1
|
Zhang Y, Wang D, Wu X, Zhao T, He M, He Y, Meng C. Targeting the lncRNA GAS5/TLR4/NLRP3 signaling cascade inhibits endometrial stromal cell pyroptosis and prevents the progression of intrauterine adhesions. J Reprod Immunol 2025; 168:104450. [PMID: 39951898 DOI: 10.1016/j.jri.2025.104450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/04/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
Intrauterine adhesion (IUA) poses a serious threat to women's health, and its specific pathogenesis has not yet been elucidated. Our study found through high-throughput sequencing that differentially expressed genes of the endometrial tissues from healthy individuals or IUA patients were enriched in the toll-like receptor (TLR), nuclear factor-kappa B (NF-kB), and nucleotide-binding oligomerization domain-like receptor (NLR) signaling pathways. Meanwhile, we observed that compared to the controls, long non-coding RNA (lncRNA) growth arrest-specific transcripts 5 (GAS5) was significantly upregulated in the endometrial tissue of IUA patients and scratching/lipopolysaccharide (LPS)-induced IUA model mice. Subsequently, results from the functional verification assay, including hematoxylin-eosin staining, enzyme-linked immunosorbent assay, and western blot, showed that knockdown of GAS5 improved endometrial injury and uterine adhesions, decreased the levels of TIMP1, α-SMA, Vimentin, and COL1A1, but elevated MMP9 level to reduce excessive accumulation of extracellular matrix (ECM), and inhibited the expression of NLRP3, cleaved caspase-1, GSDMD, and nuclear p65 to ameliorate pyroptosis in IUA model mice. As confirmed by bioinformatics analysis and dual luciferase reporter gene system, GAS5 sponged microRNA (miR)-205-5p to upregulate TLR4, further activating the NF-kB and NLRP3 signaling in endometrial stromal cells (ESCs). The in vitro functional recovery experiments suggested that GAS5 knockdown alleviated LPS-induced activation of the NF-kB and NLRP3 signaling, pyroptotic cell death, and ECM deposition in ESCs, which was counteracted by overexpressing TLR4 and NLRP3. In a word, our study proved that targeting the GAS5/TLR4/NLRP3 signaling cascade inhibits ESCs pyroptosis and prevents the progression of IUA, providing promising therapeutic strategies for IUA disease.
Collapse
Affiliation(s)
- Yifeng Zhang
- Gynecology Department, Yunnan First People's Hospital, Kunming, Yunan 650032, China; The Affiliated Hospital of Kunming University of Science and technology, Kunming, Yunan 650032, China.
| | - Dongjie Wang
- Gynecology Department, Yunnan First People's Hospital, Kunming, Yunan 650032, China; The Affiliated Hospital of Kunming University of Science and technology, Kunming, Yunan 650032, China.
| | - Xiaomei Wu
- Gynecology Department, Yunnan First People's Hospital, Kunming, Yunan 650032, China; The Affiliated Hospital of Kunming University of Science and technology, Kunming, Yunan 650032, China.
| | - Ting Zhao
- Gynecology Department, Yunnan First People's Hospital, Kunming, Yunan 650032, China; The Affiliated Hospital of Kunming University of Science and technology, Kunming, Yunan 650032, China.
| | - Ming He
- Kunming Medical University, Kunming, Yunan 650500, China.
| | - Yunyu He
- Gynecology Department, Yunnan First People's Hospital, Kunming, Yunan 650032, China; The Affiliated Hospital of Kunming University of Science and technology, Kunming, Yunan 650032, China.
| | - Chunmei Meng
- Gynecology Department, Yunnan First People's Hospital, Kunming, Yunan 650032, China; The Affiliated Hospital of Kunming University of Science and technology, Kunming, Yunan 650032, China.
| |
Collapse
|
2
|
Du Y, Shuai R, Luo S, Jin Y, Xu F, Zhang J, Liu D, Feng L. Exploring the molecular mechanism of estrogen therapy effectiveness after TCRA in IUA patients at single-cell level. Biol Direct 2024; 19:142. [PMID: 39722036 DOI: 10.1186/s13062-024-00583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Intrauterine adhesion (IUA) is a common cause of clinically refractory infertility, and there exists significant heterogeneity in the treatment outcomes among IUA patients with the similar severity after transcervical resection of adhesion(TCRA). The underlying mechanism of different treatment outcomes occur remains elusive, and the precise contribution of various cell subtypes in this process remains uncertain. RESULTS Here, we performed single-cell transcriptome sequencing on 10 human endometrial samples to establish a single-cell atlas differences between patients who responded to estrogen therapy and those who did not. The results showed increased infiltration of immune cells such as monocyte macrophages, T cells, and natural killer (NK) cells in patients who did not respond to estrogen therapy. Our findings indicate that distinct fibroblast subsets are implicated in the modulation of the Wnt, Hippo, and Hedgehog signaling pathways, as evidenced by functional enrichment analyses. This may have implications for the therapeutic efficacy in patients with IUA. Furthermore, we delineated the markers and transcriptional status of different macrophage subsets and identified two cell clusters, CXCL10high and CCL4L2high macrophage subsets, which are intimately associated with inflammation and fibrosis. The state of fibrosis and inflammatory response in human endometrial tissues with disparate treatment outcomes is revealed, and providing evidence to clarify the underlying determinants of sensitivity to estrogen therapy. CONCLUSIONS We described the transcriptional status of different cell subtypes in the two groups of patients, providing new ideas for exploring the molecular mechanism of the difference in the effectiveness of estrogen therapy in patients, and providing theoretical basis for providing precise and individualized treatment plans for IUA patients.
Collapse
Affiliation(s)
- Yue Du
- Department of Obstetrics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Ruzhen Shuai
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, 730000, China
| | - Sang Luo
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
- Key Laboratory of Ministry of Education for Fertility Preservation and Maintenance, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yiran Jin
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Fengjuan Xu
- The First School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Jingyi Zhang
- The First School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Dan Liu
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
- Key Laboratory of Ministry of Education for Fertility Preservation and Maintenance, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| | - Limin Feng
- Department of Obstetrics and Gynecology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
3
|
Zhu Z, Huang Y, Song Y, Lu J, Hu L, Chen X. LncRNA MALAT1 Knockdown Alleviates Fibrogenic Response in Human Endometrial Stromal Cells Via the miR-22-3p/TGFβR1/Smad2/3 Pathway. Cell Biochem Biophys 2024; 82:3573-3584. [PMID: 39154131 DOI: 10.1007/s12013-024-01445-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/19/2024]
Abstract
Intrauterine adhesion (IUA) resulting from irreversible fibrotic repair of endometrium is the main cause of secondary infertility in women, and current therapeutic approaches to IUA are limited. Increasing evidence has suggested the important role of competitive endogenous RNA (ceRNA) in IUA pathologies. This study aimed to investigate the long noncoding RNA (lncRNA) metastasis associated lung adenocarcinoma transcript 1 (MALAT1)-associated ceRNA in IUA development. We harvested endometrial tissues from patients with or without IUA and extracted endometrial stromal cells (ESCs) from normal endometrial tissues. Transforming growth factor β1 (TGF-β1) was used to induce fibrosis in ESCs. The expression of transforming growth factor β receptor 1 (TGFβR1), α-smooth muscle actin, phosphorylated suppressor of mother against decapentaplegic (p-Smad)2/3, collagen type I alpha 1, MALAT1, and microRNA (miR)-22-3p in endometrial tissues and ESCs was measured by reverse transcription quantitative polymerase chain reaction (RT-qPCR) or western blotting. Pearson's correlation analysis was conducted to assess the correlation between miR-22-3p expression or TGFβR1 and MALAT1 expression in endometrial tissues. The expression of TGFβR1 in ESCs was also evaluated by immunofluorescence staining. The location of MALAT1 was examined by fluorescence in situ hybridization. Luciferase reporter assays were performed to verify the binding relationship between MALAT1 or TGFβR1 and miR-22-3p. Cell viability was assessed via cell counting kit-8 assays. Our findings revealed that lncRNA MALAT1 and TGFβR1 were upregulated while miR-22-3p was downregulated in IUA endometrial tissues or TGF-β1-stimulated ESCs, and lncRNA MALAT1 expression was negatively correlated with miR-22-3p expression while being positively correlated with TGFβR1 expression in IUA endometrial tissues. Additionally, lncRNA MALAT1 was mainly located in the cytoplasm of ESCs and directly targeted miR-22-3p to regulate TGFβR1 expression. Moreover, knockdown of lncRNA MALAT1 exerted anti-fibrotic effects on ESCs by targeting miR-22-3p, and miR-22-3p overexpression inhibited the fibrosis of ESCs by binding to TGFβR1 3'untranslated region. Collectively, lncRNA MALAT1 promotes endometrial fibrosis by sponging miR-22-3p to regulate TGFβR1 and Smad2/3, and inhibition of MALAT1 may represent a promising therapeutic option for suppressing endometrial fibrosis.
