1
|
Cai XX, Huang YH, Lin YCD, Huang HY, Chen YG, Zhang DP, Zhang T, Liu Y, Zuo HL, Huang HD. A comprehensive review of small molecules, targets, and pathways in ulcerative colitis treatment. Eur J Med Chem 2025; 291:117645. [PMID: 40279769 DOI: 10.1016/j.ejmech.2025.117645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Ulcerative colitis (UC), a chronic inflammatory bowel disease (IBD), poses significant clinical challenges because of its complex pathophysiology, long-term nature, and the limited efficacy of existing treatments. Small-molecule compounds, particularly those that are able to modulate inflammation-related signaling pathways and, in many cases, occur in nature, offer a promising alternative or supplement to conventional therapies. Studies on molecules for UC therapeutics reported in 1394 publications over the past 30 years were collected from the Web of Science (WOS) database. Only studies that verified therapeutic efficacy through animal experiments were included. Through an analysis of the molecular classes, structures, common targets, and pathways using network pharmacology, we identified 14 classes of compounds, 5 direct-target modules, and 3 crucial downstream pathways. Alkaloids, phenylpropanoids, flavonoids, and terpenes (and their derivatives) appeared most frequently and mainly targeted lipid metabolism, oxidative stress, immune regulation, signaling transduction, and cancer-related pathways. Notably, there has been an increasing trend of applying naturally sourced compounds in both preclinical and clinical trials, especially flavonoids, over the last five years. Although progress in UC research has been made, the majority of studies have focused on the overall therapeutic effects and biomarker alterations, with limited emphasis on the direct targets and underlying mechanisms. These findings highlight the need to explore novel small-molecule therapeutic strategies for UC, focusing on clearly defined targets and precise modes of action.
Collapse
Affiliation(s)
- Xiao-Xuan Cai
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Yi-Han Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Yang-Chi-Dung Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Hsi-Yuan Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Yi-Gang Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Da-Peng Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Tao Zhang
- R&D center, Better Way (Shanghai) Cosmetics Co., Ltd., Shanghai, 201103, PR China
| | - Yue Liu
- R&D center, Better Way (Shanghai) Cosmetics Co., Ltd., Shanghai, 201103, PR China
| | - Hua-Li Zuo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China.
| | - Hsien-Da Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Department of Endocrinology, Key Laboratory of Endocrinology of National Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China.
| |
Collapse
|
2
|
Zhu X, Li Q, Wu J, Ju Z. Discovery of Safe COX-2 Inhibitors: Achieving Reduced Colitis Side Effects through Balanced COX Inhibition. ChemMedChem 2025; 20:e202500096. [PMID: 40012482 DOI: 10.1002/cmdc.202500096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 02/28/2025]
Abstract
The severe adverse effects associated with imbalanced cyclooxygenase-2 (COX-2) inhibition continue to pose significant challenges in the development of contemporary anti-inflammatory drugs. In recent years, the approach to COX-2 inhibitor drug development has shifted from a focus on highly selective inhibition of COX-2 to a strategy that emphasizes more moderate selectivity. The amino acid sequence and structural similarities between inducible COX-2 and constitutive cyclooxygenase-1 (COX-1) isoforms present both substantial opportunities and challenges for the design of next generation of balanced COX-2 inhibitors. As part of our ongoing research into the discovering novel and safer COX-2 inhibitors, we reported herein a highly potent and balanced COX-2 inhibitor 21 d (IC50 value=1.35 μM, selectivity profile (IC50 (COX-1)/IC50 (COX-2)=22.34)). In vivo assays demonstrated that 21 d significantly alleviated histological damage and provided robust protection against dextran sulfate sodium (DSS)-induced acute colitis.
