1
|
Liang J, Wu H, Song Z, Li G, Zhang J, Ding W. Machine learning‑based construction of damage‑associated molecular patterns related score identifies subtypes of pancreatic adenocarcinoma with distinct prognosis. Oncol Lett 2025; 29:246. [PMID: 40177138 PMCID: PMC11962577 DOI: 10.3892/ol.2025.14992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
The present study aimed to assess the prognostic significance of Damage-Associated Molecular Pattern (DAMP)-related gene expression in pancreatic adenocarcinoma (PAAD) and to develop a scoring system based on these genes. Consensus clustering was performed on patients with PAAD using data from The Cancer Genome Atlas (TCGA) and Meta-cohort datasets, identifying three distinct clusters: C1 (pro-DAMP), C2 (intermediate) and C3 (anti-DAMP). Differential gene expression analysis between clusters C1 and C3 identified 141 significant genes. Least Absolute Shrinkage and Selection Operator Cox regression was utilized to derive an optimal predictor set, leading to the identification of six hub genes associated with the DAMP status, which were then employed to calculate the DAMPscore. Weighted Gene Co-expression Network Analysis revealed a strong correlation between these eight hub genes and the DAMPscore. The functionality of these hub genes in PAAD was validated using a Cell Counting Kit-8 assay and Transwell assays. The results indicated that patients with PAAD with elevated DAMPscores exhibited significantly reduced survival times. Receiver operating characteristic (ROC) curve analysis indicated that the DAMPscore has robust prognostic capabilities. In the Meta-cohort, the area under the ROC curve (AUC) values for the DAMPscore to predict overall survival at 1, 3 and 5 years were 0.65, 0.70 and 0.77, respectively, while the AUC values for the TCGA-PAAD cohort were 0.71, 0.73 and 0.72, respectively. Additional cohorts, such as E-MTAB-6134 and ICGC-AU, corroborated the predictive power of the DAMPscore. A comparison of the DAMPscore with other prognostic models revealed that it consistently exhibited a superior C-index across most PAAD cohorts. Furthermore, in vitro experiments demonstrated that PLEK2, a hub gene related to the DAMPscore, is involved in critical biological processes such as cell proliferation, migration and invasion. In conclusion, the DAMPscore is a promising prognostic biomarker for PAAD, surpassing traditional models in various datasets. This study emphasizes the role of DAMP-related pathways in influencing tumor biology and highlights the importance of immune modulation in PAAD prognosis, suggesting that therapeutic strategies targeting DAMP signaling could improve patient outcomes.
Collapse
Affiliation(s)
- Jing Liang
- Department of Oncology, Xiangxi Autonomous Prefecture People's Hospital, Ji Shou University, Jishou, Hunan 416000, P.R. China
| | - Hui Wu
- Department of Oncology, Xiangxi Autonomous Prefecture People's Hospital, Ji Shou University, Jishou, Hunan 416000, P.R. China
| | - Zewen Song
- Department of Oncology, Xiangxi Autonomous Prefecture People's Hospital, Ji Shou University, Jishou, Hunan 416000, P.R. China
| | - Guoyin Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, P.R. China
| | - Jianfeng Zhang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan 410000, P.R. China
| | - Wenxin Ding
- Department of Oncology, Xiangxi Autonomous Prefecture People's Hospital, Ji Shou University, Jishou, Hunan 416000, P.R. China
| |
Collapse
|
2
|
Johnson B, Guo Q, Chaludiya K, Kim S. The Proimmunomodulatory and Anti-immunomodulatory Effects of Radiotherapy in Oncologic Care. Hematol Oncol Clin North Am 2025; 39:399-411. [PMID: 39827043 PMCID: PMC11932133 DOI: 10.1016/j.hoc.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The abscopal effect in radiotherapy (RT) refers to the phenomenon where localized radiation treatment causes regression of distant, nonirradiated tumors. Although rare, recent research shows that combining radiation with immunotherapies, such as immune checkpoint inhibitors, can enhance this effect. The interaction between radiation-induced cell death, immune responses, and the tumor microenvironment manifests in competing biologic mechanisms resulting in complex immunologic outcomes. In order to maximize the therapeutic advantages of the immunogenic effect of RT in the future, further studies are needed to fully understand its biologic underpinnings.
Collapse
Affiliation(s)
- Bryan Johnson
- Department of Radiation Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Qianyu Guo
- Department of Radiation Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA; Department of Internal Medicine, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Keyur Chaludiya
- Department of Laboratory Medicine, Mayo Clinic Minnesota, 150 3rd Street SW, Rochester, MN 55902, USA
| | - Sungjune Kim
- Department of Radiation Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA.
| |
Collapse
|
3
|
Nishida A, Andoh A. The Role of Inflammation in Cancer: Mechanisms of Tumor Initiation, Progression, and Metastasis. Cells 2025; 14:488. [PMID: 40214442 PMCID: PMC11987742 DOI: 10.3390/cells14070488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Inflammation is an essential component of the immune response that protects the host against pathogens and facilitates tissue repair. Chronic inflammation is a critical factor in cancer development and progression. It affects every stage of tumor development, from initiation and promotion to invasion and metastasis. Tumors often create an inflammatory microenvironment that induces angiogenesis, immune suppression, and malignant growth. Immune cells within the tumor microenvironment interact actively with cancer cells, which drives progression through complex molecular mechanisms. Chronic inflammation is triggered by factors such as infections, obesity, and environmental toxins and is strongly linked to increased cancer risk. However, acute inflammatory responses can sometimes boost antitumor immunity; thus, inflammation presents both challenges and opportunities for therapeutic intervention. This review examines how inflammation contributes to tumor biology, emphasizing its dual role as a critical factor in tumorigenesis and as a potential therapeutic target.
Collapse
Affiliation(s)
- Atsushi Nishida
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Shiga, Japan;
| | | |
Collapse
|
4
|
Liu D, Liu L, Zhao X, Zhang X, Chen X, Che X, Wu G. A comprehensive review on targeting diverse immune cells for anticancer therapy: Beyond immune checkpoint inhibitors. Crit Rev Oncol Hematol 2025; 210:104702. [PMID: 40122356 DOI: 10.1016/j.critrevonc.2025.104702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025] Open
Abstract
Although immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, primary resistance and acquired resistance continue to limit their efficacy for many patients. To address resistance and enhance the anti-tumor activity within the tumor immune microenvironment (TIME), numerous therapeutic strategies targeting both innate and adaptive immune cells have emerged. These include combination therapies with ICIs, chimeric antigen receptor T-cell (CAR-T), chimeric antigen receptor macrophages (CAR-Ms) or chimeric antigen receptor natural killer cell (CAR-NK) therapy, colony stimulating factor 1 receptor (CSF1R) inhibitors, dendritic cell (DC) vaccines, toll-like receptor (TLR) agonists, cytokine therapies, and chemokine inhibition. These approaches underscore the significant potential of the TIME in cancer treatment. This article provides a comprehensive and up-to-date review of the mechanisms of action of various innate and adaptive immune cells within the TIME, as well as the therapeutic strategies targeting each immune cell type, aiming to deepen the understanding of their therapeutic potential.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lei Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xinming Zhao
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaoman Zhang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaochi Chen
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
5
|
Wen E, Tian Y, Fang M, Zhang Y, Zhao H, Wang Z, Zhang L, Li X. The P2X7-Mediated Mitochondrial ROS as an Emerging Core Target of Tuftsin Nanoparticles in Severe Acute Pancreatitis Therapy via Regulating Mitophagy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7521-7538. [PMID: 39854589 DOI: 10.1021/acsami.4c21010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
20% acute pancreatitis (AP) develops into severe AP (SAP), a global health crisis, with an increased mortality rate to 30%-50%. Mitochondrial damage and immune disorders are direct factors, which exacerbate the occurrence and progression of AP. So far, mitochondrial and immunity injury in SAP remains largely elusive, with no established treatment options available. Immunomodulation is a promising approach to treat pancreatitis. Herein, we proved that Tuftsin (TN), a vital endogenous immunomodulator, can inhibit SAP, while it is limited by extremely short biological half-life, low bioavailability, and the inconvenience of administration. Nano platform is the positive choice. Interestingly, we found that the activated P2X7 signaling was closely associated with the enhanced pancreatic inflammation via damaging mitochondrial function in SAP. Herein, we engineered a nanoplatform containing a Se-Se bond responsive for ROS to deliver TN, namely, DSPE-Se-Se-MPEG@TN (DSSM@TN), contributing to increases in TN's half-life and bioavailability. We synthesized TN-loaded ROS-responsive DSPE-Se-Se- MPEG@TN liposomes (DSSM@TN NPs) via a one-step emulsification method, which exhibited good biosecurity, high stability, suitable size, favorable ROS responsiveness and biocompatibility, as well as excellent capability for releasing TN during oxidative stress and inflammation environment. Moreover, the Se-Se bond with ROS-responsive ability was first proved to play a vital role for TN-loaded liposomes to enhance its anti-inflammation and antioxidant abilities via targeting damaged mitochondria during SAP progression. Mechanistically, DSSM@TN targeting damaged pancreas simultaneously inhibits mitochondrial dysfunction and inflammation in vivo and vitro via mitochondrial P2X7 signaling-impaired Nrf2/HO-1 signaling-inhibited PINK1/PARKIN pathway. Consequently, such a ROS-responsive immunotherapy nanomedicine targeted mitochondria holds great potential in facilitating substantial clinical progress in SAP treatment.
Collapse
Affiliation(s)
- E Wen
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Yu Tian
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Mingxiao Fang
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Yuezhou Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Hongyun Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Zhigang Wang
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Liang Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Ultrasound Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Xingsheng Li
- Department of Gerontology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| |
Collapse
|
6
|
Hosseinalizadeh H, Wang LS, Mirzaei H, Amoozgar Z, Tian L, Yu J. Emerging combined CAR-NK cell therapies in cancer treatment: Finding a dancing partner. Mol Ther 2025:S1525-0016(24)00895-5. [PMID: 39754357 DOI: 10.1016/j.ymthe.2024.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/21/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025] Open
Abstract
In recent decades, immunotherapy with chimeric antigen receptors (CARs) has revolutionized cancer treatment and given hope where other cancer therapies have failed. CAR-natural killer (NK) cells are NK cells that have been engineered ex vivo with a CAR on the cell membrane with high specificity for specific target antigens of tumor cells. The impressive results of several studies suggest that CAR-NK cell therapy has significant potential and successful performance in cancer treatment. Despite its effectiveness, CAR-NK cell therapy can have significant challenges when it comes to treating cancer. These challenges include tumor heterogeneity, antigen escape, an immunosuppressive tumor microenvironment, limited tissue migration from blood, exhaustion of CAR-NK cells, and inhibition by immunosuppressive checkpoint molecule signaling, etc. In CAR-T cell therapy, the use of combined approaches has shown encouraging outcomes for tumor regression and improved cancer treatment compared to single therapies. Therefore, to overcome these significant challenges in CAR-NK cells, innovative combination therapies of CAR-NK cells with other conventional therapies (e.g., chemotherapy and radiotherapy) or other immunotherapies are needed to counteract the above challenges and thereby increase the activity of CAR-NK cells. This review comprehensively discusses various cancer-treatment approaches in combination with CAR-NK cell therapy in the hope of providing valuable insights that may improve cancer treatment in the near future.
Collapse
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Li-Shu Wang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zohreh Amoozgar
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lei Tian
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
| | - Jianhua Yu
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
7
|
Wang F, Lai C, Lv Y, Zhang F, Shi L, Wang Y, Shen Y, Xu L, Hu P, Tang W, Xu D, Cao G, Shan L, Jia X, Chen Y, Larson DW, Wang D, Lao W, Gu H, Sun X, Huang X, Dai S. Efficacy and safety of combining short-course neoadjuvant chemoradiotherapy with envafolimab in locally advanced rectal cancer patients with microsatellite stability: a phase II PRECAM experimental study. Int J Surg 2025; 111:334-345. [PMID: 39093871 PMCID: PMC11745671 DOI: 10.1097/js9.0000000000001960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/06/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Conventional neoadjuvant chemoradiotherapy (nCRT) yields a pathologic complete response (pCR) rate of 15-30% for locally advanced rectal cancer (LARC). This study ventures to shift this paradigm by incorporating short-course nCRT with immunotherapy, specifically Envafolimab, to achieve improved treatment efficacy and possibly redefine the standard of care for LARC. MATERIALS AND METHODS The PRECAM study is a prospective, single-arm, phase 2 clinical trial for LARC in patients with microsatellite stable (MSS) tumors. Participants received short-course radiotherapy (25Gy/5f), followed by two cycles of CAPEOX chemotherapy and six weekly doses of Envafolimab, a PD-L1 antibody, before total mesorectal excision surgery. The primary endpoint was the pCR rate. RESULTS From April to December 2022, 34 patients were enrolled, of whom 32 completed the study, each diagnosed with an MSS rectal adenocarcinoma. All patients underwent preoperative CRT combined with Envafolimab. Remarkably, a pCR rate of 62.5% (20/32) was attained, and a significant pathologic response rate of 75% (24/32) was achieved. Additionally, 21 of 32 participants achieved a neoadjuvant rectal (NAR) score below 8, suggesting an effective treatment response. Common adverse events included tenesmus (78.1%), diarrhea (62.5%), and leukocyte decrease (40.6%). Two Grade 3 adverse events were noted, one related to liver function abnormality and the other to a decrease in platelet count. Surgical procedures were performed in all cases, with minor complications, including ileus, infections, and anastomotic leakage. As of this report, there have been no reported cases of recurrence or death during the follow-up period, ranging from 12 to 20 months. CONCLUSION In LARC patients exhibiting MSS tumors, combining short-course nCRT with Envafolimab demonstrated favorable efficacy, leading to a significant pCR rate. Minor adverse effects and surgical complications were observed. These preliminary but promising results underscore the potential of this approach and call for further exploration and validation through a randomized controlled trial.