Collapse
Affiliation(s)
- Zhengyan Zhu
- Department of Gynecology, Wuhan Third Hospital (Guanggu Campus), Wuhan, 430000, Hubei, China
| | - Yu Huang
- Department of Gynecology, Wuhan Third Hospital (Guanggu Campus), Wuhan, 430000, Hubei, China
| | - Yu Song
- Department of Gynecology, Wuhan Third Hospital (Guanggu Campus), Wuhan, 430000, Hubei, China
| | - Jingquan Lu
- Department of Gynecology, Wuhan Third Hospital (Guanggu Campus), Wuhan, 430000, Hubei, China
| | - Lina Hu
- Department of Gynecology, Wuhan Third Hospital (Guanggu Campus), Wuhan, 430000, Hubei, China
| | - Xuemei Chen
- Department of Gynecology, Wuhan Third Hospital (Guanggu Campus), Wuhan, 430000, Hubei, China.
| |
Collapse
|
4
|
Chen JM, Huang QY, Chen WH, Wu JX, Zheng LT, You HJ, Shi YC, Lin S, Shi QR. Transcriptomics of tissue exosomes to investigate miR-195-5p's amelioration of endometrial fibrosis via the YAP-Smad7 pathway: an animal study. J Transl Med 2024; 22:1050. [PMID: 39574130 PMCID: PMC11580480 DOI: 10.1186/s12967-024-05871-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/09/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND A significant research gap exists regarding the role of tissue exosomes in intrauterine adhesions (IUAs). This study aims to investigate the involvement of miR-195-5p and its regulatory network in IUAs through the analysis of tissue exosomes. METHODS Exosomes from rat uterine tissue with intrauterine adhesions were analyzed via transcriptomics to identify downstream target genes of miR-195-5p, cross-referencing with the human endometrial transcriptomics database GSE224093. Dual luciferase labeling confirmed miRNA-target gene interactions. The therapeutic efficacy of a miR-195-5p agonist was assessed in vivo through HE staining, Masson staining, and mating tests. The mechanisms underlying extracellular matrix (ECM) deposition and myofibroblast transdifferentiation in endometrial fibrosis were investigated both in vitro and in vivo using RT-PCR, Western Blot, immunofluorescence, and immunohistochemistry. Migration ability of endometrial stromal cells was evaluated using CCK8, scratch tests, and Transwell assays. Finally, the clinical potential of miR-195-5p was compared with autologous adipose-derived mesenchymal stem cells. RESULTS The expression of miR-195-5p in uterine tissue exosomes from intrauterine adhesions was found to be decreased. Treatment with a miR-195-5p agonist resulted in improved endometrial health, reduced fibrosis, increased glandular density, and enhanced birth rates in rats. Both in vivo and in vitro experiments confirmed that miR-195-5p decreased ECM deposition, reduced myofibroblast transdifferentiation, and inhibited the migration of endometrial stromal cells. This was achieved through the downregulation of YAP expression in the Hippo pathway and the upregulation of Smad7. Notably, the therapeutic efficacy of miR-195-5p agonists was comparable to that of stem cell therapy, offering promising avenues for clinical application. CONCLUSIONS Differential expression of miR-195-5p in tissue exosomes can reduce ECM deposition and myofibroblast transdifferentiation, improving endometrial fibrosis by regulating the YAP-Smad7 pathway in the Hippo signaling cascade.
Collapse
Affiliation(s)
- Jia-Ming Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Qiao-Yi Huang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Wei-Hong Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Jin-Xiang Wu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Ling-Tao Zheng
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Hui-Jie You
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Yan-Chuan Shi
- Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, 999029, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, 999029, Australia
| | - Shu Lin
- Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, 999029, Australia.
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China.
| | - Qi-Rong Shi
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|
5
|
Yang Z, Chen K, Zhang Y, Xu B, Huang Y, Zhang X, Liu Z, Wang T, Wu D, Peng T, Lu T, Cai H, Wang X. Study on pharmacokinetic and tissue distribution of hyperin, astragalin, kaempferol-3-O-β-D-glucuronide from rats with multiple administrations of Semen Cuscutae processed with salt solution with effect of treating recurrent spontaneous abortion. Front Pharmacol 2024; 15:1440810. [PMID: 39351087 PMCID: PMC11439818 DOI: 10.3389/fphar.2024.1440810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/28/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Semen Cuscutae is a traditional Chinese medicine (TCM) that tonifies the kidneys and prevents miscarriage. According to Chinese medicine theory, kidney deficiency is one of the main causes of recurrent spontaneous abortion (RSA). The previous studies showed that raw product of Semen Cuscutae (SP) and Semen Cuscutae processed with salt solution (YP) have ameliorative effects on RSA, and that YP is superior to SP. However, the active components of YP to ameliorate RSA remain unclear and require further studies. The objective of this study is to investigate the active components of YP in ameliorating RSA. Methods First, a rat model of RSA was established using hydroxyurea in combination with mifepristone. Aqueous decoction of YP was given by gavage to rats. Second, pregnant rats were sampled on days 5, 7, 9, 10 and 12 during the modelling period. The content of Hyperin (HY), astragalin (AS) and kaempferol-3-O-β-D-glucuronide (KA) in blood and liver, heart, spleen, lung and kidney tissues were detected by liquid chromatography-mass spectrometry (LC-MS). The pharmacodynamic indicators including progesterone (P), chorionic gonadotropin β (β-HCG), estradiol (E2), tumor necrosis factor-α (TFN-α), interleukin 4 (IL-4), and tryptophan (TRP) were measured by enzyme-linked immunosorbent assay (ELISA) Pearson's correlation analysis and grey relational analysis were used to establish the relationship between the pharmacodynamic indexes and chemical constituents. Results The pharmacokinetic results showed that the area under curve (AUC) value of KA was the largest. The tissue distribution results showed that astragalin was widely distributed in liver, heart, spleen, lung and kidney in the RSA model rats, while HY was detected only in the uterus, and KA was detected only in the kidney. The pearson correlationl analysis showed that KA was significantly and positively correlated with the contents of E2, P, β-HCG and TRP. Both AS and HY were significantly negatively correlated with the content of TNF-α, respectively. Discussion This study reveals the pharmacokinetics and tissue distribution of KA, AS and HY in rats with RSA. It was elucidated that all three were involved in the regulation of progesterone levels and immune function. It initially revealed the mechanism of action of YP in enhancing the improvement of RSA, and it provided a theoretical basis for the quality assessment of YP.
Collapse
Affiliation(s)
- Zhitong Yang
- Anhui Province Key Laboratory of Research, Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Kaiwen Chen
- Anhui Province Key Laboratory of Research, Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yuting Zhang
- Anhui Province Key Laboratory of Research, Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Baiyang Xu
- Anhui Province Key Laboratory of Research, Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yu Huang
- Anhui Province Key Laboratory of Research, Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xue Zhang
- Anhui Province Key Laboratory of Research, Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Zilu Liu
- Anhui Province Key Laboratory of Research, Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Tongsheng Wang
- Anhui Province Key Laboratory of Research, Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Deling Wu
- Anhui Province Key Laboratory of Research, Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Heritage Base of TCM Processing Technology of NATCM, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
| | - Tangyi Peng
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoli Wang
- Anhui Province Key Laboratory of Research, Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Heritage Base of TCM Processing Technology of NATCM, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
| |
Collapse
|
6
|
Liu D, Yuan L, Xu F, Ma Y, Zhang H, Jin Y, Chen M, Zhang Z, Luo S. Interleukin-33 promotes intrauterine adhesion formation in mice through the mitogen-activated protein kinase signaling pathway. Commun Biol 2024; 7:1022. [PMID: 39164588 PMCID: PMC11336135 DOI: 10.1038/s42003-024-06709-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
IL-33 belongs to the inflammatory factor family and is closely associated with the inflammatory response. However, its role in the development of intrauterine adhesions (IUAs) remains unclear. In this study, the role of IL-33 in the formation of IUAs after endometrial injury was identified via RNA sequencing after mouse endometrial organoids were transplanted into an IUA mouse model. Major pathological changes in the mouse uterus, consistent with the expression of fibrotic markers, such as TGF-β, were observed in response to treatment with IL-33. This finding may be attributed to activation of the phosphorylation of downstream MAPK signaling pathway components, which are activated by the release of IL-33 in macrophages. Our study provides a novel mechanism for elucidating IUA formation, suggesting a new therapeutic strategy for the prevention and clinical treatment of IUAs.