Collapse
Affiliation(s)
- Xinlin Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qin Li
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400000, China
| | - Junhui Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhiran Ju
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
3
|
Pan A, Shi A, Chen H, Jiang L, Zhang Q, Feng J, He J, Liu J, Wang J, Hu L. Targeting GATA6 with pedunculoside inhibits fetal gene expression to attenuate pathological cardiac hypertrophy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156603. [PMID: 40054179 DOI: 10.1016/j.phymed.2025.156603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/23/2025] [Accepted: 03/01/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Pathological cardiac hypertrophy is a characteristic feature of numerous cardiovascular diseases and significantly impacts human health. However, effective treatment options for cardiac hypertrophy are still significantly unmet. Pedunculoside, a pentacyclic triterpenoid saponin from the traditional Chinese herb Ilex rotunda Thunb., exhibits various pharmacological properties such as anti-inflammatory and cardiovascular therapeutic effects, but its anti-hypertrophy efficacy and mechanisms have not yet been reported. PURPOSE This study aimed to confirm the ameliorating effect of pedunculoside on cardiac hypertrophy and elucidate its underlying mechanism. METHODS To investigate the effect of pedunculoside on cardiac hypertrophy, we used transverse aortic constriction (TAC) and isoproterenol hydrochloride (ISO) infusion to induce cardiac hypertrophy model in mice. Angiotensin II (Ang II) was used to mimic hypertrophy model in myocardial cells. Then, we utilized a biotin-tagged carabrone chemical probe and validation experiments to pinpoint pedunculoside's key targets. Further, molecular docking study and sites mutation were used to predict and identify the binding modes of pedunculoside to target. Finally, structural optimization was carried out to find new pedunculoside derivatives with stronger anti-hypertrophy activity and binding affinity to the target. RESULTS Our findings revealed for the first time that pedunculoside treatment significantly attenuated hypertrophic phenotypes in response to TAC and ISO. It also effectively reduced hypertrophy and fibrosis in myocardial cells exposed to Ang II stimulation. Mechanically, we identified transcription factor GATA-6 (GATA6) as a key target of pedunculoside for treating cardiac hypertrophy. Further studies demonstrated that pedunculoside blocks cardiac hypertrophy progression by inhibiting the transcriptional activation of GATA6 on promoting fetal gene expression. More importantly, a new pedunculoside derivative PE-3 with stronger anti-hypertrophy activity and affinity for GATA6 was discovered. CONCLUSION Our findings suggest that pedunculoside and PE-3 could be developed as promising drug candidates for cardiac hypertrophy treatment.
Collapse
Affiliation(s)
- An Pan
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Anqi Shi
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Huanhuan Chen
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Lina Jiang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Qiang Zhang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jiayi Feng
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jinting He
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jian Liu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Junwei Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
4
|
Wang M, Wan M, Liu M, Zhou W, Zhang X, Liu W, Liu Y, Jiang S, Shang E, Duan J. Integrated network pharmacology and metabolomics analysis to reveal the potential mechanism of Ershen Wan in ameliorating ulcerative colitis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119690. [PMID: 40158827 DOI: 10.1016/j.jep.2025.119690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ershen Wan (ESW), a classic traditional Chinese medicine (TCM) prescription composed of Psoralea corylifolia Linn. and Myristica fragrans Houtt., has been applied to treat gastrointestinal disorders in clinical practices for thousands of years. However, its potential molecular mechanism in alleviating ulcerative colitis (UC) remains to be elusive. AIM OF THE STUDY The purpose of the study is to explore the underlying mechanism of ESW in treating UC. MATERIALS AND METHODS The protective effect of ESW on dextran sodium sulfate (DSS)-induced UC mice was assessed by body weight, disease activity index (DAI), colon length, colon tissue pathology, and colonic inflammatory factors. Furthermore, network pharmacology was applied to dissect the possible targets and biological pathways regulated by ESW. The plasma and fecal metabolomics were comprehensively analyzed by UPLC-Q-TOF/MS. Subsequently, an efficient and feasible approach integrating network pharmacology, metabolomics, and molecular docking was used to explore the key targets obtained from the metabolite-reaction-enzyme-gene network. And the effect of ESW on the MAPK signaling mediated intestinal epithelial cell apoptosis was further investigated by in vitro and in vivo experiments. RESULTS ESW could notably alleviate colon injury and inflammation of UC mice. Network pharmacology suggested that the bioactive components of ESW could mainly modulate signaling pathways associated with inflammation and metabolism. Consistently, plasma and fecal metabolomics further indicated that ESW could regulate the metabolic pathways of arachidonic acid, linoleic acid, sphingolipid, tryptophan, and glycerophospholipid. And the combined analysis of network pharmacology and metabolomics revealed that 14 pivotal targets were modulated by ESW, including PTGS1, PTGS2, CYP1A1, FADS1, CBR1, ALOX5, EPHX1, EPHX2, HPGD, PLA2G1B, PLA2G7, MGLL, ACHE, and SPHK1. Additionally, molecular docking suggested that bioactive components of ESW could bind well to these potential targets. And in vitro and in vivo experiments further verified that ESW could markedly ameliorate pathological symptoms of UC mice through inhibiting MAPK signaling mediated colonic epithelial cell apoptosis. CONCLUSION Collectively, these findings indicated that ESW could effectively alleviate the pathological symptoms of UC mice, mainly involving in the modulation of lipid and amino acid metabolism pathways, and the suppression of MAPK signaling-mediated apoptosis. In this study, the potential mechanism of ESW for the treatment of UC was first clarified, which provided a solid scientific foundation for its clinical application. Notably, the proposed strategy facilitated a comprehensive prediction and validation of the efficacy and molecular mechanism of TCMs, and also provided a novel approach for revealing the intricate biological pathogenesis of diseases.