Collapse
Affiliation(s)
- Fei Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| | - Chuanxi Lai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| | - Yiming Lv
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| | - Feixiang Zhang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| | - Liming Shi
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
| | - Yunfei Wang
- Hangzhou Shengting Medical Technology Co., Ltd
| | - Yanbin Shen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| | - Lingna Xu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| | - Peng Hu
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
| | - Wen Tang
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang
| | - Dengyong Xu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| | - Gaoyang Cao
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| | - Lina Shan
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| | - Xiya Jia
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| | - Yiyi Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| | - David W. Larson
- Department of Surgery, Division of Colon and Rectal Surgery, Mayo Clinic, 200 First Street Southwest, Rochester, Minnesota, USA
| | - Da Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| | - Weifeng Lao
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| | - Hongcang Gu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, People’s Republic of China
| | - Xiaonan Sun
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
| | - Xuefeng Huang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| | - Sheng Dai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| |
Collapse
|
8
|
Wang KL, Li CH, Huang PX, Liu HC, Yalamandala BN, Pan WC, Iao HM, Hu SH. Reprogrammed Lung Metastasis Immunodeficiency via Targeted Penetrated Delivery of M1 Macrophage-Wrapped NanoCubes-Mediated T Cell Infiltration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406790. [PMID: 39575473 DOI: 10.1002/smll.202406790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/07/2024] [Indexed: 01/23/2025]
Abstract
The infiltration of cytotoxic T lymphocytes holds promise for suppressing even the most resilient metastatic tumors in immunotherapy. Polarizing tumor-associated macrophages (TAMs) and remodeling the immune-deficient tumor microenvironment (TME) can enhance T lymphocyte recruitment and infiltration. However, the immune privilege and low immunogenic responses of these aggressive tumor clusters often limit lymphocyte recruitment. Here, an M1 macrophage membrane-coated iron oxide nanoparticle (IO@MM) double as a tumor-penetrated agent and naïve M0 macrophage to M1 polarizer is developed for lung metastatic colorectal cancer (CRC) immunotherapy. At the tumor site, IO@MM combined with resiquimod (R848) increased the immune cell infiltration, turning the "Cold" TME into an immune-activating "Hot" one. Together with self-cascade immunotherapy, IO@MM with R848 promotes tumor release of damage-associated molecular patterns (DAMPs). At the same time, IO@MM uses the membrane as an antigen reservoir and provides autologous DAMPs to retain dendritic cells. This IO@MM effectively inhibits tumors and improves survival rate as an immunomodulator in lung metastasis.
Collapse
Affiliation(s)
- Kang-Li Wang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Cheng-Han Li
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Pin-Xuan Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Hsiu-Ching Liu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Bhanu Nirosha Yalamandala
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Wan-Chi Pan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Hoi Man Iao
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| |
Collapse
|
9
|
Bhamidipati P, Nagaraju GP, Malla R. Immunoglobulin-binding protein and Toll-like receptors in immune landscape of breast cancer. Life Sci 2024; 358:123196. [PMID: 39481836 DOI: 10.1016/j.lfs.2024.123196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/29/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Breast cancer (BC) is a complex disease exhibiting significant heterogeneity and encompassing various molecular subtypes. Among these, triple-negative breast cancer (TNBC) stands out as one of the most challenging types, characterized by its aggressive nature and poor prognosis. This review embarks on a comprehensive exploration of the immune landscape of BC, with a primary focus on the functional and structural characterization of immunoglobulin-binding protein (BiP) and its pivotal role in regulating the unfolded response (UPR) pathway of proteins. Moreover, we unravel the multifaceted functions of BiP in BC, with a special emphasis on the involvement of cell surface BiP in TNBC metastasis, drug resistance, and its contribution to the formation of the tumor microenvironment (TME). We also provide mechanistic insights into how ER-resident BiP mediates the sensitization of drug-resistant BC to different treatment strategies, thereby offering promising avenues for therapeutic intervention. We also delve into the role of Toll-like receptors (TLRs), shedding light on their diverse expression patterns across BC and their influence on modulating the tumor immune response. Understanding the interplay between BiP, TLRs, and the immune response, especially in TNBC, opens avenues for novel immunotherapies. Future research should focus on developing targeted therapies that activate ER-resident BiP or inhibit cell surface BiP, and modulate TLR signaling. Moreover, exploring BiP as a biomarker for TNBC diagnosis, prognosis, and treatment response will be crucial for personalized medicine.
Collapse
Affiliation(s)
- Priyamvada Bhamidipati
- Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - RamaRao Malla
- Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India.
| |
Collapse
|
10
|
Kim Y, Jeon SH, Kim S, Kang MH, Han MG, Lee SY, Kim IA. In vitro-irradiated cancer vaccine enhances anti-tumor efficacy of radiotherapy and PD-L1 blockade in a syngeneic murine breast cancer model. Radiother Oncol 2024; 200:110480. [PMID: 39159681 DOI: 10.1016/j.radonc.2024.110480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/18/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND AND PURPOSE Local radiotherapy (RT) exerts immunostimulatory effects by inducing immunogenic cell death. However, it remains unknown whether in vitro-irradiated tumor cells can elicit anti-tumor responses and enhance the efficacy of local RT and immune checkpoint inhibitors when injected in vivo. METHODS AND MATERIALS We tested the "in vitro-irradiated cancer vaccine (ICV)", wherein tumor cells killed by varying doses of irradiation and their supernatants are intravenously injected. We examined the efficacy of combining local RT (24 Gy in three fractions), PD-L1 blockade, and the ICV in a murine breast cancer model. The immune cell profiles were analyzed via flow cytometry and immunohistochemistry. The cytokine levels were measured by multiplex immunoassays. RESULTS The ICV significantly increased the effector memory phenotype and interferon-γ production capacity in splenic CD8+ T cells. The in vitro-irradiated products contained immune response-related molecules. When combined with local RT and PD-L1 blockade, the ICV significantly delayed the growth of irradiated and non-irradiated tumors. The triple combination therapy increased the proportions of CD8+ T cells and effector memory CD8+ T cells while decreasing the proportion of CTLA-4+ exhausted CD8+ T cells within tumor microenvironment. Additionally, plasma level of interferon-γ and proliferation of effector T cells in the spleen and tumor-draining lymph nodes were significantly increased by the triple combination therapy. CONCLUSIONS The ICV enhanced the therapeutic efficacy of local RT and PD-L1 blockade by augmenting anti-tumor immune responses. Our findings suggest a therapeutic potential of in vitro-irradiation products of tumor cells.
Collapse
Affiliation(s)
- Yoomin Kim
- Department of Tumor Biology and Cancer Research Institute, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| | - Seung Hyuck Jeon
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Seongmin Kim
- Department of Tumor Biology and Cancer Research Institute, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Integrated Major in Innovative Medical Science, Seoul National University, Seoul, Republic of Korea
| | - Mi Hyun Kang
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Min Guk Han
- Department of Tumor Biology and Cancer Research Institute, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Se Yup Lee
- Korea Nuclear Engineering Co., Ltd, Seoul, Republic of Korea
| | - In Ah Kim
- Department of Tumor Biology and Cancer Research Institute, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Integrated Major in Innovative Medical Science, Seoul National University, Seoul, Republic of Korea; Department of Radiation Oncology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Lin X, Liu Z, Dong X, Wang K, Sun Y, Zhang H, Wang F, Chen Y, Ling J, Guo Y, Xiang H, Xie Q, Zhang Y, Guo Z, Sugimura R, Xie G. Radiotherapy enhances the anti-tumor effect of CAR-NK cells for hepatocellular carcinoma. J Transl Med 2024; 22:929. [PMID: 39396988 PMCID: PMC11472550 DOI: 10.1186/s12967-024-05724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-NK cell therapy has shown remarkable clinical efficacy and safety in the treatment of hematological malignancies. However, this efficacy was limited in solid tumors owing to hostile tumor microenvironment (TME). Radiotherapy is commonly used for solid tumors and proved to improve the TME. Therefore, the combination with radiotherapy would be a potential strategy to improve therapeutic efficacy of CAR-NK cells for solid tumors. METHODS Glypican-3 (GPC3) was used as a target antigen of CAR-NK cell for hepatocellular carcinoma (HCC). To promote migration towards HCC, CXCR2-armed CAR-NK92 cells targeting GPC3 were first developed, and their cytotoxic and migration activities towards HCC cells were evaluated. Next, the effects of irradiation on the anti-tumor activity of CAR-NK92 cells were assessed in vitro and in HCC-bearing NCG mice. Lastly, to demonstrate the potential mechanism mediating the sensitized effect of irradiation on CAR-NK cells, the differential gene expression profiles induced by irradiation were analyzed and the expression of some important ligands for the NK-cell activating receptors were further determined by qRT-PCR and flow cytometry. RESULTS In this study, we developed CXCR2-armed GPC3-targeting CAR-NK92 cells that exhibited specific and potent killing activity against HCC cells and the enhanced migration towards HCC cells. Pretreating HCC cells with irradiation enhanced in vitro anti-HCC effect and migration activity of CXCR2-armed CAR-NK92 cells. We further found that only high-dose (8 Gy) but not low-dose (2 Gy) irradiation in one fraction could significantly enhanced in vivo anti-HCC activity of CXCR2-armed CAR-NK92 cells. Irradiation with 8 Gy significantly up-regulated the expression of NK cell-activating ligands on HCC cells. CONCLUSIONS Our results indicate the evidence that irradiation could efficiently enhance the anti-tumor effect of CAR-NK cells in solid tumor model. The combination with radiotherapy would be an attractive strategy to improve therapeutic efficacy of CAR-NK cells for solid tumors.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/radiotherapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/radiation effects
- Liver Neoplasms/radiotherapy
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Liver Neoplasms/immunology
- Animals
- Humans
- Cell Line, Tumor
- Receptors, Chimeric Antigen/metabolism
- Cell Movement/radiation effects
- Glypicans/metabolism
- Receptors, Interleukin-8B/metabolism
- Xenograft Model Antitumor Assays
- Mice
- Gene Expression Regulation, Neoplastic/radiation effects
- Immunotherapy, Adoptive/methods
- Tumor Microenvironment/radiation effects
- Cytotoxicity, Immunologic/radiation effects
Collapse
Affiliation(s)
- Xiaotong Lin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Zishen Liu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Xin Dong
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Kunyuan Wang
- State Key Laboratory of Organ Failure Research, Guangdong Province, Guangzhou, China
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, Guangdong, China
| | - Yao Sun
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Han Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Fei Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Ying Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Jing Ling
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Yuetong Guo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Hongjin Xiang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Qiankun Xie
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Yuqin Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Zhaoze Guo
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ryohichi Sugimura
- Centre for Translational Stem Cell Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Guozhu Xie
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China.