Collapse
Affiliation(s)
- Dan Liu
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Ministry of Education for Fertility Preservation and Maintenance, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Liwei Yuan
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Fengjuan Xu
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Yinchuan, Ningxia, China
| | - Yulan Ma
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Yinchuan, Ningxia, China
| | - Huixing Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Jin
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | | | - Zhining Zhang
- Department of Gynecological Oncology Surgery of the General Hospital of Ningxia Medical University, Yinchuan, China
| | - Sang Luo
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
- Key Laboratory of Ministry of Education for Fertility Preservation and Maintenance, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
7
|
Zhu Y, Bao M, Wang T, Ai X, Qiu D, Wang C. Novel therapeutic targets, including IGFBP3, of umbilical cord mesenchymal stem-cell-conditioned medium in intrauterine adhesion. Biol Open 2024; 13:bio060141. [PMID: 38224009 PMCID: PMC10886714 DOI: 10.1242/bio.060141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024] Open
Abstract
Mesenchymal stem cells play important roles in repairing injured endometrium. However, the molecular targets and potential mechanism of the endometrial recipient cells for stem cell therapy in intrauterine adhesion (IUA) are poorly understood. In this study, umbilical cord mesenchymal stem-cell-conditioned medium (UCMSCs-CM) produced positive effects on a Transforming growth factor beta (TGF-β) induced IUA cell model. RNA-sequencing was performed on clinical IUA tissues, and the top 40 upregulated and top 20 downregulated mRNAs were selected and verified using high-throughput (HT) qPCR in both tissues and cell models. Based on a bioinformatic analysis of RNA-sequencing and HT-qPCR results, 11 mRNAs were uncovered to be the intervention targets of UCMSCs-CM on IUA endometrium cell models. Among them, IGFBP3 was striking as a key pathogenic gene and a potential diagnostic marker of IUA, which exhibited the area under the curve (AUC), sensitivity, specificity were 0.924, 93.1% and 80.6%, respectively in 60 endometrial tissues. The silencing of IGFBP3 exerted positive effects on the IUA cell model through partially upregulating MMP1 and KLF2. In conclusion, RNA-sequencing combined with HT qPCR based on clinical tissues and IUA cell models were used in IUA research and our results may provide some scientific ideas for the diagnosis and treatment of IUA.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang, 330000, China
- Department of Obstetrics and Gynecology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China
| | - Mingjie Bao
- Department of Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang, 330000, China
| | - Ting Wang
- Department of Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang, 330000, China
| | - Xiaoyan Ai
- Department of Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang, 330000, China
| | - Dewen Qiu
- Clinical laboratory, Jiangxi Maternal and Child Health Hospital, Nanchang, 330000, China
| | - Changhua Wang
- Department of Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang, 330000, China
| |
Collapse
|
8
|
Wang X, Gu Y, Zhang L, Ma J, Xia Y, Wang X. Long noncoding RNAs regulate intrauterine adhesion and cervical cancer development and progression. Semin Cell Dev Biol 2024; 154:221-226. [PMID: 36841649 DOI: 10.1016/j.semcdb.2023.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023]
Abstract
Intrauterine adhesion, one of reproductive system diseases in females, is developed due to endometrial injury, such as infection, trauma, uterine congenital abnormalities and uterine curettage. Intrauterine adhesion affects female infertility and causes several complications, including amenorrhoea, hypomenorrhoea, and recurrent abortion. Cervical cancer is one of the common gynecological tumors and the fourth leading cancer-related death in women worldwide. Although the treatments of cervical cancer have been improved, the advanced cervical cancer patients have a low survival rate due to tumor recurrence and metastasis. The molecular mechanisms of intrauterine adhesion and cervical tumorigenesis have not been fully elucidated. In recent years, long noncoding RNAs (lncRNAs) have been known to participate in intrauterine adhesion and cervical carcinogenesis. Therefore, in this review, we will summarize the role of lncRNAs in regulation of intrauterine adhesion development and progression. Moreover, we will discuss the several lncRNAs in control of cervical oncogenesis and progression. Furthermore, we highlight that targeting lncRNAs could be used for treatment of intrauterine adhesion and cervical cancer.
Collapse
Affiliation(s)
- Xuemei Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Yu Gu
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Leichao Zhang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Jingchao Ma
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Yong Xia
- Department of Gynecology and Obstetrics, Fuzhou Maternity and Infant Hospital, Fuzhou, Fujian 350301, China
| | - Xueju Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China.
| |
Collapse
|
9
|
Li C, Hu Y. Extracellular Vesicles Derived from Mesenchymal Stem Cells as Cell-Free Therapy for Intrauterine Adhesion. Int J Stem Cells 2023; 16:260-268. [PMID: 37385632 PMCID: PMC10465336 DOI: 10.15283/ijsc21177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/17/2021] [Indexed: 07/01/2023] Open
Abstract
Intrauterine adhesion (IUA) can occur after trauma to the basal layer of the endometrium, contributing to severe complications in females, such as infertility and amenorrhea. To date, the proposed therapeutic strategies are targeted to relieve IUA, such as hysteroscopic adhesiolysis, Foley catheter balloon, and hyaluronic acid injection have been applied in the clinic. However, these approaches showed limited effects in alleviating endometrial fibrosis and thin endometrium. Mesenchymal stem cells (MSCs) can offer the potential for endometrium regeneration owing to reduce inflammation and release growth factors. On this basis, MSCs have been proposed as promising methods to treat intrauterine adhesion. However, due to the drawbacks of cell therapy, the possible therapeutic use of extracellular vesicles released by stem cells is raising increasing interest. The paracrine effect, mediated by MSCs derived extracellular vehicles (MSC-EVs), has recently been suggested as a mechanism for their therapeutic properties. Here, we summarizes the main pathological mechanisms involved in intrauterine adhesion, the biogenesis and characteristics of extracellular vesicles, explaining how these vesicles could provide new opportunities for MSCs.
Collapse
Affiliation(s)
- Chao Li
- Department of Gynecology, Tianjin Medical University, Tianjin, China
- Department of Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Yuanjing Hu
- Department of Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| |
Collapse
|
10
|
Zhu Q, Yao S, Ye Z, Jiang P, Wang H, Zhang X, Liu D, Lv H, Cao C, Zhou Z, Zhou Z, Pan W, Zhao G, Hu Y. Ferroptosis contributes to endometrial fibrosis in intrauterine adhesions. Free Radic Biol Med 2023; 205:151-162. [PMID: 37302615 DOI: 10.1016/j.freeradbiomed.2023.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/13/2023]
Abstract
Intrauterine adhesions (IUA), characterized by endometrial fibrosis, is a challenging clinical issue in reproductive medicine. We previously demonstrated that epithelial-mesenchymal transition (EMT) and fibrosis of endometrial stromal cells (HESCs) played a vital role in the development of IUA, but the precise pathogenesis remains elucidated. Ferroptosis has now been recognized as a unique form of oxidative cell death, but whether it is involved in endometrial fibrosis remains unknown. In the present study, we performed an RNA-seq of the endometria from 4 severe IUA patients and 4 normal controls. Enrichment analysis and protein-protein interactions (PPIs) network analysis of differentially expressed genes (DEGs) were conducted. Immunohistochemistry was used to assess ferroptosis levels and cellular localization. The potential role of ferroptosis for IUA was investigated by in vitro and in vivo experiments. Here, we demonstrated that ferroptosis load is increased in IUA endometria. In vitro experiments showed that erastin-induced ferroptosis promoted EMT and fibrosis in endometrial epithelial cells (P < 0.05), but did not lead to pro-fibrotic differentiation in endometrial stromal cells (HESCs). Cell co-culture experiments showed that erastin-stimulated epithelial cell supernatants promoted fibrosis in HESCs (P < 0.05). In vivo experiments suggested that elevation of ferroptosis level in mice by erastin led to mild endometrial EMT and fibrosis. Meanwhile, the ferroptosis inhibitor Fer-1 significantly ameliorated endometrial fibrosis in a dual-injury IUA murine model. Overall, our findings revealed that ferroptosis may serve as a potential therapeutic target for endometrial fibrosis in IUA.