Collapse
Affiliation(s)
- Mingyang Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Meiyu Wan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Meijuan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Wenwen Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Xiaoxiao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Weijie Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Ying Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| |
Collapse
|
5
|
Huang C, Lyu C, Mok HL, Xu Y, Cheng KW, Zhang C, Hu D, Zhu L, Lin C, Chen X, Tan HY, Bian Z. Tolerogenic dendritic cell-mediated regulatory T cell differentiation by Chinese herbal formulation attenuates colitis progression. J Adv Res 2025; 70:499-513. [PMID: 38677546 PMCID: PMC11976409 DOI: 10.1016/j.jare.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/31/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024] Open
Abstract
INTRODUCTION Ulcerative colitis (UC) is a chronic inflammatory disease characterized by loss of immune tolerance to luminal antigens and progressive intestinal tissue injury. Thus, the re-establishment of immune tolerance is crucial for suppressing aberrant immune responses and UC progression. OBJECTIVES This study aimed to investigate the mechanisms underlying the action of CDD-2103 and its bioactive compounds in mediating immune regulation in mouse models of colitis. METHODS Two experimental colitis models, chronic 2,4,6-trinitrobenzene sulfonic acid (TNBS)- and T-cell transfer-induced Rag1-/- mice, were used to determine the effects of CDD-2103 on colitis progression. Single-cell transcriptome analysis was used to profile the immune landscape and its interactions after CDD-2103 treatment. Liquid chromatography-mass spectrometry (LC-MS) was used to analyze the major components interacting with lymphoid cells. A primary cell co-culture system was used to confirm the effects of bioactive component. RESULTS CDD-2103 dose-dependently suppresses the progression of colitis induced by chemicals or T cell transplantation in Rag1-/- mice. The effect of CDD-2103 is primarily attributable to an increase in the de novo generation of regulatory T cells (Tregs) in the lamina propria (LP). Single-cell transcriptomic analysis revealed that CDD-2103 treatment increased the number of tolerogenic dendritic cells (DCs). Mechanistically, CDD-2103 promoted tolerogenic DCs accumulation and function by upregulating several genes in the electron transport chain related to oxidative phosphorylation, leading to increased differentiation of Tregs. Further LC-MS analysis identified several compounds in CDD-2103, particularly those distributed within the mesenteric lymph nodes of mice. Subsequent studies revealed that palmatine and berberine promoted tolerogenic bone marrow-derived dendritic cells (BMDC)-mediated Treg differentiation. CONCLUSION Overall, our study demonstrated that the clinically beneficial effect of CDD-2103 in the treatment of UC is based on the induction of immune tolerance. In addition, this study supports berberine and palmatine as potential chemical entities in CDD-2103 that modulate immune tolerance.