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Looi CK, Loo EM, Lim HC, Chew YL, Chin KY, Cheah SC, Goh BH, Mai CW. Revolutionizing the treatment for nasopharyngeal cancer: the impact, challenges and strategies of stem cell and genetically engineered cell therapies. Front Immunol 2024; 15:1484535. [PMID: 39450176 PMCID: PMC11499120 DOI: 10.3389/fimmu.2024.1484535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a distinct malignancy of the nasopharynx and is consistently associated with the Epstein-Barr virus (EBV) infection. Its unique anatomical location and complex aetiology often result in advanced-stage disease at first diagnosis. While radiotherapy (RT) and chemotherapy have been the mainstays of treatment, they often fail to prevent tumour recurrence and metastasis, leading to high rates of treatment failure and mortality. Recent advancement in cell-based therapies, such as chimeric antigen receptor (CAR)-T cell therapy, have shown great promise in hematological malignancies and are now being investigated for NPC. However, challenges such as targeting specific tumour antigens, limited T cell persistence and proliferation, and managing treatment-related toxicities must be addressed. Extensive research is needed to enhance the effectiveness and safety of these therapies, paving the way for their integration into standard clinical practice for better management of NPC and a better quality of life for human health.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Ee-Mun Loo
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
- Advanced Genomics Laboratory, AGTC Genomics, Kuala Lumpur, Malaysia
| | - Heng-Chee Lim
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Yik-Ling Chew
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Port Dickson, Negeri Sembilan, Malaysia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, China
| | - Chun-Wai Mai
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Jafari S, Ardakan AK, Aghdam EM, Mesbahi A, Montazersaheb S, Molavi O. Induction of immunogenic cell death and enhancement of the radiation-induced immunogenicity by chrysin in melanoma cancer cells. Sci Rep 2024; 14:23231. [PMID: 39369019 PMCID: PMC11455848 DOI: 10.1038/s41598-024-72697-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 09/10/2024] [Indexed: 10/07/2024] Open
Abstract
Chrysin is a natural flavonoid with anti-cancer effects. Despite its beneficial effects, little information is available regarding its immunogenic cell death (ICD) properties. In this work, we hypothesized that chrysin can potentiate radiotherapy(RT)-induced immunogenicity in melanoma cell line (B16-F10). We examined the effects of chrysin alone and in combination with radiation on ICD induction in B16-F10 cells. Cell viability was assessed using an MTT assay. Cell apoptosis and calreticulin (CRT) exposure were determined using flow cytometry. Western blotting and ELISA assay were employed to examine changes in protein expression. Combination therapy exhibited a synergistic effect, with an optimum combination index of 0.66. The synergistic anti-cancer effect correlated with increased cell apoptosis in cancer cells. Compared to the untreated control, chrysin alone and in combination with RT induced higher levels of DAMPs, such as CRT, HSP70, HMGB1, and ATP. The protein expression of p-STAT3/STAT3 and PD-L1 was reduced in B16-F10 cells exposed to chrysin alone and in combination with RT. Conditioned media from B16-F10 cells exposed to mono-and combination treatments elicited IL-12 secretion in dendritic cells (DCs), inducing a Th1 response. Our findings revealed that chrysin could induce ICD and intensify the RT-induced immunogenicity.
Collapse
Affiliation(s)
- Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Khodaei Ardakan
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Elnaz Mehdizadeh Aghdam
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, 51664-14766, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 51664-14766, Iran
| | - Asghar Mesbahi
- Medical Radiation Research Team, 84 Gorge Road, South Morang, Melbourne, Australia
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, 51664-14766, Iran.
| | - Ommoleila Molavi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, 51664-14766, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 51664-14766, Iran.
| |
Collapse
|
14
|
Tubin S, Ashdown ML, Ahmed MM, Guha C, Salerno G, Celedin B, Trummer B, Demschar S, Raunik W. Novel time-synchronized immune-guided partial tumor irradiation: Proof of principle trial. Radiother Oncol 2024; 199:110442. [PMID: 39069088 DOI: 10.1016/j.radonc.2024.110442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND AND PURPOSE Radiotherapy for bulky tumors often results in palliation with suboptimal outcomes. The prognosis is worsened by immunosuppression caused by radio-chemotherapy, negatively impacting on survival. Novel Partial Tumor Irradiation (PTI) was designed to spare the Peritumoral Immune Microenvironment (PIM) and to be delivered synchronously with immune activity peaks, thus enhancing both local and distant tumor control through immunostimulation. MATERIALS AND METHODS Present proof-of-principle trial enrolled 26 patients with bulky tumors, comparing outcomes between treatments administered at immune activity peaks versus troughs. The primary endpoint was local-bystander and distal-abscopal response-rate. Secondary endpoints included overall-, progression-free-, cancer-specific survival, neoadjuvant and immunomodulatory potential. RESULTS All measured outcomes were significantly influenced by treatment-timing. The bystander and abscopal response rates were 77% and 41%, respectively. PTI significantly upregulated pro-inflammatory and cell-death-inducing pathways improving the efficacy of radiotherapy by highly complex tumors. CONCLUSIONS This study highlights the profound impact PTI can have on a highly palliative patient cohort previously deemed beyond therapeutic hope. With 41 % of these patients still alive after a median follow-up of 50 months, PTI offers a potential lifeline for those facing advanced, treatment-resistant cancers. This approach generated also distant immunogenic anti-tumor responses, offering a promising new avenue for the treatment of advanced cancers.
Collapse
Affiliation(s)
- S Tubin
- Medaustron Center for Ion Therapy, Marie-Curie Strasse 5, Wiener Neustadt 2700, Austria; KABEG Klinikum Klagenfurt, Institute of Radiation Oncology, Feschnigstraße 11 9020, Klagenfurt am Wörthersee, Austria; Heidelberg University Hospital, Department of Radiation Oncology and Radiation Therapy, Im Neuenheimer Feld 400 69120, Heidelberg, Germany; Division of Radiation Biology and Molecular Therapeutics at the Department of Radiation Oncology, Albert Einstein College of Medicine, 111 E. 210th Street Klau 3 Bronx, NY 10467, New York, United States.
| | - M L Ashdown
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, 3010, Melbourne, Australia
| | - M M Ahmed
- Division of Radiation Biology and Molecular Therapeutics at the Department of Radiation Oncology, Albert Einstein College of Medicine, 111 E. 210th Street Klau 3 Bronx, NY 10467, New York, United States
| | - C Guha
- Montefiore Medical Center Radiation Oncology, 111 E 210th St, New York, NY, United States
| | - G Salerno
- Department of Neurosciences, Mental Health and Sensory Organs / Department of Clinical and Molecular Medicine, Universita' La Sapienza Roma, Ospedale Sant' Andrea, Via di Grottarossa, 1035 00189, Rome, RM, Italy.
| | - B Celedin
- KABEG Klinikum Klagenfurt, Institute of Radiation Oncology, Feschnigstraße 11 9020, Klagenfurt am Wörthersee, Austria
| | - B Trummer
- Center for Interdisciplinary Pain Therapy, Oncology and Palliative Care, Klinikum Klagenfurt am Wörthersee, Feschnigstr. 11 9020, Klagenfurt am Wörthersee, Austria
| | - S Demschar
- Center for Interdisciplinary Pain Therapy, Oncology and Palliative Care, Klinikum Klagenfurt am Wörthersee, Feschnigstr. 11 9020, Klagenfurt am Wörthersee, Austria
| | - W Raunik
- KABEG Klinikum Klagenfurt, Institute of Radiation Oncology, Feschnigstraße 11 9020, Klagenfurt am Wörthersee, Austria
| |
Collapse
|
15
|
Inocencio JF, Mitrasinovic S, Asad M, Parney IF, Zang X, Himes BT. Immune checkpoint pathways in glioblastoma: a diverse and evolving landscape. Front Immunol 2024; 15:1424396. [PMID: 39346924 PMCID: PMC11427296 DOI: 10.3389/fimmu.2024.1424396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Immune checkpoint (IC) inhibition in glioblastoma (GBM) has not shown promising results in the last decade compared to other solid tumors. Several factors contributing to the lack of immunotherapy response include the profound immunosuppressive nature of GBM, highly redundant signaling pathways underlying immune checkpoints, and the negative immunogenic impact of current standard of care on the tumor microenvironment. In this review, we will discuss various ICs in the context of GBM, their interplay with the tumor immune microenvironment, relevant pre-clinical and clinical studies, and the impact of current treatment modalities on GBM IC blockade therapy. Understanding the molecular mechanisms that drive ICs, and how they contribute to an immunosuppressive tumor microenvironment is critical in advancing IC inhibition therapy in GBM. Furthermore, revisiting current treatment modalities and their impact on the immune landscape is instrumental in designing future combinatorial therapies that may overcome treatment resistance.
Collapse
Affiliation(s)
- Julio F Inocencio
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Stefan Mitrasinovic
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mohammad Asad
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ian F Parney
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Benjamin T Himes
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
16
|
Mohammed SM, Al-Saedi HFS, Mohammed AQ, Amir AA, Radi UK, Sattar R, Ahmad I, Ramadan MF, Alshahrani MY, Balasim HM, Alawadi A. Mechanisms of Bleomycin-induced Lung Fibrosis: A Review of Therapeutic Targets and Approaches. Cell Biochem Biophys 2024; 82:1845-1870. [PMID: 38955925 DOI: 10.1007/s12013-024-01384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Pulmonary toxicity is a serious side effect of some specific anticancer drugs. Bleomycin is a well-known anticancer drug that triggers severe reactions in the lungs. It is an approved drug that may be prescribed for the treatment of testicular cancers, Hodgkin's and non-Hodgkin's lymphomas, ovarian cancer, head and neck cancers, and cervical cancer. A large number of experimental studies and clinical findings show that bleomycin can concentrate in lung tissue, leading to massive oxidative stress, alveolar epithelial cell death, the proliferation of fibroblasts, and finally the infiltration of immune cells. Chronic release of pro-inflammatory and pro-fibrotic molecules by immune cells and fibroblasts leads to pneumonitis and fibrosis. Both fibrosis and pneumonitis are serious concerns for patients who receive bleomycin and may lead to death. Therefore, the management of lung toxicity following cancer therapy with bleomycin is a critical issue. This review explains the cellular and molecular mechanisms of pulmonary injury following treatment with bleomycin. Furthermore, we review therapeutic targets and possible promising strategies for ameliorating bleomycin-induced lung injury.
Collapse
Affiliation(s)
- Shaimaa M Mohammed
- Department of Pharmacy, Al- Mustaqbal University College, 51001, Hilla, Babylon, Iraq
| | | | | | - Ahmed Ali Amir
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Usama Kadem Radi
- College of Pharmacy, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Ruaa Sattar
- Al-Hadi University College, Baghdad, 10011, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Halah Majeed Balasim
- Department of Medical Laboratory Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq
- College of technical engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of technical engineering, the Islamic University of Babylon, Hilla, Iraq
| |
Collapse
|
17
|
Moloudi K, Azariasl S, Abrahamse H, George BP, Yasuda H. Expected role of photodynamic therapy to relieve skin damage in nuclear or radiological emergency: Review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104517. [PMID: 39032581 DOI: 10.1016/j.etap.2024.104517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Nuclear and radiological accidents can occur due to poor management, in transportation, radiation therapy and nuclear wards in hospitals, leading to extreme radiation exposure and serious consequences for human health. Additionally, in many of previous radiological accidents, skin damage was observed in patients and survivors due to the high radiation exposure. However, as part of a medical countermeasures in a nuclear/radiological emergency, it is critical to plan for the treatment of radiation-induced skin damage. Hence, the new, non-invasive technology of photodynamic therapy (PDT) is projected to be more effectively used for treating skin damage caused by high-dose radiation. PDT plays an important role in treating, repairing skin damage and promoting wound healing as evidenced by research. This review, highlighted and recommended potential impacts of PDT to repair and decrease radiation-induced skin tissue damage. Moreover, we have suggested some photosensitizer (PS) agent as radio-mitigator drugs to decrease radiobiological effects.
Collapse
Affiliation(s)
- Kave Moloudi
- Laser Research Centre, Faculty of Health Science, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Samayeh Azariasl
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku 734-8553, Japan
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Science, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Science, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa.
| | - Hiroshi Yasuda
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku 734-8553, Japan
| |
Collapse
|
18
|
Logotheti S, Pavlopoulou A, Rudsari HK, Galow AM, Kafalı Y, Kyrodimos E, Giotakis AI, Marquardt S, Velalopoulou A, Verginadis II, Koumenis C, Stiewe T, Zoidakis J, Balasingham I, David R, Georgakilas AG. Intercellular pathways of cancer treatment-related cardiotoxicity and their therapeutic implications: the paradigm of radiotherapy. Pharmacol Ther 2024; 260:108670. [PMID: 38823489 DOI: 10.1016/j.pharmthera.2024.108670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Advances in cancer therapeutics have improved patient survival rates. However, cancer survivors may suffer from adverse events either at the time of therapy or later in life. Cardiovascular diseases (CVD) represent a clinically important, but mechanistically understudied complication, which interfere with the continuation of best-possible care, induce life-threatening risks, and/or lead to long-term morbidity. These concerns are exacerbated by the fact that targeted therapies and immunotherapies are frequently combined with radiotherapy, which induces durable inflammatory and immunogenic responses, thereby providing a fertile ground for the development of CVDs. Stressed and dying irradiated cells produce 'danger' signals including, but not limited to, major histocompatibility complexes, cell-adhesion molecules, proinflammatory cytokines, and damage-associated molecular patterns. These factors activate intercellular signaling pathways which have potentially detrimental effects on the heart tissue homeostasis. Herein, we present the clinical crosstalk between cancer and heart diseases, describe how it is potentiated by cancer therapies, and highlight the multifactorial nature of the underlying mechanisms. We particularly focus on radiotherapy, as a case known to often induce cardiovascular complications even decades after treatment. We provide evidence that the secretome of irradiated tumors entails factors that exert systemic, remote effects on the cardiac tissue, potentially predisposing it to CVDs. We suggest how diverse disciplines can utilize pertinent state-of-the-art methods in feasible experimental workflows, to shed light on the molecular mechanisms of radiotherapy-related cardiotoxicity at the organismal level and untangle the desirable immunogenic properties of cancer therapies from their detrimental effects on heart tissue. Results of such highly collaborative efforts hold promise to be translated to next-generation regimens that maximize tumor control, minimize cardiovascular complications, and support quality of life in cancer survivors.