Collapse
Affiliation(s)
- Qi Zhu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China; Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Simin Yao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ziying Ye
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Peipei Jiang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Huiyan Wang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiwen Zhang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dan Liu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haining Lv
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chenrui Cao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhenhua Zhou
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zihan Zhou
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Weichen Pan
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Guangfeng Zhao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China; Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
11
|
Zhu Y, Wang T, Bao MJ, Qu XH, Li ZM. Effect of stem cell conditional medium-loading adhesive hydrogel on TGF-β1-induced endometrial stromal cell fibrosis. Front Bioeng Biotechnol 2023; 11:1168136. [PMID: 37214295 PMCID: PMC10192850 DOI: 10.3389/fbioe.2023.1168136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction: Uterine adhesion (IUA) is a severe complication that results from uterine operations or uterine infections. Hysteroscopy is considered the gold standard for the diagnosis and treatment of uterine adhesions. Yet, this invasive procedure leads to re-adhesions after hysteroscopic treatment. Hydrogels loading functional additives (e.g., placental mesenchymal stem cells (PC-MSCs)) that can act as physical barriers and promote endometrium regeneration are a good solution. However, traditional hydrogels lack tissue adhesion which makes them unstable under a rapid turnover of the uterus, and PC-MSCs have biosafety risks when used as functional additives. Methods: In this study, we coupled an adhesive hydrogel with a PC-MSCs conditioned medium (CM) to form a hybrid of gel and functional additives (CM/Gel-MA). Results and Discussion: Our experiments show that CM/Gel-MA enhances the activity of endometrial stromal cells (ESCs), promotes cell proliferation, and reduces the expression of α-SMA, collagen I, CTGF, E-cadherin, and IL-6, which helps to reduce the inflammatory response and inhibit fibrosis. We conclude that CM/Gel-MA can more potentially prevent IUA by combining the physical barriers from adhesive hydrogel and functional promotion from CM.
Collapse
Affiliation(s)
- Yuan Zhu
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Department of Reproductive Health, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Ting Wang
- Department of Reproductive Health, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Ming-Jie Bao
- Department of Reproductive Health, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Xiao-Hui Qu
- Pathology Department, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Zeng-Ming Li
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
12
|
Zhang Q, Wang C, Yang Y, Xu R, Li Z. LncRNA and its role in gastric cancer immunotherapy. Front Cell Dev Biol 2023; 11:1052942. [PMID: 36875764 PMCID: PMC9978521 DOI: 10.3389/fcell.2023.1052942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Gastric cancer (GC) is a potential dominant disease in tumor immunotherapy checkpoint inhibitors, and adoptive cell therapy have brought great hope to GC patients. However, only some patients with GC can benefit from immunotherapy, and some patients develop drug resistance. More and more studies have shown that long non-coding RNAs (lncRNAs) may be important in GC immunotherapy's prognosis and drug resistance. Here, we summarize the differential expression of lncRNAs in GC and their impact on the curative effect of GC immunotherapy, discuss potential mechanisms of activity in GC immunotherapy resistance regulated by lncRNAs. This paper reviews the differential expression of lncRNA in GC and its effect on immunotherapy efficacy in GC. In terms of genomic stability, inhibitory immune checkpoint molecular expression, the cross-talk between lncRNA and immune-related characteristics of GC was summarized, including tumor mutation burden (TMB), microsatellite instability (MSI), and Programmed death 1 (PD-1). At the same time, this paper reviewed the mechanism of tumor-induced antigen presentation and upregulation of immunosuppressive factors, as well as the association between Fas system and lncRNA, immune microenvironment (TIME) and lncRNA, and summarized the functional role of lncRNA in tumor immune evasion and immunotherapy resistance.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Digestive endoscopy, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chuanchi Wang
- Xin-Huangpu Joint Innovation Institute of Chinese Medicine, Guangzhou, Guangdong, China.,China Science and Technology Development Center of Chinese Medicine, Beijing, China
| | - Yan Yang
- China Science and Technology Development Center of Chinese Medicine, Beijing, China
| | - Ruihan Xu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Ziyun Li
- Acupuncture and Tuina college, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Zhu Z, Song Y, Chen X, Huang H, Xu Y, Zhao L. Hyperoside Inhibits Endometrial Fibrosis and Inflammation by Targeting TGF-β/Smad3 Signaling in Intrauterine Adhesion Rats. REVISTA BRASILEIRA DE FARMACOGNOSIA 2022; 33:89-94. [DOI: 10.1007/s43450-022-00283-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/14/2022] [Indexed: 01/03/2025]
|
14
|
Liu HD, Wang SW. Role of noncoding RNA in the pathophysiology and treatment of intrauterine adhesion. Front Genet 2022; 13:948628. [PMID: 36386826 PMCID: PMC9650223 DOI: 10.3389/fgene.2022.948628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Intrauterine adhesion (IUA) is one of the most common diseases of the reproductive system in women. It is often accompanied by serious clinical problems that damage reproductive function, such as menstrual disorder, infertility, or recurrent abortion. The clinical effect of routine treatment is not ideal, and the postoperative recurrence rate is still very high. Therefore, exploring the pathological mechanism of IUA and finding new strategies for the effective prevention and treatment of IUA are needed. The main pathological mechanism of IUA is endometrial fibrosis and scar formation. Noncoding RNA (ncRNA) plays an important role in the fibrosis process, which is one of the latest research advances in the pathophysiology of IUA. Moreover, the exosomal miRNAs derived from mesenchymal stem cells can be used to improve IUA. This paper reviewed the role of ncRNAs in IUA pathogenesis, summarized the core pathways of endometrial fibrosis regulated by ncRNAs, and finally introduced the potential of ncRNAs as a therapeutic target.
Collapse
Affiliation(s)
- Hui-Dong Liu
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China,Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shao-Wei Wang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China,Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China,*Correspondence: Shao-Wei Wang,
| |
Collapse
|
15
|
Zhang W, Yuan Y, Huang G, Xiao J. Potential Molecular Mechanism of Guishen Huoxue Decoction against Intrauterine Adhesion Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4049147. [PMID: 36193142 PMCID: PMC9525774 DOI: 10.1155/2022/4049147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Objective Intrauterine adhesion (IUA) represents an endometrial repair disorder that is associated with menstrual disorders, recurrent pregnancy loss, and infertility. This study aimed to explore the underlying biological mechanisms of Guishen Huoxue decoction for the treatment of IUA based on network pharmacology. Methods The selection of active compounds for Guishen Huoxue decoction and prediction of relevant targets were performed by the TCMSP and Swiss Target Prediction databases, respectively. The targets of IUA were obtained by three databases, including Online Mendelian Inheritance in Man (OMIM), DisGeNET, and GeneCards. The drug-disease regulatory network was constructed via Cytoscape software, following the acquisition of common genes of active compounds of drug Guishen Huoxue decoction and disease IUA, which was carried out through Venny software. Protein-protein interaction (PPI) network and function enrichment analyses were performed. Results According to the data obtained from TCMSP, a total of 200 potential active compounds of Guishen Huoxue decoction and their related targets (1068) were screened by the Swiss Target Prediction database. 1303 disease targets and 134 common targets were identified. The drug-disease regulatory network showed that 165 active compounds were found to be involved in the treatment of IUA. Among 134 common targets, AKT1, SRC, TP53, VEGFA, and IL-6 were predicted as core genes against IUA. PI3K-Akt, Rap1, Ras, and AGE-RAGE were the main signaling pathways that participated in the treatment of Guishen Huoxue decoction for IUA. Conclusion The active compounds of Guishen Huoxue decoction confer therapeutic effects against IUA by regulating fibrosis, inflammation, and oxidative stress through major signaling pathways such as PI3K-Akt and AGE-RAGE.
Collapse
Affiliation(s)
- Wenyan Zhang
- Department of Gynaecology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Gynaecology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuan Yuan
- Department of Gynaecology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Guangrong Huang
- Department of Gynaecology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jing Xiao
- Department of Gynaecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
lncRNA TUG1 regulates hyperuricemia-induced renal fibrosis in a rat model. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1365-1375. [PMID: 36148952 PMCID: PMC9828301 DOI: 10.3724/abbs.2022128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Renal fibrosis is most common among chronic kidney diseases. Molecular studies have shown that long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) participate in renal fibrosis, while the roles of lncRNA taurine upregulated gene 1 (TUG1) and miR-140-3p in hyperuricemia-induced renal fibrosis remain less investigated. In this study, a rat hyperuricemia model is constructed by oral administration of adenine. TUG1, miR-140-3p, and cathepsin D (CtsD) expression levels in rat models are measured. After altering TUG1, miR-140-3p, or CtsD expression in modelled rats, biochemical indices, including uric acid (UA), serum creatine (SCr), blood urea nitrogen (BUN), and 24-h urine protein are detected, pathological changes in the renal tissues, and renal fibrosis are examined. In renal tissues from hyperuricemic rats, TUG1 and CtsD are upregulated, while miR-140-3p is downregulated. Inhibiting TUG1 or CtsD or upregulating miR-140-3p relieves renal fibrosis in hyperuricemic rats. Downregulated miR-140-3p reverses the therapeutic effect of TUG1 reduction, while overexpression of CtsD abolishes the role of miR-140-3p upregulation in renal fibrosis. Collectively, this study highlights that TUG1 inhibition upregulates miR-140-3p to ameliorate renal fibrosis in hyperuricemic rats by inhibiting CtsD.
