostic genes. Results Four molecular subtypes were identified in PCD-related genes. Subtype C4 had the best prognosis and the highest immune score, while subtype C1 exhibited the most unfavorable outcomes. Three hundred shared DEGs were identified among the four subtypes, and four prognostic genes (CTLA4, CAMK2N1, PLAU and CALML5) were used to construct a TCGA-HNSC prognostic model. High-risk patients manifested poorer prognosis, more inflammatory pathway enrichment, and lower immune cell infiltration. High-risk patients were more prone to immune escape and were more likely to be resistant to Cisplatin and 5-Fluorouracil. Prognosis prediction was validated in external datasets. The expression of CTLA4, CAMK2N1, PLAU and CALML5 was enhanced in CAL-27 and SCC-25 cell lines, and CALML5 inhibited CAL-27 and SCC-25 cell viability. Conclusion This study shares novel insights into HNSC classification and provides a reliable PCD-related prognostic signature for prognosis prediction and treatment for patients with HNSC.
Collapse
Affiliation(s)
- Chengbo Xu
- Department of Otolaryngology Head and Neck Surgery, Jinhua Wenrong Hospital, Jinhua, China
| | - Hongfang Xu
- Department of Otolaryngology Head and Neck Surgery, Jinhua Wenrong Hospital, Jinhua, China
| | - Baimei Liu
- Department of Otolaryngology Head and Neck Surgery, Yongkang First People’s Hospital, Yongkang, China
| |
Collapse
|
12
|
Li J, Xiao Z, Wang D, Jia L, Nie S, Zeng X, Hu W. The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells. Mol Cancer 2023; 22:141. [PMID: 37649123 PMCID: PMC10466891 DOI: 10.1186/s12943-023-01844-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development of tumor immunotherapies, including adoptive cell therapies (ACTs), cancer vaccines and antibody-based therapies, particularly for solid tumors. With the development of next-generation sequencing and bioinformatics technology, the rapid identification and prediction of tumor-specific antigens (TSAs) has become possible. Compared with tumor-associated antigens (TAAs), highly immunogenic TSAs provide new targets for personalized tumor immunotherapy and can be used as prospective indicators for predicting tumor patient survival, prognosis, and immune checkpoint blockade response. Here, the identification and characterization of neoantigens and the clinical application of neoantigen-based TCR-T immunotherapy strategies are summarized, and the current status, inherent challenges, and clinical translational potential of these strategies are discussed.
Collapse
Affiliation(s)
- Jiangping Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zhiwen Xiao
- Department of Otolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China
| | - Donghui Wang
- Department of Radiation Oncology, The Third Affiliated Hospital Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Lei Jia
- International Health Medicine Innovation Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Shihong Nie
- Department of Radiation Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, People's Republic of China
| | - Xingda Zeng
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei Hu
- Division of Vascular Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| |
Collapse
|
13
|
Yang H, Liu Y, Chen L, Zhao J, Guo M, Zhao X, Wen Z, He Z, Chen C, Xu L. MiRNA-Based Therapies for Lung Cancer: Opportunities and Challenges? Biomolecules 2023; 13:877. [PMID: 37371458 DOI: 10.3390/biom13060877] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Lung cancer is a commonly diagnosed cancer and the leading cause of cancer-related deaths, posing a serious health risk. Despite new advances in immune checkpoint and targeted therapies in recent years, the prognosis for lung cancer patients, especially those in advanced stages, remains poor. MicroRNAs (miRNAs) have been shown to modulate tumor development at multiple levels, and as such, miRNA mimics and molecules aimed at regulating miRNAs have shown promise in preclinical development. More importantly, miRNA-based therapies can also complement conventional chemoradiotherapy, immunotherapy, and targeted therapies to reverse drug resistance and increase the sensitivity of lung cancer cells. Furthermore, small interfering RNA (siRNA) and miRNA-based therapies have entered clinical trials and have shown favorable development prospects. Therefore, in this paper, we review recent advances in miRNA-based therapies in lung cancer treatment as well as adjuvant therapy and present the current state of clinical lung cancer treatment. We also discuss the challenges facing miRNA-based therapies in the clinical application of lung cancer treatment to provide new ideas for the development of novel lung cancer therapies.