Collapse
Affiliation(s)
- Stella Logotheti
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780, Athens, Greece; Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | | | - Anne-Marie Galow
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Yağmur Kafalı
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Efthymios Kyrodimos
- First Department of Otorhinolaryngology, Head and Neck Surgery, Hippocrateion General Hospital Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Aris I Giotakis
- First Department of Otorhinolaryngology, Head and Neck Surgery, Hippocrateion General Hospital Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Stephan Marquardt
- Institute of Translational Medicine for Health Care Systems, Medical School Berlin, Hochschule Für Gesundheit Und Medizin, 14197 Berlin, Germany
| | - Anastasia Velalopoulou
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ioannis I Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps-University, 35043 Marburg, Germany; German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), 35043 Marburg, Germany; Genomics Core Facility, Philipps-University, 35043 Marburg, Germany; Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Jerome Zoidakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece; Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Robert David
- Department of Cardiac Surgery, Rostock University Medical Center, 18057 Rostock, Germany; Department of Life, Light & Matter, Interdisciplinary Faculty, Rostock University, 18059 Rostock, Germany
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780, Athens, Greece.
| |
Collapse
|
19
|
Wang W, Zheng Y, Wu Z, Wu M, Chen Y, Zhang Y, Fu S, Wu J. Antibody targeting of anaerobic bacteria warms cold tumors and improves the abscopal effect of radiotherapy. J Transl Med 2024; 22:657. [PMID: 39010088 PMCID: PMC11247849 DOI: 10.1186/s12967-024-05469-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND The combination of immune checkpoint inhibitors with radiotherapy can enhance the immunomodulation by RT and reduce the growth of distant unirradiated tumors (abscopal effect); however, the results are still not very satisfactory. Therefore, new treatment options are needed to enhance this effect. Our previous study showed that the combination of Bifidobacterium (Bi) and its specific monoclonal antibody (mAb) could target and alleviate hypoxia at the tumor site and act as a radiosensitizer. In this study, we explored the anti-tumor efficacy of quadruple therapy (Bi + mAb and RT + αPD-1). The current study also aimed to probe into the complex immune mechanisms underlying this phenomenon. METHODS Constructed 4T1 breast and CT26 colon cancer tumor models. A comprehensive picture of the impact of constructed quadruple therapy was provided by tumor volume measurements, survival analysis, PET/CT imaging, immune cell infiltration analysis and cytokine expression levels. RESULTS The abscopal effect was further amplified in the "cold" tumor model and prolonged survival in tumor-bearing mice. Bi can colonized in primary and secondary tumors and direct the mAb to reach the tumor site, activate complement, enhance the ADCC effect and initiate the innate immune response. Then combined with αPD-1 and radiotherapy to stimulate adaptive immune response and synergize with cytokines to expand the immune efficacy and generate effective anti-tumor immune response. CONCLUSIONS Bi was used as an artificially implanted anaerobic target to cause a transient "infection" at the tumor, causing the tumor to become locally inflamed and "hot", and at the same time, mAb was used to target Bi to enhance the local immune effect of the tumor, and then combined with radiotherapy and αPD-1 to amplify the abscopal effect in multiple dimensions. Therefore, the present study provided a new idea for the multipotent immune-activating function of antibody-targeted anaerobic bacteria for the RT treatment of extensively metastasized cancer patients.
Collapse
Affiliation(s)
- WeiZhou Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - YunXue Zheng
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - ZhouXue Wu
- Department of Oncology and Hematology, Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, China
| | - Min Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yue Chen
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yan Zhang
- Department of Oncology and Hematology, Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, China.
| | - ShaoZhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China.
| | - JingBo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China.
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
20
|
Tubin S. A Partial Tumor Irradiation Approach for Complex Bulky Disease. Semin Radiat Oncol 2024; 34:323-336. [PMID: 38880541 DOI: 10.1016/j.semradonc.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
A large proportion of cancer patients present with unresectable bulky disease at baseline or following treatment failure. The data available in the literature suggest that the vast majority of these patients do not benefit from available standard therapies. Therefore the clinical outcomes are poor; patients are desperate and usually relegated to palliative or best supportive care as the only options. Large tumor masses are usually hypoxic, resistant to radiation and systemic therapy, with extensive regional infiltration of the surrounding critical organs, the presence of which makes it impossible to deliver a radical dose of radiation. Promising data in terms of improved therapeutic ratio where such complex tumors are concerned can be seen with the use of new emerging unconventional radiotherapy techniques known as spatially fractionated radiotherapies (SFRT). One of them is PATHY, or PArtial Tumor irradiation targeting HYpoxic segment, which is characterized by a very short treatment course offering a large spectrum of therapeutic benefits in terms of the symptom relief, quality of life, local tumor control, neoadjuvant and immunomodulatory effects.
Collapse
Affiliation(s)
- Slavisa Tubin
- Medaustron Center for Ion Therapy, Marie-Curie Strasse 5, Wiener Neustadt 2700, Austria; Heidelberg University Hospital, Department of Radiation Oncology and Radiation Therapy, Im Neuenheimer Feld 400 69120 Heidelberg; Montefiore Medical Center Radiation Oncology, 111 E 210th St, New York, NY, United States.
| |
Collapse
|
21
|
Patra S, Roy PK, Dey A, Mandal M. Impact of HMGB1 on cancer development and therapeutic insights focused on CNS malignancy. Biochim Biophys Acta Rev Cancer 2024; 1879:189105. [PMID: 38701938 DOI: 10.1016/j.bbcan.2024.189105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
The present study explores the complex roles of High Mobility Group Box 1 (HMGB1) in the context of cancer development, emphasizing glioblastoma (GBM) and other central nervous system (CNS) cancers. HMGB1, primarily known for its involvement in inflammation and angiogenesis, emerges as a multifaceted player in the tumorigenesis of GBM. The overexpression of HMGB1 correlates with glioma malignancy, influencing key pathways like RAGE/MEK/ERK and RAGE/Rac1. Additionally, HMGB1 secretion is linked to the maintenance of glioma stem cells (GSCs) and contributes to the tumor microenvironment's (TME) vascular leakiness. Henceforth, our review discusses the bidirectional impact of HMGB1, acting as both a promoter of tumor progression and a mediator of anti-tumor immune responses. Notably, HMGB1 exhibits tumor-suppressive roles by inducing apoptosis, limiting cellular proliferation, and enhancing the sensitivity of GBM to therapeutic interventions. This dualistic nature of HMGB1 calls for a nuanced understanding of its implications in GBM pathogenesis, offering potential avenues for more effective and personalized treatment strategies. The findings underscore the need to explore HMGB1 as a prognostic marker, therapeutic target, and a promising tool for stimulating anti-tumor immunity in GBM.
Collapse
Affiliation(s)
- Sucharita Patra
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India.
| | - Pritam Kumar Roy
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India.
| | - Ankita Dey
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India.
| | - Mahitosh Mandal
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India.
| |
Collapse
|
22
|
Mohammadi A, Bashiri Z, Rafiei S, Asgari H, Shabani R, Hosseini S, Koruji M. Testicular niche repair after gonadotoxic treatments: Current knowledge and future directions. Biol Cell 2024; 116:e2300123. [PMID: 38470182 DOI: 10.1111/boc.202300123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024]
Abstract
The testicular niche, which includes the germ cells, somatic cells, and extracellular matrix, plays a crucial role in maintaining the proper functions of the testis. Gonadotoxic treatments, such as chemotherapy and radiation therapy, have significantly improved the survival rates of cancer patients but have also been shown to have adverse effects on the testicular microenvironment. Therefore, repairing the testicular niche after gonadotoxic treatments is essential to restore its function. In recent years, several approaches, such as stem cell transplantation, gene therapy, growth factor therapy, and pharmacological interventions have been proposed as potential therapeutic strategies to repair the testicular niche. This comprehensive review aims to provide an overview of the current understanding of testis damage and repair mechanisms. We will cover a range of topics, including the mechanism of gonadotoxic action, repair mechanisms, and treatment approaches. Overall, this review highlights the importance of repairing the testicular niche after gonadotoxic treatments and identifies potential avenues for future research to improve the outcomes for cancer survivors.
Collapse
Affiliation(s)
- Amirhossein Mohammadi
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Bashiri
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Omid Fertility & Infertility Clinic, Hamedan, Iran
| | - Sara Rafiei
- Department of Botany and Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Hamidreza Asgari
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - SeyedJamal Hosseini
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Cho H, Kim K. Multi-functional nanomedicines for combinational cancer immunotherapy that transform cold tumors to hot tumors. Expert Opin Drug Deliv 2024; 21:627-638. [PMID: 38682272 DOI: 10.1080/17425247.2024.2348656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION Currently, cancer immunotherapy is widely used as a groundbreaking method that can completely cure advanced cancers. However, this new immunotherapy has the challenge of low patient response, which is often due to many patients' tumors having an immunosuppressive environment, known as cold tumors. AREAS COVERED This review aims to introduce various nanomedicine-derived combinational cancer immunotherapy that can transform cold tumor into hot tumors. Initially, we discuss new technologies for combinational immunotherapy based on multifunctional nanomedicines that can deliver combinational immunogenic cell death (ICD) inducers, immune checkpoint blockades (ICBs) and immune modulators (IMs) to targeted tumor tissues at the same time. Ultimately, we highlight how multifunctional nanomedicines for combinational cancer immunotherapy can be used to transform cold tumor into hot tumors against advanced cancers. EXPERT OPINION Nanomedicine-derived combinational cancer immunotherapy for delivering multiple ICD inducers, ICBs, and IMs at the same time is recognized as a new potential technology that can activate tumor immunity and simultaneously increase the therapeutic efficacy of immune cells that can transform effectively the cold tumors into hot tumors. Finally, nanomedicine-derived combinational cancer immunotherapy can solve the serious problems of low therapeutic efficacy that occurs when treating single drug or simple combinational drugs in cancer immunotherapy.
Collapse
Affiliation(s)
- Hanhee Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman's University, Seoul, Republic of Korea
| | | |
Collapse
|
24
|
Almeida A, Godfroid C, Leavitt RJ, Montay-Gruel P, Petit B, Romero J, Ollivier J, Meziani L, Sprengers K, Paisley R, Grilj V, Limoli CL, Romero P, Vozenin MC. Antitumor Effect by Either FLASH or Conventional Dose Rate Irradiation Involves Equivalent Immune Responses. Int J Radiat Oncol Biol Phys 2024; 118:1110-1122. [PMID: 37951550 PMCID: PMC11093276 DOI: 10.1016/j.ijrobp.2023.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/05/2023] [Accepted: 10/14/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE The capability of ultrahigh dose rate FLASH radiation therapy to generate the FLASH effect has opened the possibility to enhance the therapeutic index of radiation therapy. The contribution of the immune response has frequently been hypothesized to account for a certain fraction of the antitumor efficacy and tumor kill of FLASH but has yet to be rigorously evaluated. METHODS AND MATERIALS To investigate the immune response as a potentially important mechanism of the antitumor effect of FLASH, various murine tumor models were grafted either subcutaneously or orthotopically into immunocompetent mice or in moderately and severely immunocompromised mice. Mice were locally irradiated with single dose (20 Gy) or hypofractionated regimens (3 × 8 or 2 × 6 Gy) using FLASH (≥2000 Gy/s) and conventional (CONV) dose rates (0.1 Gy/s), with/without anti-CTLA-4. Tumor growth was monitored over time and immune profiling performed. RESULTS FLASH and CONV 20 Gy were isoeffective in delaying tumor growth in immunocompetent and moderately immunodeficient hosts and increased tumor doubling time to >14 days versus >7 days in control animals. Similar observations were obtained with a hypofractionated scheme, regardless of the microenvironment (subcutaneous flank vs ortho lungs). Interestingly, in profoundly immunocompromised mice, 20 Gy FLASH retained antitumor activity and significantly increased tumor doubling time to >14 days versus >8 days in control animals, suggesting a possible antitumor mechanism independent of the immune response. Analysis of the tumor microenvironment showed similar immune profiles after both irradiation modalities with significant decrease of lymphoid cells by ∼40% and a corresponding increase of myeloid cells. In addition, FLASH and CONV did not increase transforming growth factor-β1 levels in tumors compared with unirradiated control animals. Furthermore, when a complete and long-lasting antitumor response was obtained (>140 days), both modalities of irradiation were able to generate a long-term immunologic memory response. CONCLUSIONS The present results clearly document that the tumor responses across multiple immunocompetent and immunodeficient mouse models are largely dose rate independent and simultaneously contradict a major role of the immune response in the antitumor efficacy of FLASH. Therefore, our study indicates that FLASH is as potent as CONV in modulating antitumor immune response and can be used as an immunomodulatory agent.