Collapse
|
17
|
Yuan L, Cao J, Hu M, Xu D, Li Y, Zhao S, Yuan J, Zhang H, Huang Y, Jin H, Chen M, Liu D. Bone marrow mesenchymal stem cells combined with estrogen synergistically promote endometrial regeneration and reverse EMT via Wnt/β-catenin signaling pathway. Reprod Biol Endocrinol 2022; 20:121. [PMID: 35971112 PMCID: PMC9377128 DOI: 10.1186/s12958-022-00988-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intrauterine adhesion (IUA) is a clinical disease characterized by the uterine cavity occlusion caused by the damage of the endometrial basal layer. Bone marrow mesenchymal stem cells (BMSCs) transplantation have the potential to promote endometrial regeneration mainly through paracrine ability. Estrogen is an indispensable and important factor in the repair of endometrial damage, which has been reported as a promising and adjunctive therapeutic application for stem cell transplantation therapy. This study aims to investigate the synergistic effect of BMSCs and estrogen on improving the endometrial regeneration and restoring the endometrium morphology in a dual damage model of IUA in rabbits and the underlying molecular mechanisms. METHODS BMSCs were isolated and identified by adipogenic and osteogenic differentiation and flow cytometry assays. The rabbit IUA animal model was established by a dual damage method of mechanical curettage and lipopolysaccharide infection. Additionally, we investigated the therapeutic impact of both BMSCs and estrogen either separately or in combination in a rabbit model. The retention of PKH26-labeled BMSCs was observed by vivo fluorescence imaging.The number of endometrial glands and the degree of fibrosis were observed by H&E and Masson staining respectively. Western blotting, Immunohistochemistry and immunofluorescence staining were performed to detect biomarkers related to endometrial epithelium, endometrial fibrosis and EMT. Finally, the protein expression of core molecules of Wnt/β-catenin pathway was detected by Western blotting. RESULTS PKH26-labeled fluorescence results revealed that BMSCs appeared and located in the endometrial glands and extracellular matrix area when orthotopic transplanted into the uterine cavity. Histological assays showed that remarkably increasing the number of endometrial glands and decreasing the area of endometrial fibrosis in the BMSCs combined with estrogen treatment group. Moreover, downregulated expression of fibrosis markers (fibronectin, CollagenI, a-SMA) and interstitial markers (ZEB1, Vimentin, N-cadherin), as well as upregulated E-cadherin expression were found in the combined group. Further study of in vivo staining revealed that fluorescence intensity of CK7 was stronger in the combined group than that of direct BMSCs intrauterine transplantation, while vimentin showed the opposite results. Moreover, the protein levels of β-catenin, Axin2, C-myc, CycinE of Wnt/β-catenin signaling pathway increased in the BMSCs combined with estrogen group than in the other treatment groups. CONCLUSION BMSCs combined with estrogen can promote the differentiation of stem cells into endometrial epithelial cells to facilitate the regeneration of damaged endometrium. The potential mechanism of the synergistic effect may inhibit the occurrence of EMT by activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Liwei Yuan
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jia Cao
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Mingyue Hu
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Dabao Xu
- Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yan Li
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Ministry of Education for Fertility Preservation and Maintenance, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shiyun Zhao
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Juanjuan Yuan
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Huixing Zhang
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yani Huang
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - He Jin
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Meixia Chen
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Dan Liu
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
- Key Laboratory of Ministry of Education for Fertility Preservation and Maintenance, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
18
|
Chen Y, Sun D, Shang D, Jiang Z, Miao P, Gao J. miR-223-3p alleviates TGF-β-induced epithelial-mesenchymal transition and extracellular matrix deposition by targeting SP3 in endometrial epithelial cells. Open Med (Wars) 2022; 17:518-526. [PMID: 35350836 PMCID: PMC8919841 DOI: 10.1515/med-2022-0424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/26/2021] [Accepted: 12/15/2021] [Indexed: 01/06/2023] Open
Abstract
Intrauterine adhesion (IUA) is the clinical manifestation of endometrial fibrosis. The dysregulation of microRNAs (miRNAs) has been confirmed to implicate in a diversity of human diseases, including IUA. Nevertheless, the specific function of miR-223-3p in IUA remains to be clarified. Reverse transcription quantitative polymerase chain reaction analysis displayed the downregulation of miR-223-3p in IUA tissues and endometrial epithelial cells (EECs). Results from wound healing assay, Transwell assay and western blotting showed that TGF-β facilitated the migration and invasion of EECs and induced epithelial-mesenchymal transition (EMT) process as well as extracellular matrix (ECM) deposition. Overexpression of miR-223-3p in EECs was shown to suppress the effects induced by TGF-β. Bioinformatics analysis and luciferase reporter assay revealed the binding relation between miR-223-3p and SP3. SP3 was highly expressed in IUA and its expression was inversely correlated with miR-223-3p expression in IUA tissue samples. Additionally, upregulation of SP3 reversed the influence of miR-223-3p on the phenotypes of EECs. In conclusion, miR-223-3p alleviates TGF-β-induced cell migration, invasion, EMT process and ECM deposition in EECs by targeting SP3.
Collapse
Affiliation(s)
- Yanling Chen
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| | - Dongyan Sun
- Department of Gynecology, Maternity and Child Health Care Hospital of Hubei Province, 745 Wuluo Road, Wuchang District, Wuhan 430000, Hubei, China
| | - Di Shang
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| | - Zhihe Jiang
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| | - Pan Miao
- Yangtze University Health Science Center, Jingzhou 430199, Hubei, China
| | - Jian Gao
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| |
Collapse
|
19
|
Xu Y, Wu D, Hui B, Shu L, Tang X, Wang C, Xie J, Yin Y, Sagnelli M, Yang N, Jiang Z, Zhang Y, Sun L. A novel regulatory mechanism network mediated by lncRNA TUG1 that induces the impairment of spiral artery remodeling in Preeclampsia. Mol Ther 2022; 30:1692-1705. [PMID: 35124178 PMCID: PMC9077368 DOI: 10.1016/j.ymthe.2022.01.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/21/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022] Open
Abstract
Preeclampsia (PE) is associated with maternal and fetal perinatal morbidity and mortality, which brings tremendous suffering and imposes an economic burden worldwide. The failure of uterine spiral artery remodeling may be related to the abnormal function of trophoblasts and lead to the occurrence and progression of PE. Aberrant expression of long non-coding RNAs (lncRNAs) is involved in the failure of uterine spiral artery remodeling. However, the regulation of lncRNA expression in PE is poorly characterized. Here, we reported that hypoxia-induced microRNA (miR)-218 inhibited the expression of lncRNA TUG1 by targeting FOXP1. Further RNA sequencing and mechanism analysis revealed that silencing of TUG1 increased the expression of DNA demethylase TET3 and proliferation-related DUSP family, including DUSP2, DUSP4, and DUSP5, via binding to SUV39H1 in the nucleus. Moreover, TUG1 modulated the DUSP family in vitro through a TET3-mediated epigenetic mechanism. Taken together, our results unmask a new regulatory network mediated by TUG1 as an essential determinant of the pathogenesis of PE, which regulates cell growth and possibly the occurrence and development of other diseases.