Collapse
Affiliation(s)
- Han Yang
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Yufang Liu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Longqing Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Zhenke Wen
- Institute of Biomedical Research, Soochow University, Soochow 563000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
14
|
Djermane R, Nieto C, Vega MA, Del Valle EMM. Antibody-Loaded Nanoplatforms for Colorectal Cancer Diagnosis and Treatment: An Update. Pharmaceutics 2023; 15:pharmaceutics15051514. [PMID: 37242756 DOI: 10.3390/pharmaceutics15051514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
At present, colorectal cancer (CRC) is the second deadliest type of cancer, partly because a high percentage of cases are diagnosed at advanced stages when tumors have already metastasized. Thus, there is an urgent need to develop novel diagnostic systems that allow early detection as well as new therapeutic systems that are more specific than those currently available. In this context, nanotechnology plays a very important role in the development of targeted platforms. In recent decades, many types of nanomaterials with advantageous properties have been used for nano-oncology applications and have been loaded with different types of targeted agents, capable of recognizing tumor cells or biomarkers. Indeed, among the different types of targeted agents, the most widely used are monoclonal antibodies, as the administration of many of them is already approved by the main drug regulatory agencies for the treatment of several types of cancer, including CRC. In this way, this review comprehensively discusses the main drawbacks of the conventional screening technologies and treatment for CRC, and it presents recent advances in the application of antibody-loaded nanoplatforms for CRC detection, therapy or theranostics applications.
Collapse
Affiliation(s)
- Rania Djermane
- Chemical Engineering Department, University of Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain
| | - Celia Nieto
- Chemical Engineering Department, University of Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain
- Biomedical Research Institute of Salamanca (IBSAL), University Care Complex of Salamanca, Paseo de San Vicente 58, 37007 Salamanca, Spain
| | - Milena A Vega
- Chemical Engineering Department, University of Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain
- Biomedical Research Institute of Salamanca (IBSAL), University Care Complex of Salamanca, Paseo de San Vicente 58, 37007 Salamanca, Spain
| | - Eva M Martín Del Valle
- Chemical Engineering Department, University of Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain
- Biomedical Research Institute of Salamanca (IBSAL), University Care Complex of Salamanca, Paseo de San Vicente 58, 37007 Salamanca, Spain
| |
Collapse
|
15
|
Lasorsa F, di Meo NA, Rutigliano M, Milella M, Ferro M, Pandolfo SD, Crocetto F, Tataru OS, Autorino R, Battaglia M, Ditonno P, Lucarelli G. Immune Checkpoint Inhibitors in Renal Cell Carcinoma: Molecular Basis and Rationale for Their Use in Clinical Practice. Biomedicines 2023; 11:biomedicines11041071. [PMID: 37189689 DOI: 10.3390/biomedicines11041071] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Renal cell carcinoma (RCC) is the seventh most common cancer in men and the ninth most common cancer in women worldwide. There is plenty of evidence about the role of the immune system in surveillance against tumors. Thanks to a better understanding of immunosurveillance mechanisms, immunotherapy has been introduced as a promising cancer treatment in recent years. Renal cell carcinoma (RCC) has long been thought chemoresistant but highly immunogenic. Considering that up to 30% of the patients present metastatic disease at diagnosis, and around 20–30% of patients undergoing surgery will suffer recurrence, we need to identify novel therapeutic targets. The introduction of immune checkpoint inhibitors (ICIs) in the clinical management of RCC has revolutionized the therapeutic approach against this tumor. Several clinical trials have shown that therapy with ICIs in combination or ICIs and the tyrosine kinase inhibitor has a very good response rate. In this review article we summarize the mechanisms of immunity modulation and immune checkpoints in RCC and discuss the potential therapeutic strategies in renal cancer treatment.
Collapse
Affiliation(s)
- Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Nicola Antonio di Meo
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Monica Rutigliano
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Martina Milella
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Savio Domenico Pandolfo
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Octavian Sabin Tataru
- The Institution Organizing University Doctoral Studies (I.O.S.U.D.), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540139 Târgu Mureș, Romania
| | - Riccardo Autorino
- Department of Urology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Michele Battaglia
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Pasquale Ditonno
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
16
|
Tang F, Pan Z, Wang Y, Lan T, Wang M, Li F, Quan W, Liu Z, Wang Z, Li Z. Advances in the Immunotherapeutic Potential of Isocitrate Dehydrogenase Mutations in Glioma. Neurosci Bull 2022; 38:1069-1084. [PMID: 35670952 PMCID: PMC9468211 DOI: 10.1007/s12264-022-00866-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/16/2022] [Indexed: 11/26/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) is an essential metabolic enzyme in the tricarboxylic acid cycle (TAC). The high mutation frequency of the IDH gene plays a complicated role in gliomas. In addition to affecting gliomas directly, mutations in IDH can also alter their immune microenvironment and can change immune-cell function in direct and indirect ways. IDH mutations mediate immune-cell infiltration and function by modulating immune-checkpoint gene expression and chemokine secretion. In addition, IDH mutation-derived D2-hydroxyglutarate can be absorbed by surrounding immune cells, also affecting their functioning. In this review, we summarize current knowledge about the effects of IDH mutations as well as other gene mutations on the immune microenvironment of gliomas. We also describe recent preclinical and clinical data related to IDH-mutant inhibitors for the treatment of gliomas. Finally, we discuss different types of immunotherapy and the immunotherapeutic potential of IDH mutations in gliomas.