Collapse
Affiliation(s)
- Chunhua Huang
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Cheng Lyu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Heung-Lam Mok
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Yiqi Xu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Ka-Wing Cheng
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Die Hu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Lin Zhu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Chengyuan Lin
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Regions of China
| | - Hor-Yue Tan
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China.
| | - Zhaoxiang Bian
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China.
| |
Collapse
|
6
|
Lu Y, Meng J, Zhu D, Jiang Z, Ma H. Pedunculoside inhibits cardiomyocyte inflammatory biomarkers via Nrf2/HO-1 pathway in high glucose-induced H9c2 cells and diabetic cardiomyopathy model rats. Hum Exp Toxicol 2025; 44:9603271251322186. [PMID: 40068837 DOI: 10.1177/09603271251322186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
IntroductionDiabetic cardiomyopathy (DCM) is a complication of diabetes mellitus (DM) that can lead to heart failure and increase the risk of mortality. Pedunculoside (PE), a novel triterpenoid saponin, exhibits anti-inflammatory and anti-oxidative stress (OS) properties. However, its role in DCM remains unexplored.MethodsDCM models were established and treated with PE or the Nrf2 inhibitor (ML385). In vitro, cell function was evaluated using CCK-8, flow cytometry, qRT-PCR, and ELISA. In vivo, fasting blood glucose and insulin levels in rats were measured. The effects of PE on DCM were assessed using HE staining, TUNEL staining, and corresponding kits. Additionally, Nrf2/HO-1 pathway proteins were analyzed by western blot.ResultsLow doses of PE (2.5, 5, 10, and 20 μM) did not affect the viability of H9c2 cells. PE (10 and 20 μM) improved cell viability and prevented apoptosis, inflammation, and OS in high glucose (HG)-stimulated H9c2 cells. PE also upregulated Nrf2 in the nucleus and enhanced HO-1 and NQO1 expression in HG-treated H9c2 cells. Furthermore, the Nrf2 inhibitor (ML385) reversed PE's protective effects on HG-induced cell injury. In vivo, PE reduced blood glucose, increased insulin, alleviated myocardial injury, inhibited apoptosis, decreased levels of inflammatory factors and OS, and upregulated Nrf2, HO-1, and NQO1 in DCM model rats.DiscussionPE alleviates DCM injury by activating the Nrf2/HO-1 pathway. These findings support the potential therapeutic application of PE in DCM.
Collapse
Affiliation(s)
- Yuanben Lu
- Department of Cardiovascular Medicine, Shaoxing Central Hospital, The Central Affiliated Hospital, Shaoxing University, Shaoxing City, China
| | - Jianqiang Meng
- Department of Cardiovascular Medicine, Shaoxing Central Hospital, The Central Affiliated Hospital, Shaoxing University, Shaoxing City, China
| | - Dewen Zhu
- Department of Cardiovascular Medicine, Shaoxing Central Hospital, The Central Affiliated Hospital, Shaoxing University, Shaoxing City, China
| | - Zhenhua Jiang
- Department of Cardiovascular Medicine, Shaoxing Central Hospital, The Central Affiliated Hospital, Shaoxing University, Shaoxing City, China
| | | |
Collapse
|
7
|
Peng J, Tang S, Huang L, Fang Y. Protective role of TRPM7 knockdown in ulcerative colitis via blocking NLRP3 inflammasome-mediated pyroptosis. Prostaglandins Other Lipid Mediat 2024; 175:106904. [PMID: 39260818 DOI: 10.1016/j.prostaglandins.2024.106904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/21/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Transient receptor potential melastatin 7 (TRPM7) has been emerged as a potent drug target for immunomodulation with ion conductance and kinase activities. The research is projected to characterize the influences of TRPM7 on the course of ulcerative colitis (UC) and dissect the latent response mechanisms. The in vivo murine model and in vitro cell model of UC were both stimulated by DSS. RT-qPCR and western blotting tested the abundance of TRPM7. Colonic damage was estimated by Hematoxylin-eosin staining, calculation of colon length, measurement of DAI and MPO assay kit. CCK-8 method and TUNEL staining severally ascertained cell activity and apoptosis. ELISA method assayed the inflammatory levels and relevant assay kits determined oxidative stress levels. FITC-dextran flux, immunohistochemistry, TEER as well as western blotting evaluated intestinal barrier function. Immunofluorescence staining and western blotting appraised NLR family pyrin domain containing 3 (NLRP3)-dependent pyroptosis. Depleted TRPM7 retarded inflammation, oxidative damage as well as intestinal barrier damage both in vitro and in vivo. TRPM7 reduction repressed the pyroptosis mediated by NLRP3 inflammasome. NLRP3 agonist nigericin partly abolished the protection elicited by TRPM7 silencing against inflammation, oxidative damage as well as intestinal barrier damage in vitro. Collectively, TRPM7 deletion might possess the therapeutic potential in UC, the working mechanism of which might involve the inactivation of NLRP3-dependent pyroptosis.