Collapse
|
20
|
Huang J, Zhang W, Yu J, Gou Y, Liu N, Wang T, Sun C, Wu B, Li C, Chen X, Mao Y, Zhang Y, Wang J. Human amniotic mesenchymal stem cells combined with PPCNg facilitate injured endometrial regeneration. Stem Cell Res Ther 2022; 13:17. [PMID: 35022063 PMCID: PMC8756707 DOI: 10.1186/s13287-021-02682-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/14/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Caused by the injury to the endometrial basal layer, intrauterine adhesions (IUA) are characterized by uterine cavity obliteration, leading to impaired fertility. Human amniotic mesenchymal stem cells (hAMSCs) have the potential to promote endometrial regeneration mainly through paracrine ability. PPCNg is a thermoresponsive biomaterial consisted of Poly (polyethylene glycol citrate-co-N-isopropylacrylamide) (PPCN) mixed with gelatin, which has been reported as a scaffold for stem cell transplantation. This study aims to investigate the therapeutic effect of hAMSCs combined with PPCNg transplantation in promoting the regeneration of injured endometrium. METHODS hAMSCs were cultured in different concentrates of PPCNg in vitro, and their proliferation, apoptosis and cell cycle were examined by CCK-8 assay and flow cytometry. Immunofluorescence was used to determine the MSCs specific surface markers. The expression of pluripotent genes was analyzed by qRT-PCR. The multiple-lineage differentiation potential was further evaluated by detecting the differentiation-related genes using qRT-PCR and specific staining. The Sprague-Dawley (SD) rat IUA model was established with 95% ethanol. hAMSCs combined with PPCNg were transplanted through intrauterine injection. The retention of DiR-labeled hAMSCs was observed by vivo fluorescence imaging. The endometrium morphology was assessed using hematoxylin and eosin (H&E) and Masson staining. Immunohistochemistry staining was performed to detect biomarkers related to endometrial proliferation, re-epithelialization, angiogenesis and endometrial receptivity. The function of regenerated endometrium was evaluated by pregnancy tests. RESULTS hAMSCs maintained normal cell proliferation, apoptosis and cell cycle in PPCNg. Immunofluorescence and qRT-PCR showed that hAMSCs cultured in PPCNg and hAMSCs cultured alone expressed the same surface markers and pluripotent genes. hAMSCs exhibited normal multilineage differentiation potential in PPCNg. Vivo fluorescence imaging results revealed that the fluorescence intensity of hAMSCs combined with PPCNg intrauterine transplantation was stronger than that of direct hAMSCs intrauterine transplantation. Histological assays showed the increase in the thickness of endometrial and the number of endometrial glands, and the remarkably decrease in the fibrosis area in the PPCNg/hAMSCs group. The expressions of Ki-67, CK7, CK19, VEGF, ER and PR were significantly increased in the PPCNg/hAMSCs group. Moreover, the number of implanted embryos and pregnancy rate were significantly higher in the PPCNg/hAMSCs group than in the hAMSCs group. CONCLUSIONS PPCNg is suitable for growth, phenotype maintenance and multilineage differentiation of hAMSCs. hAMSCs combined with PPCNg intrauterine transplantation can facilitate the regeneration of injured endometrium by improving utilization rates of hAMSCs, and eventually restore reproductive capacity.
Collapse
Affiliation(s)
- Jiayue Huang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Wenwen Zhang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Jie Yu
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Yating Gou
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Nizhou Liu
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Tingting Wang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Congcong Sun
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Benyuan Wu
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Changjiang Li
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Xinpei Chen
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Yanhua Mao
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Yingfeng Zhang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Jia Wang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China.
| |
Collapse
|
21
|
Xu C, Bao M, Fan X, Huang J, Zhu C, Xia W. EndMT: New findings on the origin of myofibroblasts in endometrial fibrosis of intrauterine adhesions. Reprod Biol Endocrinol 2022; 20:9. [PMID: 34996477 PMCID: PMC8739974 DOI: 10.1186/s12958-022-00887-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/29/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Intrauterine adhesion (IUA) is one of the leading causes of infertility and the main clinical challenge is the high recurrence rate. The key to solving this dilemma lies in elucidating the mechanisms of endometrial fibrosis. The aim of our team is to study the mechanism underlying intrauterine adhesion fibrosis and the origin of fibroblasts in the repair of endometrial fibrosis. METHODS Our experimental study involving an animal model of intrauterine adhesion and detection of fibrosis-related molecules. The levels of molecular factors related to the endothelial-to-mesenchymal transition (EndMT) were examined in a rat model of intrauterine adhesion using immunofluorescence, immunohistochemistry, qPCR and Western blot analyses. Main outcome measures are levels of the endothelial marker CD31 and the mesenchymal markers alpha-smooth muscle actin (α-SMA) and vimentin. RESULTS Immunofluorescence co-localization of CD31 and a-SMA showed that 14 days after moulding, double positive cells for CD31 and a-SMA could be clearly observed in the endometrium. Decreased CD31 levels and increased α-SMA and vimentin levels indicate that EndMT is involved in intrauterine adhesion fibrosis. CONCLUSIONS Endothelial cells promote the emergence of fibroblasts via the EndMT during the endometrial fibrosis of intrauterine adhesions.
Collapse
Affiliation(s)
- Chengcheng Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Meng Bao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Xiaorong Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Jin Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Changhong Zhu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Wei Xia
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
22
|
Zhang J, Jiang P, Tu Y, Li N, Huang Y, Jiang S, Kong W, Yuan R. Identification and validation of long non-coding RNA associated ceRNAs in intrauterine adhesion. Bioengineered 2021; 13:1039-1048. [PMID: 34968168 PMCID: PMC8805920 DOI: 10.1080/21655979.2021.2017578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intrauterine adhesion (IUA) is an endometrial fibrotic disease with unclear pathogenesis. Increasing evidence suggested the important role of competitive endogenous RNA (ceRNA) in diseases. This study aimed to identify and verify the key long non-coding RNA (lncRNA) associated-ceRNAs in IUA. The lncRNA/mRNA expression file was obtained by transcriptome sequencing of IUA and normal samples. The microRNAs expression date was downloaded from the Gene Expression Omnibus database. Differential expressions of mRNAs, lncRNAs and miRNAs were analyzed using the DESeq2 (2010) R package. Protein interaction network was constructed to explore hub genes. TargetScan and miRanda databases were used to predicate the interaction. Enrichment analysis in Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were performed to identify the biological functions of ceRNAs. Regression analysis of ceRNAs’ expression level was performed. There were 915 mRNAs and 418 lncRNAs differentially expressed. AURKA, CDC20, IL6, ASPM, CDCA8, BIRC5, UBE2C, H2AFX, RRM2 and CENPE were identified as hub genes. The ceRNAs network, including 28 lncRNAs, 28 miRNAs, and 299 mRNAs, was constructed. Regression analysis showed a good positive correlation between ceRNAs expression levels (r > 0.700, p < 0.001). The enriched functions include ion transmembrane transport, focal adhesion, cAMP signaling pathway and cGMP-PKG signaling pathway. The novel lncRNA-miRNA-mRNA network in IUA was excavated. Crucial lncRNAs such as ADIRF-AS1, LINC00632, DIO3OS, MBNL1-AS1, MIR1-1HG-AS1, AC100803.2 was involved in the development of IUA. cGMP-PKG signaling pathway and ion transport might be new directions for IUA pathogenesis research.
Collapse
Affiliation(s)
- Jingni Zhang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Jiang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Tu
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Li
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuzhen Huang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shan Jiang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Kong
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Yuan
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
Liu Y, Zhang S, Xue Z, Zhou X, Tong L, Liao J, Pan H, Zhou S. Bone mesenchymal stem cells-derived miR-223-3p-containing exosomes ameliorate lipopolysaccharide-induced acute uterine injury via interacting with endothelial progenitor cells. Bioengineered 2021; 12:10654-10665. [PMID: 34738867 PMCID: PMC8810142 DOI: 10.1080/21655979.2021.2001185] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Bone mesenchymal stem cells (BMSCs) have been used for the treatment of acute uterine injury (AUI)-induced intrauterine adhesion (IUA) via interacting with the endothelial progenitor cells (EPCs), and BMSCs-derived exosomes (BMSCs-exo) may be the key regulators for this process. However, the underlying mechanisms have not been studied. Based on the existed literatures, lipopolysaccharide (LPS) was used to induce AUI in mice models and EPCs to mimic the realistic pathogenesis of IUA in vivo and in vitro. Our data suggested that LPS induced apoptotic and pyroptotic cell death in mice uterine horn tissues and EPCs, and the clinical data supported that increased levels of pro-inflammatory cytokines IL-18 and IL-1β were also observed in IUA patients' serum samples, and silencing of NLRP3 rescued cell viability in LPS-treated EPCs. Next, the LPS-treated EPCs were respectively co-cultured with BMSCs in the Transwell system and BMSCs-exo, and the results hinted that both BMSCs and BMSCs-exo reversed the promoting effects of LPS treatment-induced cell death in EPCs. Then, we screened out miR-223-3p, as the upstream regulator for NLRP3, was enriched in BMSCs-exo, and BMSCs-exo inactivated NLRP3-mediated cell pyroptosis in EPCs via delivering miR-223-3p. Interestingly, upregulation of miR-223-3p attenuated LPS-induced cell death in EPCs. Collectively, we concluded that BMSCs-exo upregulated miR-223-3p to degrade NLRP3 in EPCs, which further reversed the cytotoxic effects of LPS treatment on EPCs to ameliorate LPS-induced AUI.