Collapse
Affiliation(s)
- Feng Tang
- Brain Glioma Center and Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China
| | - Zhiyong Pan
- Brain Glioma Center and Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China
| | - Yi Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Tian Lan
- Brain Glioma Center and Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China
| | - Mengyue Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Fengping Li
- Brain Glioma Center and Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China
| | - Wei Quan
- Brain Glioma Center and Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China
| | - Zhenyuan Liu
- Brain Glioma Center and Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China
| | - Zefen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
| | - Zhiqiang Li
- Brain Glioma Center and Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China.
| |
Collapse
|
17
|
Bassi A, Krance SH, Pucchio A, Pur DR, Miranda RN, Felfeli T. The Application of Artificial Intelligence in the Analysis of Biomarkers for Diagnosis and Management of Uveitis and Uveal Melanoma: A Systematic Review. Clin Ophthalmol 2022; 16:2895-2908. [PMID: 36065357 PMCID: PMC9440710 DOI: 10.2147/opth.s377358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aims to identify the available literature describing the utilization of artificial intelligence (AI) as a clinical tool in uveal diseases. Methods A comprehensive literature search was conducted in 5 electronic databases, finding studies relating to AI and uveal diseases. Results After screening 10,258 studies,18 studies met the inclusion criteria. Uveal melanoma (44%) and uveitis (56%) were the two uveal diseases examined. Ten studies (56%) used complex AI, while 13 studies (72%) used regression methods. Lactate dehydrogenase (LDH), found in 50% of studies concerning uveal melanoma, was the only biomarker that overlapped in multiple studies. However, 94% of studies highlighted that the biomarkers of interest were significant. Conclusion This study highlights the value of using complex and simple AI tools as a clinical tool in uveal diseases. Particularly, complex AI methods can be used to weigh the merit of significant biomarkers, such as LDH, in order to create staging tools and predict treatment outcomes.
Collapse
Affiliation(s)
- Arshpreet Bassi
- Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Saffire H Krance
- Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Aidan Pucchio
- School of Medicine, Queen’s University, Kingston, Ontario, Canada
| | - Daiana R Pur
- Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Rafael N Miranda
- Toronto Health Economics and Technology Assessment Collaborative, Toronto, Ontario, Canada
- The Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Tina Felfeli
- Toronto Health Economics and Technology Assessment Collaborative, Toronto, Ontario, Canada
- The Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology and Visual Sciences, University of Toronto, Toronto, Ontario, Canada
- Correspondence: Tina Felfeli, Department of Ophthalmology and Visual Sciences, University of Toronto, 340 College Street, Suite 400, Toronto, ON M5T 3A9, Canada, Fax +416-978-4590, Email
| |
Collapse
|
18
|
Liu YF, Zhang ZC, Wang SY, Fu SQ, Cheng XF, Chen R, Sun T. Immune checkpoint inhibitor-based therapy for advanced clear cell renal cell carcinoma: A narrative review. Int Immunopharmacol 2022; 110:108900. [PMID: 35753122 DOI: 10.1016/j.intimp.2022.108900] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022]
Abstract
The prognosis for advanced clear cell renal cell carcinoma (ccRCC) is not satisfactory, even though its treatment has evolved rapidly over the past 20 years. Systemic ccRCC treatment options mainly involve antiangiogenic therapy, immune checkpoint blockade, or a combination of these therapies, and as more clinical evidence becomes available, immune checkpoint inhibitors (ICIs) are increasingly dominant. Conventional ICIs lead to the restoration of T-cell activation and a reduction in T-cell depletion by specifically blocking programmed cell death 1 (PD-1), programmed cell death 1 ligand 1 (PD-L1) or cytotoxic T lymphocyte antigen 4 (CTLA-4), ultimately enhancing the antitumor immune response. There is no doubt that these therapies have achieved some clinical efficacy in the overall ccRCC population, but response rates and durability remain a great challenge. Therefore, novel immune checkpoints or new combination therapeutic strategies based on ICIs continue to be sought and developed. This review will provide a comprehensive overview of ICI-based therapeutic strategies in advanced ccRCC, including their mechanisms of action and the latest clinical evidence.