Collapse
Affiliation(s)
- Jinzhen Peng
- Department of gastroenterology, Shaoguan First People's Hospital, Shaoguan 512000, PR China
| | - Shuai Tang
- Department of gastroenterology, Shaoguan First People's Hospital, Shaoguan 512000, PR China
| | - Lifang Huang
- Department of Blood Transfusion, Shaoguan First People's Hospital, Shaoguan 512000, PR China
| | - Ye Fang
- Department of Spinal Bone Disease Surgery, Shaoguan First People's Hospital, Shaoguan 512000, PR China.
| |
Collapse
|
8
|
Li L, Sun J, Chen F, Xiong L, She L, Hao T, Zeng Y, Li L, Wang W, Zhao X, Liang G. Pedunculoside alleviates cognitive deficits and neuronal cell apoptosis by activating the AMPK signaling cascade. Chin Med 2024; 19:163. [PMID: 39574131 PMCID: PMC11583384 DOI: 10.1186/s13020-024-01033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction emerges as an early pathological hallmark of Alzheimer's disease (AD). The reduction in mitochondrial membrane potential and the elevation of reactive oxygen species (ROS) production are pivotal in the initiation of neuronal cell apoptosis. Pedunculoside(Ped), a novel triterpene saponin derived from the dried barks of Ilex rotunda Thunb, exhibits a potent anti-inflammatory effect. In the course of drug screening, we discovered that Ped offers significant protection against apoptosis induced by Aβ1-42. Nevertheless, the role and mechanism of Ped in AD are yet to be elucidated. METHODS Oxidative stress was evaluated by measuring mitochondrial membrane potential and intracellular ROS production. The expression of proteins associated with apoptosis was determined using western blot analysis and flow cytometry. In vivo, the pathological characteristics of AD were investigated through Western blot and tissue immunofluorescence techniques. Cognitive function was assessed using the Morris Water Maze and Novel Object Recognition tests. RESULTS We demonstrated that Ped decreased apoptosis in PC12 cells, reduced the generation of intracellular ROS, and restored mitochondrial membrane potential. Mechanistically, we found that the protective effect of Ped against Aβ-induced neurotoxicity was associated with activation of the AMPK/GSK-3β/Nrf2 signaling pathway. In vivo, Ped alleviated memory deficits and inhibited neuronal apoptosis, inflammation, and oxidative stress in the hippocampus of 3 × Tg AD mice, along with the activation of the AMPK signaling pathway. CONCLUSION The findings indicate that Ped exerts its neuroprotective effects against oxidative stress and apoptosis through the AMPK signaling cascade. The results demonstrate that Ped is a potential candidate for the treatment of AD.
Collapse
Affiliation(s)
- Liwei Li
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Jinfeng Sun
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People's Republic of China
| | - Fan Chen
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Li Xiong
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Lingyu She
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People's Republic of China
| | - Tang Hao
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yuqing Zeng
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Luyao Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, 325035, Zhejiang, China
| | - Wei Wang
- Affiliated Yongkang First People's Hospital, Hangzhou Medical College, Yongkang, 321399, Zhejiang, China
| | - Xia Zhao
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China.
| | - Guang Liang
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China.