Collapse
Affiliation(s)
- Yana Liu
- Department of Obstetrics and Gynecology, Key Laboratory of Obstetric and Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichaun, China
| | - Shihong Zhang
- Department of Obstetrics and Gynecology, Key Laboratory of Obstetric and Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichaun, China
| | - Zhiwei Xue
- Department of Obstetrics and Gynecology, Key Laboratory of Obstetric and Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichaun, China
| | - Xiaoxia Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Obstetric and Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichaun, China
| | - Lin Tong
- Department of Obstetrics and Gynecology, Minerva Hospital for Women and Children, Chengdu, Sichuan, China
| | - Jiachen Liao
- Department of Obstetrics and Gynecology, Key Laboratory of Obstetric and Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichaun, China
| | - Huan Pan
- Department of Obstetrics and Gynecology, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Shu Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Obstetric and Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichaun, China
| |
Collapse
|
24
|
Sun D, Jiang Z, Chen Y, Shang D, Miao P, Gao J. MiR-455-5p upregulation in umbilical cord mesenchymal stem cells attenuates endometrial injury and promotes repair of damaged endometrium via Janus kinase/signal transducer and activator of transcription 3 signaling. Bioengineered 2021; 12:12891-12904. [PMID: 34784837 PMCID: PMC8810187 DOI: 10.1080/21655979.2021.2006976] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Umbilical cord mesenchymal stem cells (UCMSCs) are regarded as an ideal source for clinical use. Increasing evidence has suggested that microRNAs (miRNAs) work as a crucial regulator in the development of plentiful diseases, including intrauterine adhesions (IUA). Herein, we investigated the specific impacts of UCMSCs overexpressing miR-455-5p in IUA. UCMSCs were cocultured with endometrial stromal cells (ESCs). Thirty-two female mice were divided into four different treated groups: sham, model, model + UCMSC-miR-NC and model + UCMSC-miR-455-5p. Mice in model groups were induced by uterine curettage. MiR-455-5p overexpressed UCMSCs facilitated the proliferation and cell cycle progression of ESCs according to 5-ethynyl-2′-deoxyuridine assay and flow cytometry analysis. Hematoxylin-eosin and Masson staining revealed that miR-455-5p upregulation in UCMSCs increased the number of endometrial glands and suppressed endometrial fibrosis in murine uterine tissues. Western blotting displayed that miR-455-5p overexpressed UCMSCs promoted the activation of Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling in ESCs and murine uterine tissues. Mechanistically, miR-455-5p targeted 3’ untranslated region of suppressor of cytokine signaling 3 (SOCS3), which was confirmed by luciferase reporter assay. Reverse transcription quantitative polymerase chain reaction demonstrated that miR-455-5p was lowly expressed and SOCS3 was highly expressed in murine uterine tissues of IUA model. Moreover, Pearson correlation analysis showed that their expression was inversely correlated. Rescue assays suggested that inhibiting JAK/STAT3 signaling reversed effects of miR-455-5p on the behaviors of ESCs. The results indicated that miR-455-5p overexpression in UCMSCs helps to attenuate endometrial injury and repair damaged endometrium by activating SOCS3-mediated JAK/STAT3 signaling.
Collapse
Affiliation(s)
- Dongyan Sun
- Department of Gynecology, Maternity and Child Health Care Hospital of Hubei Province, Wuhan 430000, Hubei, China
| | - Zhihe Jiang
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| | - Yanling Chen
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| | - Di Shang
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| | - Pan Miao
- Yangtze University Health Science Center, Jingzhou 430199, Hubei, China
| | - Jian Gao
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| |
Collapse
|
25
|
Ghafouri-Fard S, Abak A, Talebi SF, Shoorei H, Branicki W, Taheri M, Akbari Dilmaghani N. Role of miRNA and lncRNAs in organ fibrosis and aging. Biomed Pharmacother 2021; 143:112132. [PMID: 34481379 DOI: 10.1016/j.biopha.2021.112132] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is the endpoint of pathological remodeling. This process contributes to the pathogenesis of several chronic disorders and aging-associated organ damage. Different molecular cascades contribute to this process. TGF-β, WNT, and YAP/TAZ signaling pathways have prominent roles in this process. A number of long non-coding RNAs and microRNAs have been found to regulate organ fibrosis through modulation of the activity of related signaling pathways. miR-144-3p, miR-451, miR-200b, and miR-328 are among microRNAs that participate in the pathology of cardiac fibrosis. Meanwhile, miR-34a, miR-17-5p, miR-122, miR-146a, and miR-350 contribute to liver fibrosis in different situations. PVT1, MALAT1, GAS5, NRON, PFL, MIAT, HULC, ANRIL, and H19 are among long non-coding RNAs that participate in organ fibrosis. We review the impact of long non-coding RNAs and microRNAs in organ fibrosis and aging-related pathologies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Sun Q, Luo M, Gao Z, Han X, Yan Z, Xie S, Zhao H, Sun H. TUG1 knockdown suppresses cardiac fibrosis after myocardial infarction. Mamm Genome 2021; 32:435-442. [PMID: 34341870 DOI: 10.1007/s00335-021-09895-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
Cardiac fibrosis is involved in myocardial remodeling following acute myocardial infarction (AMI), which can result in heart failure, arrhythmias and even sudden cardiac death. Investigating the molecular mechanisms of cardiac fibrosis in acute myocardial infarction (AMI) is essential for better understanding this pathology. The current study aims to investigate the effect of TUG1 on cardiac fibrosis after AMI and elucidated the underlying molecular mechanism of AMI. Rats were randomly divided into four groups (sham-operation group, myocardial infarction group (AMI group), si-NC treated group and si-TUG1 treated group). The biological behavior of cardiac fibroblasts treated with TGF-β1after being transfected by si-TUG1 or miR-590 mimic or miR-590 inhibitor or FGF1 mimic or a combination was evaluated using the cell counting kit-8 (CCK8) and Transwell assays. SatarBase v2.0 was used to predict the target microRNAs binding site candidates with TUG1 and FGF1. Western blot and recovery experiments were used to explore the potential mechanism. TUG1 expression was up-regulated and knockdown of TUG1 improved cardiac function in AMI rats. Knockdown of TUG1 suppressed cell viability and migration and improved collagen production of TGF-β1 treated cardiac fibroblasts. SatarBase v2.0 showed TUG1 served as a sponge for miR-590 and FGF1 is a direct target of miR-590. TUG1 expression was increased in AMI tissue and cardiac fibroblasts treated with TGF-β1. TUG1 knockdown suppressed the biological process of cardiac fibroblasts treated with TGF-β1 by sponging miR-590.
Collapse
Affiliation(s)
- Qingsong Sun
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Man Luo
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Zhiwei Gao
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Xiang Han
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Zhuan Yan
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Shouxiang Xie
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Hongmei Zhao
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China.
| | - Hong Sun
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China.
| |
Collapse
|
27
|
Sun H, Wang T, Zhang W, Dong H, Gu W, Huang L, Yan Y, Zhu C, Chen Z. LncRNATUG1 Facilitates Th2 Cell Differentiation by Targeting the miR-29c/B7-H3 Axis on Macrophages. Front Immunol 2021; 12:631450. [PMID: 34335559 PMCID: PMC8322941 DOI: 10.3389/fimmu.2021.631450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
The role of long non-coding RNAs (lncRNA) in asthma remains unclear. In this study, we examined the role of long non-coding RNA taurine upregulated 1 (lncRNA TUG1) in asthma. We found that lncRNA TUG1 is one of the differentially expressed lncRNAs in the monocytes of asthmatic children and is associated with Th cell differentiation. LncRNA TUG1 and miR-29c are mainly distributed in the cytoplasm of macrophages. Our data suggested that lncRNA TUG1 increased in macrophages stimulated by House Dust Mite in a dose-dependent manner. Using loss- and gain of function strategy, we found that miR-29c might regulate Th2 cell differentiation by directly targeting co-stimulatory molecule B7-H3. Furthermore, down-regulation of lncRNA TUG1 decreased the level of GATA3 in CD4+T cells and was associated with miR-29c/B7-H3 axis. Moreover, the dual-luciferase reporter assay confirmed that lncRNA TUG1 serves as a competing endogenous RNA to sponge miR-29c. According to the rescue experiment, lncRNA TUG1 regulated Th2 cell differentiation via miR-29c. These data suggest that lncRNA TUG1 in macrophages regulates Th2 cell differentiation via miR-29c/B7-H3 axis.