Collapse
Affiliation(s)
- Yi-Fu Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Zhi-Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Si-Yuan Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Sheng-Qiang Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Xiao-Feng Cheng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Ru Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China.
| |
Collapse
|
19
|
Zhong Z, Vong CT, Chen F, Tan H, Zhang C, Wang N, Cui L, Wang Y, Feng Y. Immunomodulatory potential of natural products from herbal medicines as immune checkpoints inhibitors: Helping to fight against cancer via multiple targets. Med Res Rev 2022; 42:1246-1279. [PMID: 35028953 PMCID: PMC9306614 DOI: 10.1002/med.21876] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022]
Abstract
Immunotherapy sheds new light to cancer treatment and is satisfied by cancer patients. However, immunotoxicity, single-source antibodies, and single-targeting stratege are potential challenges to the success of cancer immunotherapy. A huge number of promising lead compounds for cancer treatment are of natural origin from herbal medicines. The application of natural products from herbal medicines that have immunomodulatory properties could alter the landscape of immunotherapy drastically. The present study summarizes current medication for cancer immunotherapy and discusses the potential chemicals from herbal medicines as immune checkpoint inhibitors that have a broad range of immunomodulatory effects. Therefore, this review provides valuable insights into the efficacy and mechanism of actions of cancer immunotherapies, including natural products and combined treatment with immune checkpoint inhibitors, which could confer an improved clinical outcome for cancer treatment.
Collapse
Affiliation(s)
- Zhangfeng Zhong
- School of Chinese MedicineThe University of Hong KongPokfulamHong KongChina
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauTaipaMacao SARChina
| | - Chi Teng Vong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauTaipaMacao SARChina
| | - Feiyu Chen
- School of Chinese MedicineThe University of Hong KongPokfulamHong KongChina
| | - Horyue Tan
- School of Chinese MedicineThe University of Hong KongPokfulamHong KongChina
| | - Cheng Zhang
- School of Chinese MedicineThe University of Hong KongPokfulamHong KongChina
| | - Ning Wang
- School of Chinese MedicineThe University of Hong KongPokfulamHong KongChina
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural DrugsGuangdong Medical UniversityZhanjiangGuangdongChina
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauTaipaMacao SARChina
| | - Yibin Feng
- School of Chinese MedicineThe University of Hong KongPokfulamHong KongChina
| |
Collapse
|
20
|
Wang L, Sun W, Zhang G, Huo J, Tian Y, Zhang Y, Yang X, Liu Y. T-cell activation is associated with high-grade serous ovarian cancer survival. J Obstet Gynaecol Res 2022; 48:2189-2197. [PMID: 35334503 DOI: 10.1111/jog.15234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/05/2022] [Accepted: 03/12/2022] [Indexed: 11/30/2022]
Abstract
AIM High-grade serous ovarian cancer (HGSOC) is an aggressive disease that is largely resistant to today's immunotherapies. Here, we aimed to investigate the prognostic significance of CTLA4, PD-1, and T-cell activation status in HGSOC. METHODS Using a publicly accessed microarray dataset including 260 HGSOC samples, we calculated Kaplan-Meier survival curves for overall survival (OS), evaluated associations with multivariate Cox regression models to evaluate the associations, and summarized using a hazard ratio (HR). The correlations between PD-1 gene expression and that of other genes were calculated by Pearson correlation. RESULTS Multivariate survival analyses showed that high PD-1 expression but not CTLA4 was associated with longer OS (HR = 0.69; 95% confidence interval [CI] = 0.52-0.91; p = 0.01), and that higher T-cell activation score was associated with better outcome (HR = 0.74; 95% confidence interval [CI] = 0.58-0.95; p = 0.02). The top three PD-1 highly correlated genes were SIRPG (r = 0.90, p < 2E-16), FASL (r = 0.89, p < 2E-16), and CD8a (r = 0.87, p < 2E-16). HGSOC patients' OS is positively associated T-cell activation score and PD-1 expression but not CTLA4. CONCLUSION T cell activation score may serve as a candidate for personalized immunotherapy in HGSOC. The application of anti-PD-1 therapy to HGSOC should be cautious.