Collapse
Affiliation(s)
- Aymeric Almeida
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Céline Godfroid
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Department of Oncology UNIL CHUV, University of Lausanne, Épalinges, Switzerland
| | - Ron J Leavitt
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pierre Montay-Gruel
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Radiation Oncology Department, Iridium Netwerk, Wilrijk (Antwerp), Belgium; Antwerp Research in Radiation Oncology (AReRO), Centre for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Benoit Petit
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jackeline Romero
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jonathan Ollivier
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Lydia Meziani
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kevin Sprengers
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Ryan Paisley
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Veljko Grilj
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, California
| | - Pedro Romero
- Department of Oncology UNIL CHUV, University of Lausanne, Épalinges, Switzerland
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
25
|
Min L, Wang X, Chen A, Zhou Y, Ge Y, Dai J, Chang X, Sun W, Liu Q, Zhou X, Tian M, Kong W, Zhu J, Shen J, Liu B, Li R. Design of a single-center, phase II trial to explore the efficacy and safety of 'R-ISV-RO' treatment in advanced tumors. Future Oncol 2024; 20:1139-1149. [PMID: 38445361 PMCID: PMC11318728 DOI: 10.2217/fon-2023-0962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
Background: The authors' preclinical study has confirmed that RO adjuvant (composed of TLR 7 agonists [imiquimod/R837] and OX40 agonists) injected into local lesions induces the regression of both primary tumor and distant metastasis. The authors propose to realize local control and exert abscopal effect through an 'R-ISV-RO' in situ strategy plus anti-PD-1 monoclonal antibody in advanced tumors. Methods: This study is a single-center, exploratory, phase II trial to evaluate the efficacy and safety of R-ISV-RO plus anti-PD-1 monoclonal antibody in advanced tumors. 30 patients with one or more measurable extracerebral lesions that are accessible for radiation or injection will be enrolled. The primary endpoint is the objective response rate of target lesions. Discussion/Conclusion: The efficacy and safety of the novel strategy will be further validated through this clinical trial.Clinical trial registration: ChiCTR2100053870 (www.chictr.org.cn/).
Collapse
Affiliation(s)
- Limei Min
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing City, Jiangsu Province, 210008, China
| | - Xiaolu Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing City, Jiangsu Province, 210008, China
| | - Anni Chen
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese & Western Medicine, Nanjing University of Chinese Medicine, No. 321 Zhongshan Road, Gulou District, Nanjing City, Jiangsu Province, 210008, China
| | - Yingling Zhou
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese & Western Medicine, Nanjing University of Chinese Medicine, No. 321 Zhongshan Road, Gulou District, Nanjing City, Jiangsu Province, 210008, China
| | - Yuchen Ge
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing City, Jiangsu Province, 210008, China
| | - Juanjuan Dai
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing City, Jiangsu Province, 210008, China
| | - Xiaofeng Chang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing City, Jiangsu Province, 210008, China
| | - Wu Sun
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing City, Jiangsu Province, 210008, China
| | - Qin Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing City, Jiangsu Province, 210008, China
| | - Xia Zhou
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing City, Jiangsu Province, 210008, China
| | - Manman Tian
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing City, Jiangsu Province, 210008, China
| | - Wentao Kong
- Department of Ultrasound Diagnosis, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing City, Jiangsu Province, 210008, China
| | - Junmeng Zhu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing City, Jiangsu Province, 210008, China
| | - Jie Shen
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing City, Jiangsu Province, 210008, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing City, Jiangsu Province, 210008, China
| | - Rutian Li
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing City, Jiangsu Province, 210008, China
| |
Collapse
|
26
|
Wang X, Wang Y, Zhang Y, Shi H, Liu K, Wang F, Wang Y, Chen H, Shi Y, Wang R. Immune modulatory roles of radioimmunotherapy: biological principles and clinical prospects. Front Immunol 2024; 15:1357101. [PMID: 38449871 PMCID: PMC10915027 DOI: 10.3389/fimmu.2024.1357101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
Radiation therapy (RT) not only can directly kill tumor cells by causing DNA double-strand break, but also exerts anti-tumor effects through modulating local and systemic immune responses. The immunomodulatory effects of RT are generally considered as a double-edged sword. On the one hand, RT effectively enhances the immunogenicity of tumor cells, triggers type I interferon response, induces immunogenic cell death to activate immune cell function, increases the release of proinflammatory factors, and reshapes the tumor immune microenvironment, thereby positively promoting anti-tumor immune responses. On the other hand, RT stimulates tumor cells to express immunosuppressive cytokines, upregulates the function of inhibitory immune cells, leads to lymphocytopenia and depletion of immune effector cells, and thus negatively suppresses immune responses. Nonetheless, it is notable that RT has promising abscopal effects and may achieve potent synergistic effects, especially when combined with immunotherapy in the daily clinical practice. This systematic review will provide a comprehensive profile of the latest research progress with respect to the immunomodulatory effects of RT, as well as the abscopal effect of radioimmunotherapy combinations, from the perspective of biological basis and clinical practice.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yu Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yonggang Zhang
- Department of Head and Neck Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Hongyun Shi
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Kuan Liu
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Fang Wang
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yue Wang
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Huijing Chen
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yan Shi
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Ruiyao Wang
- Department of Thoracic Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| |
Collapse
|
27
|
Gupta J, Jalil AT, Abd Alzahraa ZH, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Najafi M. The Metformin Immunoregulatory Actions in Tumor Suppression and Normal Tissues Protection. Curr Med Chem 2024; 31:5370-5396. [PMID: 37403391 DOI: 10.2174/0929867331666230703143907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023]
Abstract
The immune system is the key player in a wide range of responses in normal tissues and tumors to anticancer therapy. Inflammatory and fibrotic responses in normal tissues are the main limitations of chemotherapy, radiotherapy, and also some newer anticancer drugs such as immune checkpoint inhibitors (ICIs). Immune system responses within solid tumors including anti-tumor and tumor-promoting responses can suppress or help tumor growth. Thus, modulation of immune cells and their secretions such as cytokines, growth factors and epigenetic modulators, pro-apoptosis molecules, and some other molecules can be suggested to alleviate side effects in normal tissues and drug-resistance mechanisms in the tumor. Metformin as an anti-diabetes drug has shown intriguing properties such as anti-inflammation, anti-fibrosis, and anticancer effects. Some investigations have uncovered that metformin can ameliorate radiation/chemotherapy toxicity in normal cells and tissues through the modulation of several targets in cells and tissues. These effects of metformin may ameliorate severe inflammatory responses and fibrosis after exposure to ionizing radiation or following treatment with highly toxic chemotherapy drugs. Metformin can suppress the activity of immunosuppressive cells in the tumor through the phosphorylation of AMP-activated protein kinase (AMPK). In addition, metformin may stimulate antigen presentation and maturation of anticancer immune cells, which lead to the induction of anticancer immunity in the tumor. This review aims to explain the detailed mechanisms of normal tissue sparing and tumor suppression during cancer therapy using adjuvant metformin with an emphasis on immune system responses.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U. P., India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | | | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellin, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cuenca, Ecuador
| | | | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
28
|
He J, Yan Y, Zhang J, Wei Z, Li H, Xing L. Synergistic treatment strategy: combining CAR-NK cell therapy and radiotherapy to combat solid tumors. Front Immunol 2023; 14:1298683. [PMID: 38162672 PMCID: PMC10755030 DOI: 10.3389/fimmu.2023.1298683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Immunotherapy, notably chimeric antigen receptor (CAR) modified natural killer (NK) cell therapy, has shown exciting promise in the treatment of hematologic malignancies due to its unique advantages including fewer side effects, diverse activation mechanisms, and wide availability. However, CAR-NK cell therapies have demonstrated limited efficacy against solid tumors, primarily due to challenges posed by the solid tumor microenvironment. In contrast, radiotherapy, a well-established treatment modality, has been proven to modulate the tumor microenvironment and facilitate immune cell infiltration. With these observations, we hypothesize that a novel therapeutic strategy integrating CAR-NK cell therapy with radiotherapy could enhance the ability to treat solid tumors. This hypothesis aims to address the obstacles CAR-NK cell therapies face within the solid tumor microenvironment and explore the potential efficacy of their combination with radiotherapy. By capitalizing on the synergistic advantages of CAR-NK cell therapy and radiotherapy, we posit that this could lead to improved prognoses for patients with solid tumors.
Collapse
Affiliation(s)
- Jie He
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yushan Yan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jun Zhang
- Asclepius (Soochow) Technology Company Group, Suzhou, Jiangsu, China
| | - Zhiming Wei
- Asclepius (Soochow) Technology Company Group, Suzhou, Jiangsu, China
| | - Huashun Li
- Asclepius (Soochow) Technology Company Group, Suzhou, Jiangsu, China
| | - Ligang Xing
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
29
|
Qin L, Wu J. Targeting anticancer immunity in oral cancer: Drugs, products, and nanoparticles. ENVIRONMENTAL RESEARCH 2023; 239:116751. [PMID: 37507044 DOI: 10.1016/j.envres.2023.116751] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Oral cavity carcinomas are the most frequent malignancies among head and neck malignancies. Oral tumors include not only oral cancer cells with different potency and stemness but also consist of diverse cells, containing anticancer immune cells, stromal and also immunosuppressive cells that influence the immune system reactions. The infiltrated T and natural killer (NK) cells are the substantial tumor-suppressive immune compartments in the tumor. The infiltration of these cells has substantial impacts on the response of tumors to immunotherapy, chemotherapy, and radiotherapy. Nevertheless, cancer cells, stromal cells, and some other compartments like regulatory T cells (Tregs), macrophages, and myeloid-derived suppressor cells (MDSCs) can repress the immune responses against malignant cells. Boosting anticancer immunity by inducing the immune system or repressing the tumor-promoting cells is one of the intriguing approaches for the eradication of malignant cells such as oral cancers. This review aims to concentrate on the secretions and interactions in the oral tumor immune microenvironment. We review targeting tumor stroma, immune system and immunosuppressive interactions in oral tumors. This review will also focus on therapeutic targets and therapeutic agents such as nanoparticles and products with anti-tumor potency that can boost anticancer immunity in oral tumors. We also explain possible future perspectives including delivery of various cells, natural products and drugs by nanoparticles for boosting anticancer immunity in oral tumors.
Collapse
Affiliation(s)
- Liling Qin
- Gezhouba Central Hospital of the Third Clinical Medical College of Three Gorges University, Yichang, Hubei, 443002, China
| | - Jianan Wu
- Experimental and Practical Teaching Center, Hubei College of Chinese Medicine, Jingzhou, Hubei, 434000, China.
| |
Collapse
|
30
|
Liao Y, Meng Q. Protection against cancer therapy-induced cardiovascular injury by planed-derived polyphenols and nanomaterials. ENVIRONMENTAL RESEARCH 2023; 238:116896. [PMID: 37586453 DOI: 10.1016/j.envres.2023.116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Cancer therapy-induced heart injury is a significant concern for cancer patients undergoing chemotherapy, radiotherapy, immunotherapy, and also targeted molecular therapy. The use of these treatments can lead to oxidative stress and cardiomyocyte damage in the heart, which can result in heart failure and other cardiac complications. Experimental studies have revealed that chemotherapy drugs such as doxorubicin and cyclophosphamide can cause severe side effects such as cardiac fibrosis, electrophysiological remodeling, chronic oxidative stress and inflammation, etc., which may increase risk of cardiac disorders and attacks for patients that underwent chemotherapy. Similar consequences may also be observed for patients that undergo radiotherapy for left breast or lung malignancies. Polyphenols, a group of natural compounds with antioxidant and anti-inflammatory properties, have shown the potential in protecting against cancer therapy-induced heart injury. These compounds have been found to reduce oxidative stress, necrosis and apoptosis in the heart, thereby preserving cardiac function. In recent years, nanoparticles loaded with polyphenols have also provided for the delivery of these compounds and increasing their efficacy in different organs. These nanoparticles can improve the bioavailability and efficacy of polyphenols while minimizing their toxicity. This review article summarizes the current understanding of the protective effects of polyphenols and nanoparticles loaded with polyphenols against cancer therapy-induced heart injury. The article discusses the mechanisms by which polyphenols protect the heart, including antioxidant and anti-inflammation abilities. The article also highlights the potential benefits of using nanoparticles for the delivery of polyphenols.