| |
Collapse
|
9
|
Wu YJ, Feng WW, Wu ZL, Zhang YY, Liu JY, Xu PP. Prim-O-glucosylcimifugin alleviates influenza virus-induced pneumonia in mice by inhibiting the TGF-β1/PI3KCD/MSK2/RELA signalling pathway. Arch Virol 2024; 169:232. [PMID: 39467851 DOI: 10.1007/s00705-024-06158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/28/2024] [Indexed: 10/30/2024]
Abstract
Prim-O-glucosylcimifugin (POG) is a chromone derived primarily from Saposhnikovia divaricata (Turcz) Schischk and Cimicifuga simplex. Previous research has shown that POG possesses antibacterial, anticancer, anti-inflammatory, antioxidant, anticonvulsant, antipyretic, and analgesic properties. However, the specific impact of POG on influenza-virus-induced pneumonia is not well understood. In this study, we investigated the protective effects and underlying mechanisms of POG in pneumonia caused by influenza A virus (IAV). In vitro, POG was found to have a protective effect against infections caused by the respiratory viruses respiratory syncytial virus (RSV), human coronavirus OC43, and influenza A virus. POG inhibited A/FM/1/1947(H1N1) infection with an EC50 ranging from 3.01 to 10.43 in vitro. Intraperitoneal infection of mice with POG at a dose of 5 or 10 mg/kg resulted in a reduction in IAV-induced pneumonia, as evidenced by decreased pulmonary edema, improved lung histopathology, and reduced inflammatory cell accumulation. At the higher dose (10 mg/kg), POG treatment significantly increased survival rates, decreased viral titres in the lungs, improved lung histology, and reduced lung inflammation in IAV-infected mice. POG also effectively alleviated pulmonary fibrosis by reducing the levels of fibrotic markers (hydroxyproline [Hyp] and transforming growth factor β1 [TGF-β1]) and suppressing the expression of alpha smooth muscle actin (α-SMA), p focal adhesion kinase (p-FAK), and TGF-β1 in lung tissues. In addition, POG inhibited the expression of the RELA proto-oncogene (RELA), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta (PIK3CD), and mitogen- and stress-activated protein kinase 2 (MSK2) in lung tissues. These results indicate that POG may have a protective effect against IAV-induced pneumonia by downregulating the TGF-β1/PI3KCD/MSK2/RELA signalling pathway in the lungs.
Collapse
Affiliation(s)
- Yu-Jia Wu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist, Guangzhou, Guangdong, 510405, People's Republic of China
| | - Wen-Wen Feng
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist, Guangzhou, Guangdong, 510405, People's Republic of China
| | - Zhen-Lin Wu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist, Guangzhou, Guangdong, 510405, People's Republic of China
| | - Yue-Yao Zhang
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist, Guangzhou, Guangdong, 510405, People's Republic of China
| | - Jin-Yuan Liu
- Basic Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Pei-Ping Xu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist, Guangzhou, Guangdong, 510405, People's Republic of China.
| |
Collapse
|
10
|
Li X, Xu R, Zhou K, Cao Q. Ameliorative effect of pedunculoside on sepsis-induced acute lung injury, inflammation and pulmonary fibrosis in mice model via suppressing AKT/NF-κB pathway. J Mol Histol 2024; 55:687-698. [PMID: 39042216 DOI: 10.1007/s10735-024-10222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND/OBJECTIVES Sepsis-induced acute lung injury (ALI) is the typical complications of sepsis with a high global incidence and mortality. Inhibition of inflammatory response is a crucial and effective strategy for sepsis-induced ALI. Pedunculoside (PE) has been shown to have an anti-inflammatory effect on various diseases. However, the effect and mechanism of PE on sepsis-induced ALI remain unknown. MATERIALS/METHODS A mice model of sepsis-induced ALI was constructed by cecal ligation and puncture (CLP). The effect of PE on the CLP-induced mice were assessed using pathological staining, terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), reverse transcription quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA) and western blot assays. RESULTS PE reduced pathological symptoms and scores, apoptosis and the W/D ratio of lung tissues in CLP-induced mice. Besides, PE decreased the level of interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α), pulmonary fibrosis and the expression of fibrosis markers. Mechanically, PE inhibited AKT/NF-κB signaling in CLP-induced mice. Activation of AKT/NF-κB pathway abolished the ameliorative effect of PE on the pathological symptoms, the release of inflammatory factors and pulmonary fibrosis of CLP-induced mice. CONCLUSION PE improved inflammation and pulmonary fibrosis by inhibiting AKT/NF-κB pathway in CLP-induced mice.