Collapse
Affiliation(s)
- Huiming Sun
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Ting Wang
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Weili Zhang
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Heting Dong
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Wenjing Gu
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Li Huang
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Yongdong Yan
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Canhong Zhu
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Zhengrong Chen
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
28
|
Lee WL, Liu CH, Cheng M, Chang WH, Liu WM, Wang PH. Focus on the Primary Prevention of Intrauterine Adhesions: Current Concept and Vision. Int J Mol Sci 2021; 22:ijms22105175. [PMID: 34068335 PMCID: PMC8153321 DOI: 10.3390/ijms22105175] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Intrauterine adhesion (IUA), and its severe form Asherman syndrome (Asherman’s syndrome), is a mysterious disease, often accompanied with severe clinical problems contributing to a significant impairment of reproductive function, such as menstrual disturbance (amenorrhea), infertility or recurrent pregnancy loss. Among these, its correlated infertility may be one of the most challenging problems. Although there are many etiologies for the development of IUA, uterine instrumentation is the main cause of IUA. Additionally, more complicated intrauterine surgeries can be performed by advanced technology, further increasing the risk of IUA. Strategies attempting to minimize the risk and reducing its severity are urgently needed. The current review will expand the level of our knowledge required to face the troublesome disease of IUA. It is separated into six sections, addressing the introduction of the normal cyclic endometrial repairing process and its abruption causing the formation of IUA; the etiology and prevalence of IUA; the diagnosis of IUA; the classification of IUA; the pathophysiology of IUA; and the primary prevention of IUA, including (1) delicate surgical techniques, such as the use of surgical instruments, energy systems, and pre-hysteroscopic management, (2) barrier methods, such as gels, intrauterine devices, intrauterine balloons, as well as membrane structures containing hyaluronate–carboxymethylcellulose or polyethylene oxide–sodium carboxymethylcellulose as anti-adhesive barrier.
Collapse
Affiliation(s)
- Wen-Ling Lee
- Department of Medicine, Cheng-Hsin General Hospital, Taipei 112, Taiwan;
- Department of Nursing, Oriental Institute of Technology, Taipei 220, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.L.); (M.C.); (W.-H.C.)
| | - Chia-Hao Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.L.); (M.C.); (W.-H.C.)
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Min Cheng
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.L.); (M.C.); (W.-H.C.)
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Wen-Hsun Chang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.L.); (M.C.); (W.-H.C.)
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Nursing, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Wei-Min Liu
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 110, Taiwan;
| | - Peng-Hui Wang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.L.); (M.C.); (W.-H.C.)
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Female Cancer Foundation, Taipei 104, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Correspondence: ; Tel.: +886-2-28757566
| |
Collapse
|
29
|
Huang W, Yu C, Liang S, Wu H, Zhou Z, Liu A, Cai S. Long non-coding RNA TUG1 promotes airway remodeling and mucus production in asthmatic mice through the microRNA-181b/HMGB1 axis. Int Immunopharmacol 2021; 94:107488. [PMID: 33640857 DOI: 10.1016/j.intimp.2021.107488] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022]
Abstract
MicroRNA-181b (miR-181b) has been well noted with anti-inflammatory properties in several pathological conditions. It has also been suggested to be downregulated in patients with asthma. In this study, we explored the function of miR-181b in airway remodeling in asthmatic mice and the molecular mechanism. A mouse model with asthma was induced by ovalbumin (OVA) challenge, and miR-181b was found to be downregulated in lung tissues in the OVA-challenged mice. Overexpression of miR-181b was introduced in mice, after which the respiratory resistance, inflammatory infiltration, mucus production, and epithelial-mesenchymal transition (EMT) and fibrosis in mouse airway tissues were decreased. The integrated bioinformatics analysis suggested long non-coding RNA (lncRNA) TUG1 as a sponge for miR-181b. miR-181 directly targeted high mobility group box 1 (HMGB1) mRNA. HMGB1 was suggested to enhance activation of the nuclear factor kappa B (NF-κB) signaling. Further upregulation of lncRNA TUG1 blocked the protective functions of miR-181b in asthmatic mice. To conclude, this study evidenced that lncRNA TUG1 reinforces HMGB1 expression through sequestering microRNA-181b, which activates the NF-κB signaling pathway and promotes airway remodeling in asthmatic mice. This study may provide novel ideas in asthma management.
Collapse
Affiliation(s)
- Wufeng Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China.
| | - Changhui Yu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Shixiu Liang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Hong Wu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Zili Zhou
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Aihua Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China.
| |
Collapse
|
30
|
Wang L, Liu D, Wei J, Yuan L, Zhao S, Huang Y, Ma J, Yang Z. MiR-543 Inhibits the Migration and Epithelial-To-Mesenchymal Transition of TGF-β-Treated Endometrial Stromal Cells via the MAPK and Wnt/β-Catenin Signaling Pathways. Pathol Oncol Res 2021; 27:1609761. [PMID: 34257616 PMCID: PMC8262167 DOI: 10.3389/pore.2021.1609761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022]
Abstract
Intrauterine adhesion (IUA) is one of the most prevalent reproductive system diseases in females. MicroRNAs (miRNAs) are reported to be master regulators in a variety of diseases, including IUA, but the role of microRNA-543 (miR-543) in IUA remains to be elucidated. In this study, we observed that miR-543 was downregulated in transforming growth factor-beta (TGF-β)-treated endometrial stromal cells (ESCs). Functionally, we observed that miR-543 suppressed the migration, epithelial-to-mesenchymal transition (EMT), and inhibited expression of extracellular matrix (ECM) proteins in TGF-β-treated ESCs. Mechanistically, MAPK1 is targeted by miR-543 after prediction and screening. A luciferase reporter assay demonstrated that miR-543 complementarily binds with the 3' untranslated region of mitogen-activated protein kinase 1 (MAPK1), and western blot analysis indicated that miR-543 negatively regulates MAPK1 protein levels. In addition, results from rescue assays showed that miR-543 inhibits the migration and EMT of TGF-β-treated ESCs by targeting MAPK1. In addition, we observed that miR-543 inactivates the Wnt/β-catenin signaling pathway through inhibiting the phosphorylation of MAPK1 and β-catenin. Finally, we confirmed that miR-543 represses migration, EMT and inhibits levels of ECM proteins in TGF-β-treated ESCs by targeting the Wnt/β-catenin signaling pathway. Our results demonstrated that miR-543 suppresses migration and EMT of TGF-β-treated ESCs by targeting the MAPK and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Linlin Wang
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Dan Liu
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, China.,Key Laboratory of Ministry of Education for Fertility Preservation and Maintenance, Ningxia Medical University, Yinchuan, China
| | - Jun Wei
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Liwei Yuan
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shiyun Zhao
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yani Huang
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jingwen Ma
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhijuan Yang
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
31
|
Song M, Cao C, Zhou Z, Yao S, Jiang P, Wang H, Zhao G, Hu Y. HMGA2-induced epithelial-mesenchymal transition is reversed by let-7d in intrauterine adhesions. Mol Hum Reprod 2021; 27:gaaa074. [PMID: 33237328 PMCID: PMC7864003 DOI: 10.1093/molehr/gaaa074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
Intrauterine adhesions (IUAs), the leading cause of uterine infertility, are characterized by endometrial fibrosis. The management of IUA is challenging because the pathogenesis of the disease largely unknown. In this study, we demonstrate that the mRNA and protein levels of high mobility group AT-hook 2 (HMGA2) were increased by nearly 3-fold (P < 0.0001) and 5-fold (P = 0.0095) in the endometrial epithelial cells (EECs) of IUA patients (n = 18) compared to controls. In vivo and in vitro models of endometrial fibrosis also confirmed the overexpression of HMGA2 in EECs. In vitro cell experiments indicated that overexpression of HMGA2 promoted the epithelial-mesenchymal transition (EMT) while knockdown of HMGA2 reversed transforming growth factor-β-induced EMT. A dual luciferase assay confirmed let-7d microRNA downregulated HMGA2 and repressed the pro-EMT effect of HMGA2 in vitro and in vivo. Therefore, our data reveal that HMGA2 promotes IUA formation and suggest that let-7d can depress HMGA2 and may be a clinical targeting strategy in IUA.
Collapse
Affiliation(s)
- Minmin Song
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Chenrui Cao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhenhua Zhou
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Simin Yao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Peipei Jiang
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Huiyan Wang
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Guangfeng Zhao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|