Collapse
Affiliation(s)
- Yunshu Liao
- Department of Cardiac Surgery, The First Hospital Affiliated to the Army Medical University, Chongqing, 400038, China
| | - Qinghua Meng
- Department of Cardiac Surgery, The First Hospital Affiliated to the Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
31
|
Jeon SH, Song C, Eom KY, Kim IA, Kim JS. Modulation of CD8 + T Cell Responses by Radiotherapy-Current Evidence and Rationale for Combination with Immune Checkpoint Inhibitors. Int J Mol Sci 2023; 24:16691. [PMID: 38069014 PMCID: PMC10706388 DOI: 10.3390/ijms242316691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Radiotherapy for cancer has been known to affect the responses of immune cells, especially those of CD8+ T cells that play a pivotal role in anti-tumor immunity. Clinical success of immune checkpoint inhibitors led to an increasing interest in the ability of radiation to modulate CD8+ T cell responses. Recent studies that carefully analyzed CD8+ T cell responses following radiotherapy suggest the beneficial roles of radiotherapy on anti-tumor immunity. In addition, numerous clinical trials to evaluate the efficacy of combining radiotherapy with immune checkpoint inhibitors are currently undergoing. In this review, we summarize the current status of knowledge regarding the changes in CD8+ T cells following radiotherapy from various preclinical and clinical studies. Furthermore, key biological mechanisms that underlie such modulation, including both direct and indirect effects, are described. Lastly, we discuss the current evidence and essential considerations for harnessing radiotherapy as a combination partner for immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Jae-Sung Kim
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea; (S.H.J.); (C.S.); (K.-Y.E.); (I.A.K.)
| |
Collapse
|
32
|
Zhang A, Gao L. The Refined Application and Evolution of Nanotechnology in Enhancing Radiosensitivity During Radiotherapy: Transitioning from Gold Nanoparticles to Multifunctional Nanomaterials. Int J Nanomedicine 2023; 18:6233-6256. [PMID: 37936951 PMCID: PMC10626338 DOI: 10.2147/ijn.s436268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/21/2023] [Indexed: 11/09/2023] Open
Abstract
Radiotherapy is a pivotal method for treating malignant tumors, and enhancing the therapeutic gain ratio of radiotherapy through physical techniques is the direction of modern precision radiotherapy. Due to the inherent physical properties of high-energy radiation, enhancing the therapeutic gain ratio of radiotherapy through radiophysical techniques inevitably encounters challenges. The combination of hyperthermia and radiotherapy can enhance the radiosensitivity of tumor cells, reduce their radioresistance, and holds significant clinical utility in radiotherapy. Multifunctional nanomaterials with excellent biocompatibility and safety have garnered widespread attention in tumor hyperthermia research, demonstrating promising potential. Utilizing nanotechnology as a sensitizing carrier in conjunction with radiotherapy, and high atomic number nanomaterials can also serve independently as radiosensitizing carriers. This synergy between tumor hyperthermia and radiotherapy may overcome many challenges currently limiting tumor radiotherapy, offering new opportunities for its further advancement. In recent years, the continuous progress in the synthesis and design of novel nanomaterials will propel the future development of medical imaging and cancer treatment. This article summarizes the radiosensitizing mechanisms and effects based on gold nanotechnology and provides an overview of the advancements of other nanoparticles (such as bismuth-based nanomaterials, magnetic nanomaterials, selenium nanomaterials, etc.) in the process of radiation therapy.
Collapse
Affiliation(s)
- Anqi Zhang
- Oncology Department, Huabei Petroleum Administration Bureau General Hospital, Renqiu, Hebei, People’s Republic of China
| | - Lei Gao
- Medical Imaging Department, Huabei Petroleum Administration Bureau General Hospital, Renqiu, Hebei, People’s Republic of China
| |
Collapse
|
33
|
You P, Liu S, Li Q, Xie D, Yao L, Guo C, Guo Z, Wang T, Qiu H, Guo Y, Li J, Zhou H. Radiation-sensitive genetic prognostic model identifies individuals at risk for radiation resistance in head and neck squamous cell carcinoma. J Cancer Res Clin Oncol 2023; 149:15623-15640. [PMID: 37656244 DOI: 10.1007/s00432-023-05304-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND The advantages of radiotherapy for head and neck squamous cell carcinoma (HNSCC) depend on the radiation sensitivity of the patient. Here, we established and verified radiological factor-related gene signature and built a prognostic risk model to predict whether radiotherapy would be beneficial. METHODS Data from The Cancer Genome Atlas, Gene Expression Omnibus, and RadAtlas databases were subjected to LASSO regression, univariate COX regression, and multivariate COX regression analyses to integrate genomic and clinical information from patients with HNSCC. HNSCC radiation-related prognostic genes were identified, and patients classified into high- and low-risk groups, based on risk scores. Variations in radiation sensitivity according to immunological microenvironment, functional pathways, and immunotherapy response were investigated. Finally, the expression of HNSCC radiation-related genes was verified by qRT-PCR. RESULTS We built a clinical risk prediction model comprising a 15-gene signature and used it to divide patients into two groups based on their susceptibility to radiation: radiation-sensitive and radiation-resistant. Overall survival was significantly greater in the radiation-sensitive than the radiation-resistant group. Further, our model was an independent predictor of radiotherapy response, outperforming other clinical parameters, and could be combined with tumor mutational burden, to identify the target population with good predictive value for prognosis at 1, 2, and 3 years. Additionally, the radiation-resistant group was more vulnerable to low levels of immune infiltration, which are significantly associated with DNA damage repair, hypoxia, and cell cycle regulation. Tumor Immune Dysfunction and Exclusion scores also suggested that the resistant group would respond less favorably to immunotherapy. CONCLUSIONS Our prognostic model based on a radiation-related gene signature has potential for application as a tool for risk stratification of radiation therapy for patients with HNSCC, helping to identify candidates for radiation therapy and overcome radiation resistance.
Collapse
Affiliation(s)
- Peimeng You
- Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, China
| | - Shengbo Liu
- Second Clinical College of Medicine, Southern Medical University, Guangzhou, China
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qiaxuan Li
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Daipeng Xie
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangzhou, China
| | - Lintong Yao
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Chenguang Guo
- Department of Radiation Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zefeng Guo
- Department of Radiation Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Ting Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongrui Qiu
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Yangzhong Guo
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, China
| | - Junyu Li
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, China.
| | - Haiyu Zhou
- Nanchang University, Nanchang, China.
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Jiangxi Lung Cancer Institute, Nanchang, China.
| |
Collapse
|
34
|
Chen Y, Meng W, Chen M, Zhang L, Chen M, Chen X, Peng J, Huang N, Zhang W, Chen J. Biotin-decorated hollow gold nanoshells for dual-modal imaging-guided NIR-II photothermal and radiosensitizing therapy toward breast cancer. J Mater Chem B 2023; 11:10003-10018. [PMID: 37843459 DOI: 10.1039/d3tb01736b] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Radiotherapy (RT) is dominantly used in breast cancer therapy but is facing fierce side effects because of the limited difference between tumor and normal tissues in response to ionizing radiation. Herein, we construct a core-shell nanoparticle of UiO-66-NH2@AuNS. Then the solid gold shell was etched into hollow AuNS (HAuNS) and further modified with biotin-PEG-SH (PEG-bio) to obtain HAuNS@PEG-bio. HAuNS@PEG-bio demonstrates effective near infrared II (NIR-II) region photothermal therapy (PTT) performance, and the increase of temperature at the tumor site promotes the blood circulation to alleviate the hypoxia in the tumor microenvironment (TME). Meanwhile, HAuNS exhibits strong X-ray absorption and deposition ability due to the high atomic coefficient of elemental Au (Z = 79) and hollowed-out structure. Through the dual radiosensitization of the high atomic coefficient of Au and the hypoxia alleviation from PTT of HAuNS, the breast cancer cells could undergo immunogenic cell death (ICD) to activate the immune response. At the in vivo level, HAuNS@PEG-bio performs NIR-II photothermal, radiosensitization, and ICD therapies through cellular targeting, guided by infrared heat and CT imaging. This work highlights that the constructed biotin-decorated hollow gold nanoshell has a promising potential as a diagnostic and treatment integration reagents for the breast cancer.
Collapse
Affiliation(s)
- Yongjian Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Wei Meng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Ming Chen
- The People's Hospital of Gaozhou, Maoming 525200, China
| | - Lianying Zhang
- School of Pharmacy Sciences, Southwest Medical University, Luzhou 646000, China
| | - Mingwa Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Xiaotong Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Jian Peng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Naihan Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Wenhua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| | - Jinxiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
35
|
Shi Y, Zhu R. Analysis of damage-associated molecular patterns in amyotrophic lateral sclerosis based on ScRNA-seq and bulk RNA-seq data. Front Neurosci 2023; 17:1259742. [PMID: 37942135 PMCID: PMC10628000 DOI: 10.3389/fnins.2023.1259742] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Background Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disorder characterized by the progressive loss of motor neurons. Despite extensive research, the exact etiology of ALS remains elusive. Emerging evidence highlights the critical role of the immune system in ALS pathogenesis and progression. Damage-Associated Molecular Patterns (DAMPs) are endogenous molecules released by stressed or damaged cells, acting as danger signals and activating immune responses. However, their specific involvement in ALS remains unclear. Methods We obtained single-cell RNA sequencing (scRNA-seq) data of ALS from the primary motor cortex in the Gene Expression Omnibus (GEO) database. To better understand genes associated with DAMPs, we performed analyses on cell-cell communication and trajectory. The abundance of immune-infiltrating cells was assessed using the single-sample Gene Set Enrichment Analysis (ssGSEA) method. We performed univariate Cox analysis to construct the risk model and utilized the least absolute shrinkage and selection operator (LASSO) analysis. Finally, we identified potential small molecule drugs targeting ALS by screening the Connectivity Map database (CMap) and confirmed their potential through molecular docking analysis. Results Our study annotated 10 cell types, with the expression of genes related to DAMPs predominantly observed in microglia. Analysis of intercellular communication revealed 12 ligand-receptor pairs in the pathways associated with DAMPs, where microglial cells acted as ligands. Among these pairs, the SPP1-CD44 pair demonstrated the greatest contribution. Furthermore, trajectory analysis demonstrated distinct differentiation fates of different microglial states. Additionally, we constructed a risk model incorporating four genes (TRPM2, ROCK1, HSP90AA1, and HSPA4). The validity of the risk model was supported by multivariate analysis. Moreover, external validation from dataset GSE112681 confirmed the predictive power of the model, which yielded consistent results with datasets GSE112676 and GSE112680. Lastly, the molecular docking analysis suggested that five compounds, namely mead-acid, nifedipine, nifekalant, androstenol, and hydrastine, hold promise as potential candidates for the treatment of ALS. Conclusion Taken together, our study demonstrated that DAMP entities were predominantly observed in microglial cells within the context of ALS. The utilization of a prognostic risk model can accurately predict ALS patient survival. Additionally, genes related to DAMPs may present viable drug targets for ALS therapy.
Collapse
Affiliation(s)
| | - Ruixia Zhu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
36
|
Thomas BC, Staudt DE, Douglas AM, Monje M, Vitanza NA, Dun MD. CAR T cell therapies for diffuse midline glioma. Trends Cancer 2023; 9:791-804. [PMID: 37541803 DOI: 10.1016/j.trecan.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/06/2023]
Abstract
Diffuse midline glioma (DMG) is a fatal pediatric cancer of the central nervous system (CNS). The location and infiltrative nature of DMG prevents surgical resection and the benefits of palliative radiotherapy are temporary; median overall survival (OS) is 9-11 months. The tumor immune microenvironment (TIME) is 'cold', and has a dominant immunosuppressive myeloid compartment with low levels of infiltrating lymphocytes and proinflammatory molecules. Because survival statistics have been stagnant for many decades, and therapies targeting the unique biology of DMG are urgently needed, this has prompted the clinical assessment of chimeric antigen receptor (CAR) T cell therapies in this setting. We highlight the current landscape of CAR T cell therapy for DMG, the role the TIME may play in the response, and strategies to overcome treatment obstacles.
Collapse
Affiliation(s)
- Bryce C Thomas
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Dilana E Staudt
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Alicia M Douglas
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Michelle Monje
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA; Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University, Stanford, CA, USA; Department of Neurosurgery, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Nicholas A Vitanza
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Division of Pediatric Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Theme, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, NSW, Australia.
| |
Collapse
|
37
|
Liang H, Lu Q, Yang J, Yu G. Supramolecular Biomaterials for Cancer Immunotherapy. RESEARCH (WASHINGTON, D.C.) 2023; 6:0211. [PMID: 37705962 PMCID: PMC10496790 DOI: 10.34133/research.0211] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/01/2023] [Indexed: 09/15/2023]
Abstract
Cancer immunotherapy has achieved tremendous successful clinical results and obtained historic victories in tumor treatments. However, great limitations associated with feeble immune responses and serious adverse effects still cannot be neglected due to the complicated multifactorial etiology and pathologic microenvironment in tumors. The rapid development of nanomedical science and material science has facilitated the advanced progress of engineering biomaterials to tackle critical issues. The supramolecular biomaterials with flexible and modular structures have exhibited unparalleled advantages of high cargo-loading efficiency, excellent biocompatibility, and diversiform immunomodulatory activity, thereby providing a powerful weapon for cancer immunotherapy. In past decades, supramolecular biomaterials were extensively explored as versatile delivery platforms for immunotherapeutic agents or designed to interact with the key moleculars in immune system in a precise and controllable manner. In this review, we focused on the crucial role of supramolecular biomaterials in the modulation of pivotal steps during tumor immunotherapy, including antigen delivery and presentation, T lymphocyte activation, tumor-associated macrophage elimination and repolarization, and myeloid-derived suppressor cell depletion. Based on extensive research, we explored the current limitations and development prospects of supramolecular biomaterials in cancer immunotherapy.