Collapse
Affiliation(s)
- Lei Wang
- Microbiology and Immunology Department, Cangzhou Medical College, Cangzhou, P.R. China
| | - Wenjie Sun
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, P.R. China
| | - Guoan Zhang
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, P.R. China
| | - Jingrui Huo
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, P.R. China
| | - Yi Tian
- Microbiology and Immunology Department, Cangzhou Medical College, Cangzhou, P.R. China
| | - Yan Zhang
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, P.R. China
| | - Xiaohui Yang
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, P.R. China
| | - Yingfu Liu
- Cangzhou Nanobody Technology Innovation Center, Cangzhou Medical College, Cangzhou, P.R. China
| |
Collapse
|
21
|
Wang Z, Chen Z, Zhao H, Lin H, Wang J, Wang N, Li X, Ding D. ISPRF: a machine learning model to predict the immune subtype of kidney cancer samples by four genes. Transl Androl Urol 2021; 10:3773-3786. [PMID: 34804821 PMCID: PMC8575581 DOI: 10.21037/tau-21-650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cell carcinoma (RCC). Immunotherapy, especially anti-PD-1, is becoming a pillar of ccRCC treatment. However, precise biomarkers and robust models are needed to select the proper patients for immunotherapy. Methods A total of 831 ccRCC transcriptomic profiles were obtained from 6 datasets. Unsupervised clustering was performed to identify the immune subtypes among ccRCC samples based on immune cell enrichment scores. Weighted correlation network analysis (WGCNA) was used to identify hub genes distinguishing subtypes and related to prognosis. A machine learning model was established by a random forest (RF) algorithm and used on an open and free online website to predict the immune subtype. Results In the identified immune subtypes, subtype2 was enriched in immune cell enrichment scores and immunotherapy biomarkers. WGCNA analysis identified four hub genes related to immune subtypes, CTLA4, FOXP3, IFNG, and CD19. The RF model was constructed by mRNA expression of these four hub genes, and the value of area under the receiver operating characteristic curve (AUC) was 0.78. Subtype2 patients in the independent validation cohort had a better drug response and prognosis for immunotherapy treatment. Moreover, an open and free website was developed by the RF model (https://immunotype.shinyapps.io/ISPRF/). Conclusions The current study constructs a model and provides a free online website that could identify suitable ccRCC patients for immunotherapy, and it is an important step forward to personalized treatment.
Collapse
Affiliation(s)
- Zhifeng Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Zihao Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongfan Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Lin
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Ning Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Xiqing Li
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Degang Ding
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| |
Collapse
|
22
|
Li B, He Y, Li P, Chen X. Leptin Receptor Overlapping Transcript (LEPROT) Is Associated with the Tumor Microenvironment and a Prognostic Predictor in Pan-Cancer. Front Genet 2021; 12:749435. [PMID: 34804118 PMCID: PMC8596502 DOI: 10.3389/fgene.2021.749435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background Leptin receptor overlapping transcript (LEPROT) is reported to be involved in metabolism regulation and energy balance as well as molecular signaling of breast cancer and osteosarcoma. LEPROT is expressed in various tissue and is suggested to be involved in cancer developments but with contradictory roles. The comprehensive knowledge of the effects of LEPROT on cancer development and progression across pan-cancer is still missing. Methods The expressions of LEPROT in cancers were compared with corresponding normal tissues across pan-cancer types. The relationships between expression and methylation of LEPROT were then demonstrated. The correlations of LEPROT with the tumor microenvironment (TME), including immune checkpoints, tumor immune cells infiltration (TII), and cancer-associated fibroblasts (CAFs), were also investigated. Co-expression analyses and functional enrichments were conducted to suggest the most relevant genes and the mechanisms of the effects in cancers for LEPROT. Finally, the correlations of LEPROT with patient survival and immunotherapy response were explored. Results LEPROT expression was found to be significantly aberrant in 15/19 (78.9%) cancers compared with corresponding normal tissues; LEPROT was downregulated in 12 cancers and upregulated in three cancers. LEPROT expressions were overall negatively correlated with its methylation alterations. Moreover, LEPROT was profoundly correlated with the TME, including immune checkpoints, TIIs, and CAFs. According to co-expression analyses and functional enrichments, the interactions of LEPROT with the TME may be mediated by the interleukin six signal transducer/the Janus kinase/signal transducers and activators of the transcription signaling pathway. Prognostic values may exist for LEPROT to predict patient survival and immunotherapy response in a context-dependent way. Conclusions LEPROT affects cancer development by interfering with the TME and regulating inflammatory or immune signals. LEPROT may also serve as a potential prognostic marker or a target in cancer therapy. This is the first study to investigate the roles of LEPROT across pan-cancer.
Collapse
Affiliation(s)
- Bingsheng Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Yao He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Pan Li
- Institute for Pathology of the Ludwig-Maximilians-Universität München, Munich, Germany
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|