Collapse
Affiliation(s)
- Huan Liang
- College of Science,
Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Qingqing Lu
- College of Science,
Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jie Yang
- College of Science,
Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry,
Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
38
|
Barsoumian HB, He K, Hsu E, Bertolet G, Sezen D, Hu Y, Riad TS, Cortez MA, Welsh JW. NLRP3 agonist enhances radiation-induced immune priming and promotes abscopal responses in anti-PD1 resistant model. Cancer Immunol Immunother 2023; 72:3003-3012. [PMID: 37289257 PMCID: PMC10412467 DOI: 10.1007/s00262-023-03471-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Radiotherapy (XRT), a well-known activator of the inflammasome and immune priming, is in part capable of reversing resistance to anti-PD1 treatment. The NLRP3 inflammasome is a pattern recognition receptor which is activated by both exogenous and endogenous stimuli, leading to a downstream inflammatory response. Although NLRP3 is typically recognized for its role in exacerbating XRT-induced tissue damage, the NLRP3 inflammasome can also yield an effective antitumor response when used in proper dosing and sequencing with XRT. However, whether NLRP3 agonist boosts radiation-induced immune priming and promote abscopal responses in anti-PD1 resistant model is still unknown. Therefore, in this study, we paired intratumoral injection of an NLRP3 agonist with XRT to stimulate the immune system in both wild type (344SQ-P) and anti-PD1 resistant (344SQ-R) murine-implanted lung adenocarcinoma models. We found that the combination of XRT + NLPR3 agonist enhanced the control of implanted lung adenocarcinoma primary as well as secondary tumors in a radiological dose-dependent manner, in which 12Gyx3 fractions of stereotactic XRT was better than 5Gyx3, while 1Gyx2 did not improve the NLRP3 effect. Survival and tumor growth data also showed significant abscopal response with the triple therapy (12Gyx3 + NLRP3 agonist + α-PD1) in both 344SQ-P and 344SQ-R aggressively growing models. Multiple pro-inflammatory cytokines (IL-1b, IL-4, IL-12, IL-17, IFN-γ and GM-CSF) were elevated in the serum of mice treated with XRT + NLRP3 or triple therapy. The Nanostring results showed that NLRP3 agonist is capable of increasing antigen presentation, innate function, and T-cell priming. This study can be of particular importance to treat patients with immunologically-cold solid tumors whom are also refractory to prior checkpoint treatments.
Collapse
Affiliation(s)
- Hampartsoum B Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Kewen He
- Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Ethan Hsu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Genevieve Bertolet
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Duygu Sezen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
- Department of Radiation Oncology, Koç University School of Medicine, Istanbul, Turkey
| | - Yun Hu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Thomas S Riad
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
39
|
Donlon NE, Davern M, Sheppard A, O'Connell F, Moran B, Nugent TS, Heeran A, Phelan JJ, Bhardwaj A, Butler C, Ravi N, Donohoe CL, Lynam-Lennon N, Maher S, Reynolds JV, Lysaght J. Potential of damage associated molecular patterns in synergising radiation and the immune response in oesophageal cancer. World J Gastrointest Oncol 2023; 15:1349-1365. [PMID: 37663943 PMCID: PMC10473939 DOI: 10.4251/wjgo.v15.i8.1349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/29/2023] [Accepted: 06/25/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND There is an intimate crosstalk between cancer formation, dissemination, treatment response and the host immune system, with inducing tumour cell death the ultimate therapeutic goal for most anti-cancer treatments. However, inducing a purposeful synergistic response between conventional therapies and the immune system remains evasive. The release of damage associated molecular patterns (DAMPs) is indicative of immunogenic cell death and propagation of established immune responses. However, there is a gap in the literature regarding the importance of DAMP expression in oesophageal adenocarcinoma (OAC) or by immune cells themselves. AIM To investigate the effects of conventional therapies on DAMP expression and to determine whether OAC is an immunogenic cancer. METHODS We investigated the levels of immunogenic cell death-associated DAMPs, calreticulin (CRT) and HMGB1 using an OAC isogenic model of radioresistance. DAMP expression was also assessed directly using ex vivo cancer patient T cells (n = 10) and within tumour biopsies (n = 9) both pre and post-treatment with clinically relevant chemo(radio)therapeutics. RESULTS Hypoxia in combination with nutrient deprivation significantly reduces DAMP expression by OAC cells in vitro. Significantly increased frequencies of T cell DAMP expression in OAC patients were observed following chemo(radio)therapy, which was significantly higher in tumour tissue compared with peripheral blood. Patients with high expression of HMGB1 had a significantly better tumour regression grade (TRG 1-2) compared to low expressors. CONCLUSION In conclusion, OAC expresses an immunogenic phenotype with two distinct subgroups of high and low DAMP expressors, which correlated with tumour regression grade and lymphatic invasion. It also identifies DAMPs namely CRT and HMGB1 as potential promising biomarkers in predicting good pathological responses to conventional chemo(radio)therapies currently used in the multimodal management of locally advanced disease.
Collapse
Affiliation(s)
- Noel E Donlon
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - Maria Davern
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - Andrew Sheppard
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - Fiona O'Connell
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - Brendan Moran
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - Timothy S Nugent
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - Aisling Heeran
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - James J Phelan
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - Anshul Bhardwaj
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - Christine Butler
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - Narayanasamy Ravi
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - Claire L Donohoe
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - Niamh Lynam-Lennon
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - Stephen Maher
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - John V Reynolds
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| |
Collapse
|
40
|
Zhong L, Li Y, Muluh TA, Wang Y. Combination of CAR‑T cell therapy and radiotherapy: Opportunities and challenges in solid tumors (Review). Oncol Lett 2023; 26:281. [PMID: 37274466 PMCID: PMC10236127 DOI: 10.3892/ol.2023.13867] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 06/06/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as a new and breakthrough cancer immunotherapy. Although CAR-T cell therapy has made significant progress clinically in patients with refractory or drug-resistant hematological malignancies, there are numerous challenges in its application to solid tumor therapy, including antigen escape, severe toxic reactions, abnormal vascularization, tumor hypoxia, insufficient infiltration of CAR-T cells and immunosuppression. As a conventional mode of anti-tumor therapy, radiotherapy has shown promising effects in combination with CAR-T cell therapy by enhancing the specific immunity of endogenous target antigens, which promoted the infiltration and expansion of CAR-T cells and improved the hypoxic tumor microenvironment. This review focuses on the obstacles to the application of CAR-T technology in solid tumor therapy, the potential opportunities and challenges of combined radiotherapy and CAR-T cell therapy, and the review of recent literature to evaluate the best combination for the treatment of solid tumors.
Collapse
Affiliation(s)
- Liqiang Zhong
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
- Department of Oncology, The Second People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China
| | - Yi Li
- Department of Oncology, The Second People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China
| | - Tobias Achu Muluh
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Yongsheng Wang
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
41
|
Chen L, Wang Z, Wu J, Yao Q, Peng J, Zhang C, Chen H, Li Y, Jiang Z, Liu Y, Shi C. Released dsDNA-triggered inflammasomes serve as intestinal radioprotective targets. Clin Transl Immunology 2023; 12:e1452. [PMID: 37333051 PMCID: PMC10276537 DOI: 10.1002/cti2.1452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Objectives Intestinal mucositis is the major side effect during abdominal or pelvic radiotherapy, but the underlying immunogen remains to be further characterised and few radioprotective agents are available. This study investigated the role of dsDNA-triggered inflammasomes in intestinal mucositis during radiotherapy. Methods Pro-inflammatory cytokines were detected by ELISA. Radiation-induced intestinal injury in mice was analyzed by means of survival curves, body weight, HE staining of intestines, and intestinal barrier integrity. Western blot, immunofluorescence staining, co-immunoprecipitation assay and flow cytometry were used to investigate the regulatory role of dsDNA on inflammasomes. Results Here, we show that a high level of IL-1β and IL-18 is associated with diarrhoea in colorectal cancer (CRC) patients during radiotherapy, which accounts for intestinal radiotoxicity. Subsequently, we found that the dose-dependently released dsDNA from the intestinal epithelial cells (IECs) serves as the potential immunogenic molecule for radiation-induced intestinal mucositis. Our results further indicate that the released dsDNA transfers into the macrophages in an HMGB1/RAGE-dependent manner and then triggers absent in melanoma 2 (AIM2) inflammasome activation and the IL-1β and IL-18 secretion. Finally, we show that the FDA-approved disulfiram (DSF), a newly identified inflammasome inhibitor, could mitigate intestinal radiotoxicity by controlling inflammasome. Conclusion These findings indicate that the extracellular self-dsDNA released from the irradiated IECs is a potential immunogen to stimulate immune cells and trigger the subsequent intestinal mucositis, while blunting the dsDNA-triggered inflammasome in macrophages may represent an exciting therapeutic strategy for side effects control during abdominal radiotherapy.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force MedicineArmy Medical UniversityChongqingChina
- Shigatse Branch, Xinqiao Hospital, Army 953 HospitalArmy Medical UniversityShigatseChina
| | - Ziwen Wang
- Department of CardiologyGeriatric Cardiovascular Disease Research and Treatment Center, 252 Hospital of PLABaodingChina
| | - Jie Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force MedicineArmy Medical UniversityChongqingChina
| | - Quan Yao
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital & InstituteUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jingjing Peng
- Department of OncologyWestern Theater General HospitalChengduChina
| | - Chi Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force MedicineArmy Medical UniversityChongqingChina
| | - Hongdan Chen
- Breast and Thyroid Surgical Department, Chongqing General HospitalUniversity of Chinese Academy of SciencesChongqingChina
| | - Yingjie Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force MedicineArmy Medical UniversityChongqingChina
| | - Zhongyong Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force MedicineArmy Medical UniversityChongqingChina
| | - Yunsheng Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force MedicineArmy Medical UniversityChongqingChina
| | - Chunmeng Shi
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force MedicineArmy Medical UniversityChongqingChina
| |
Collapse
|
42
|
Budi HS, Farhood B. Targeting oral tumor microenvironment for effective therapy. Cancer Cell Int 2023; 23:101. [PMID: 37221555 DOI: 10.1186/s12935-023-02943-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Oral cancers are among the common head and neck malignancies. Different anticancer therapy modalities such as chemotherapy, immunotherapy, radiation therapy, and also targeted molecular therapy may be prescribed for targeting oral malignancies. Traditionally, it has been assumed that targeting malignant cells alone by anticancer modalities such as chemotherapy and radiotherapy suppresses tumor growth. In the last decade, a large number of experiments have confirmed the pivotal role of other cells and secreted molecules in the tumor microenvironment (TME) on tumor progression. Extracellular matrix and immunosuppressive cells such as tumor-associated macrophages, myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), and regulatory T cells (Tregs) play key roles in the progression of tumors like oral cancers and resistance to therapy. On the other hand, infiltrated CD4 + and CD8 + T lymphocytes, and natural killer (NK) cells are key anti-tumor cells that suppress the proliferation of malignant cells. Modulation of extracellular matrix and immunosuppressive cells, and also stimulation of anticancer immunity have been suggested to treat oral malignancies more effectively. Furthermore, the administration of some adjuvants or combination therapy modalities may suppress oral malignancies more effectively. In this review, we discuss various interactions between oral cancer cells and TME. Furthermore, we also review the basic mechanisms within oral TME that may cause resistance to therapy. Potential targets and approaches for overcoming the resistance of oral cancers to various anticancer modalities will also be reviewed. The findings for targeting cells and potential therapeutic targets in clinical studies will also be reviewed.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
43
|
Honma R, I T, Seki M, Iwatake M, Ogaeri T, Hasegawa K, Ohba S, Tran SD, Asahina I, Sumita Y. Immunomodulatory Macrophages Enable E-MNC Therapy for Radiation-Induced Salivary Gland Hypofunction. Cells 2023; 12:1417. [PMID: 37408251 DOI: 10.3390/cells12101417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
A newly developed therapy using effective-mononuclear cells (E-MNCs) is reportedly effective against radiation-damaged salivary glands (SGs) due to anti-inflammatory and revascularization effects. However, the cellular working mechanism of E-MNC therapy in SGs remains to be elucidated. In this study, E-MNCs were induced from peripheral blood mononuclear cells (PBMNCs) by culture for 5-7 days in medium supplemented with five specific recombinant proteins (5G-culture). We analyzed the anti-inflammatory characteristics of macrophage fraction of E-MNCs using a co-culture model with CD3/CD28-stimulated PBMNCs. To test therapeutic efficacy in vivo, either E-MNCs or E-MNCs depleted of CD11b-positive cells were transplanted intraglandularly into mice with radiation-damaged SGs. Following transplantation, SG function recovery and immunohistochemical analyses of harvested SGs were assessed to determine if CD11b-positive macrophages contributed to tissue regeneration. The results indicated that CD11b/CD206-positive (M2-like) macrophages were specifically induced in E-MNCs during 5G-culture, and Msr1- and galectin3-positive cells (immunomodulatory macrophages) were predominant. CD11b-positive fraction of E-MNCs significantly inhibited the expression of inflammation-related genes in CD3/CD28-stimulated PBMNCs. Transplanted E-MNCs exhibited a therapeutic effect on saliva secretion and reduced tissue fibrosis in radiation-damaged SGs, whereas E-MNCs depleted of CD11b-positive cells and radiated controls did not. Immunohistochemical analyses revealed HMGB1 phagocytosis and IGF1 secretion by CD11b/Msr1-positive macrophages from both transplanted E-MNCs and host M2-macrophages. Thus, the anti-inflammatory and tissue-regenerative effects observed in E-MNC therapy against radiation-damaged SGs can be partly explained by the immunomodulatory effect of M2-dominant macrophage fraction.
Collapse
Affiliation(s)
- Ryo Honma
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
- Department of Regenerative Oral Surgery, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Takashi I
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | | | - Mayumi Iwatake
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Takunori Ogaeri
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Kayo Hasegawa
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Seigo Ohba
- Department of Regenerative Oral Surgery, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Simon D Tran
- Laboratory of Craniofacial Tissue Engineering and Stem Cells, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | - Izumi Asahina
- Department of Regenerative Oral Surgery, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Yoshinori Sumita
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| |
Collapse
|
44
|
Singh M, Kadhim MM, Turki Jalil A, Oudah SK, Aminov Z, Alsaikhan F, Jawhar ZH, Ramírez-Coronel AA, Farhood B. A systematic review of the protective effects of silymarin/silibinin against doxorubicin-induced cardiotoxicity. Cancer Cell Int 2023; 23:88. [PMID: 37165384 PMCID: PMC10173635 DOI: 10.1186/s12935-023-02936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023] Open
Abstract
PURPOSE Although doxorubicin chemotherapy is commonly applied for treating different malignant tumors, cardiotoxicity induced by this chemotherapeutic agent restricts its clinical use. The use of silymarin/silibinin may mitigate the doxorubicin-induced cardiac adverse effects. For this aim, the potential cardioprotective effects of silymarin/silibinin against the doxorubicin-induced cardiotoxicity were systematically reviewed. METHODS In this study, we performed a systematic search in accordance with PRISMA guideline for identifying all relevant studies on "the role of silymarin/silibinin against doxorubicin-induced cardiotoxicity" in different electronic databases up to June 2022. Sixty-one articles were obtained and screened based on the predefined inclusion and exclusion criteria. Thirteen eligible papers were finally included in this review. RESULTS According to the echocardiographic and electrocardiographic findings, the doxorubicin-treated groups presented a significant reduction in ejection fraction, tissue Doppler peak mitral annulus systolic velocity, and fractional shortening as well as bradycardia, prolongation of QT and QRS interval. However, these echocardiographic abnormalities were obviously improved in the silymarin plus doxorubicin groups. As well, the doxorubicin administration led to induce histopathological and biochemical changes in the cardiac cells/tissue; in contrast, the silymarin/silibinin co-administration could mitigate these induced alterations (for most of the cases). CONCLUSION According to the findings, it was found that the co-administration of silymarin/silibinin alleviates the doxorubicin-induced cardiac adverse effects. Silymarin/silibinin exerts its cardioprotective effects via antioxidant, anti-inflammatory, anti-apoptotic activities, and other mechanisms.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Physical Education, University of Jammu, Srinagar, Jammu, India
| | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, 52001, Iraq
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, 10022, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
- Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cuenca, Ecuador
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
45
|
Varzandeh M, Sabouri L, Mansouri V, Gharibshahian M, Beheshtizadeh N, Hamblin MR, Rezaei N. Application of nano-radiosensitizers in combination cancer therapy. Bioeng Transl Med 2023; 8:e10498. [PMID: 37206240 PMCID: PMC10189501 DOI: 10.1002/btm2.10498] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 11/08/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Radiosensitizers are compounds or nanostructures, which can improve the efficiency of ionizing radiation to kill cells. Radiosensitization increases the susceptibility of cancer cells to radiation-induced killing, while simultaneously reducing the potentially damaging effect on the cellular structure and function of the surrounding healthy tissues. Therefore, radiosensitizers are therapeutic agents used to boost the effectiveness of radiation treatment. The complexity and heterogeneity of cancer, and the multifactorial nature of its pathophysiology has led to many approaches to treatment. The effectiveness of each approach has been proven to some extent, but no definitive treatment to eradicate cancer has been discovered. The current review discusses a broad range of nano-radiosensitizers, summarizing possible combinations of radiosensitizing NPs with several other types of cancer therapy options, focusing on the benefits and drawbacks, challenges, and future prospects.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
| | - Leila Sabouri
- AmitisGen TECH Dev GroupTehranIran
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Vahid Mansouri
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical SciencesTehranIran
| | - Maliheh Gharibshahian
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Student Research CommitteeSchool of Medicine, Shahroud University of Medical SciencesShahroudIran
| | - Nima Beheshtizadeh
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
| | - Michael R. Hamblin
- Laser Research Center, Faculty of Health ScienceUniversity of JohannesburgDoornfonteinSouth Africa
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
- Research Center for ImmunodeficienciesChildren's Medical Center, Tehran University of Medical SciencesTehranIran
- Department of ImmunologySchool of Medicine, Tehran University of Medical SciencesTehranIran
| |
Collapse
|
46
|
Salazar A, Chavarria V, Flores I, Ruiz S, Pérez de la Cruz V, Sánchez-García FJ, Pineda B. Abscopal Effect, Extracellular Vesicles and Their Immunotherapeutic Potential in Cancer Treatment. Molecules 2023; 28:molecules28093816. [PMID: 37175226 PMCID: PMC10180522 DOI: 10.3390/molecules28093816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The communication between tumor cells and the microenvironment plays a fundamental role in the development, growth and further immune escape of the tumor. This communication is partially regulated by extracellular vesicles which can direct the behavior of surrounding cells. In recent years, it has been proposed that this feature could be applied as a potential treatment against cancer, since several studies have shown that tumors treated with radiotherapy can elicit a strong enough immune response to eliminate distant metastasis; this phenomenon is called the abscopal effect. The mechanism behind this effect may include the release of extracellular vesicles loaded with damage-associated molecular patterns and tumor-derived antigens which activates an antigen-specific immune response. This review will focus on the recent discoveries in cancer cell communications via extracellular vesicles and their implication in tumor development, as well as their potential use as an immunotherapeutic treatment against cancer.
Collapse
Affiliation(s)
- Aleli Salazar
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Víctor Chavarria
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
- Immunoregulation Lab, Department of Immunology, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Itamar Flores
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Samanta Ruiz
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | | | - Benjamin Pineda
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| |
Collapse
|
47
|
Gupta R, Kadhim MM, Turki Jalil A, Qasim Alasheqi M, Alsaikhan F, Khalimovna Mukhamedova N, Alexis Ramírez-Coronel A, Hassan Jawhar Z, Ramaiah P, Najafi M. The interactions of docetaxel with tumor microenvironment. Int Immunopharmacol 2023; 119:110214. [PMID: 37126985 DOI: 10.1016/j.intimp.2023.110214] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
There are several interactions within the tumor microenvironment (TME) that affect the response of cancer cells to therapy. There are also a large number of cells and secretions in TME that increase resistance to therapy. Following the release of immunosuppressive, pro-angiogenic, and metastatic molecules by certain cells such as tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), and cancer cells, immune evasion, angiogenesis, and metastasis may be induced. However, natural killer (NK) cells and cytotoxic CD8 + T lymphocytes (CTLs) can responsively release anticancer molecules. In addition, anticancer drugs can modulate these cells and their interactions in favor of either cancer resistance or therapy. Docetaxel belongs to taxanes, a class of anti-tumor drugs, which acts through the polymerization of tubulin and the induction of cell cycle arrest. Also, it has been revealed that taxanes including docetaxel affect cancer cells and the other cells within TME through some other mechanisms such as modulation of immune system responses, angiogenesis, and metastasis. In this paper, we explain the basic mechanisms of docetaxel interactions with malignant cells. Besides, we review the diverse effects of docetaxel on TME and cancer cells in consequence. Lastly, the modulatory effects of docetaxel alone or in conjunction with other anticancer agents on anti-tumor immunity, cancer cell resistance, angiogenesis, and metastasis will be discussed.
Collapse
Affiliation(s)
- Reena Gupta
- Institute of Pharmaceutical Research, GLA University, District-Mathura, 281406 U. P., India
| | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad 10022, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq.
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| | | | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca 010107, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Medillin 050001, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Azogues 030102, Ecuador
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil 44001, Iraq; Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil 44001, Iraq
| | | | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran.
| |
Collapse
|
48
|
Pierrard J, Van Ooteghem G, Van den Eynde M. Implications of the Organ-Specific Immune Environment for Immune Priming Effect of Radiotherapy in Metastatic Setting. Biomolecules 2023; 13:689. [PMID: 37189436 PMCID: PMC10136331 DOI: 10.3390/biom13040689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
With the development of immune checkpoint inhibitors (ICIs), the tumour immune microenvironment (TIME) has been increasingly considered to improve cancer management. The TIME of metastatic lesions is strongly influenced by the underlying immune contexture of the organ in which they are located. The metastatic location itself appears to be an important prognostic factor in predicting outcomes after ICI treatment in cancer patients. Patients with liver metastases are less likely to respond to ICIs than patients with metastases in other organs, likely due to variations in the metastatic TIME. Combining additional treatment modalities is an option to overcome this resistance. Radiotherapy (RT) and ICIs have been investigated together as an option to treat various metastatic cancers. RT can induce a local and systemic immune reaction, which can promote the patient's response to ICIs. Here, we review the differential impact of the TIME according to metastatic location. We also explore how RT-induced TIME modifications could be modulated to improve outcomes of RT-ICI combinations.
Collapse
Affiliation(s)
- Julien Pierrard
- UCLouvain, Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institute de Recherche Experimentale et Clinique (IREC), 1200 Brussels, Belgium
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Geneviève Van Ooteghem
- UCLouvain, Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institute de Recherche Experimentale et Clinique (IREC), 1200 Brussels, Belgium
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Marc Van den Eynde
- UCLouvain, Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institute de Recherche Experimentale et Clinique (IREC), 1200 Brussels, Belgium
- Medical Oncology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
49
|
Lalani AR, Fakhari F, Radgoudarzi S, Rastegar-Pouyani N, Moloudi K, Khodamoradi E, Taeb S, Najafi M. Immunoregulation by resveratrol; implications for normal tissue protection and tumour suppression. Clin Exp Pharmacol Physiol 2023; 50:353-368. [PMID: 36786378 DOI: 10.1111/1440-1681.13760] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Immune reactions are involved in both tumour and normal tissue in response to therapy. Elevated secretion of certain chemokines, exosomes and cytokines triggers inflammation, pain, fibrosis and ulceration among other normal tissue side effects. On the other hand, secretion of tumour-promoting molecules suppresses activity of anticancer immune cells and facilitates the proliferation of malignant cells. Novel anticancer drugs such as immune checkpoint inhibitors (ICIs) boost anticancer immunity via inducing the proliferation of anticancer cells such as natural killer (NK) cells and CD8+ T lymphocytes. Certain chemotherapy drugs and radiotherapy may induce anticancer immunity in the tumour, however, both have severe side effects for normal tissues through stimulation of several immune responses. Thus, administration of natural products with low side effects may be a promising approach to modulate the immune system in both tumour and normal organs. Resveratrol is a well-known phenol with diverse effects on normal tissues and tumours. To date, a large number of experiments have confirmed the potential of resveratrol as an anticancer adjuvant. This review focuses on ensuing stimulation or suppression of immune responses in both tumour and normal tissue after radiotherapy or anticancer drugs. Later on, the immunoregulatory effects of resveratrol in both tumour and normal tissue following exposure to anticancer agents will be discussed.
Collapse
Affiliation(s)
- Armineh Rezagholi Lalani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Fakhari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shakila Radgoudarzi
- I.M. Sechenov First Moscow State Medical University (Первый МГМУ им), Moscow, Russia
| | - Nima Rastegar-Pouyani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kave Moloudi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran.,Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
50
|
Ji X, Jiang W, Wang J, Zhou B, Ding W, Liu S, Huang H, Chen G, Sun X. Application of individualized multimodal radiotherapy combined with immunotherapy in metastatic tumors. Front Immunol 2023; 13:1106644. [PMID: 36713375 PMCID: PMC9877461 DOI: 10.3389/fimmu.2022.1106644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023] Open
Abstract
Radiotherapy is one of the mainstays of cancer treatment. More than half of cancer patients receive radiation therapy. In addition to the well-known direct tumoricidal effect, radiotherapy has immunomodulatory properties. When combined with immunotherapy, radiotherapy, especially high-dose radiotherapy (HDRT), exert superior systemic effects on distal and unirradiated tumors, which is called abscopal effect. However, these effects are not always effective for cancer patients. Therefore, many studies have focused on exploring the optimized radiotherapy regimens to further enhance the antitumor immunity of HDRT and reduce its immunosuppressive effect. Several studies have shown that low-dose radiotherapy (LDRT) can effectively reprogram the tumor microenvironment, thereby potentially overcoming the immunosuppressive stroma induced by HDRT. However, bridging the gap between preclinical commitment and effective clinical delivery is challenging. In this review, we summarized the existing studies supporting the combined use of HDRT and LDRT to synergistically enhance antitumor immunity, and provided ideas for the individualized clinical application of multimodal radiotherapy (HDRT+LDRT) combined with immunotherapy.
Collapse
|