Collapse
Affiliation(s)
- Xiangbo Li
- Emergency Department, Beijing Tongren Hospital, Capital Medical University, No. 2, Xihuan South Road, Economic and Technological Development Zone, Daxing District, Beijing, 100176, China
| | - Ruiming Xu
- Emergency Department, Beijing Tongren Hospital, Capital Medical University, No. 2, Xihuan South Road, Economic and Technological Development Zone, Daxing District, Beijing, 100176, China
| | - Kaiguo Zhou
- Emergency Department, Beijing Tongren Hospital, Capital Medical University, No. 2, Xihuan South Road, Economic and Technological Development Zone, Daxing District, Beijing, 100176, China
| | - Qiumei Cao
- Emergency Department, Beijing Tongren Hospital, Capital Medical University, No. 2, Xihuan South Road, Economic and Technological Development Zone, Daxing District, Beijing, 100176, China.
| |
Collapse
|
11
|
Wu L, Dong L, Zhou Z, Wang X, Lin Y, Shi X, Wang P, Xu S, Fang Z. Preclinical metabolism and metabolic drug-drug interaction profile of pedunculoside and rotundic acid. Clin Transl Sci 2024; 17:e70043. [PMID: 39392387 PMCID: PMC11469747 DOI: 10.1111/cts.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Pedunculoside and rotundic acid, the most abundant components in plants of the genus Ilex L. (Aquifoliaceae), exhibit biological and pharmacological significance in the treatment of cardiovascular diseases. However, there have been few studies on their metabolism. This study performed a systematic metabolism study of pedunculoside and rotundic acid and evaluated their potential for herb-drug interaction. Pedunculoside or rotundic acid was incubated with human liver microsomes and recombinant human metabolic enzymes, and analyzed using LC-Q-TOF/MS and LC-MS/MS. Pedunculoside was found to be the most stable in human liver microsomes, whereas rotundic acid was easily metabolized. Eight pedunculoside metabolites and six rotundic acid metabolites were detected and tentatively identified through hydroxylation, glucuronidation, acetylation, and glucose conjugation. Hydroxylation of pedunculoside is mainly catalyzed by CYP3A4/5 and partly by CYP2C8. Hydroxylation of rotundic acid is almost exclusively catalyzed by CYP3A4/5, and its glucuronidation reaction is mediated by UGT1A4. Neither pedunculoside nor rotundic acid showed CYP inhibition (IC50 values > 50 μM) with the probe substrates of major CYP isoforms during incubation with human liver microsomes. This study is the first investigation into the in vitro metabolism of pedunculoside and rotundic acid using human liver microsomes. It also aims to assess their potential as perpetrators of drug-drug interactions involving CYP enzymes. The comprehensive metabolism and drug interaction studies of pedunculoside and rotundic acid enable us to evaluate and manage potential risks with their use in pharmacotherapy.
Collapse
Affiliation(s)
- Liang Wu
- School of Pharmacy, Nanjing University of Chinese MedicineNanjingChina
| | - Linling Dong
- School of Pharmacy, Nanjing University of Chinese MedicineNanjingChina
| | - Zhu Zhou
- Department of ChemistryYork College, City University of New YorkNew YorkNew YorkUSA
| | - Xin Wang
- School of Pharmacy, Nanjing University of Chinese MedicineNanjingChina
| | - Yujie Lin
- School of Pharmacy, Nanjing University of Chinese MedicineNanjingChina
| | - Xuesong Shi
- School of Pharmacy, Nanjing University of Chinese MedicineNanjingChina
| | - Peijing Wang
- School of Pharmacy, Nanjing University of Chinese MedicineNanjingChina
| | - Suocheng Xu
- School of Pharmacy, Nanjing University of Chinese MedicineNanjingChina
| | - Zhiyi Fang
- School of Pharmacy, Nanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
12
|
Huang Y, Wu Q, Li S, Lin X, Yang S, Zhu R, Fu C, Zhang Z. Harnessing nature's pharmacy: investigating natural compounds as novel therapeutics for ulcerative colitis. Front Pharmacol 2024; 15:1394124. [PMID: 39206263 PMCID: PMC11349575 DOI: 10.3389/fphar.2024.1394124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
Backgrounds Ulcerative colitis (UC) is a form of chronic inflammatory bowel disease, and UC diagnosis rates continue to rise throughout the globe. The research and development of new drugs for the treatment of UC are urgent, and natural compounds are an important source. However, there is a lack of systematic summarization of natural compounds and their mechanisms for the treatment of UC. Methods We reviewed the literature in the databases below from their inception until July 2023: Web of Science, PubMed, China National Knowledge Infrastructure, and Wanfang Data, to obtain information on the relationship between natural compounds and UC. Results The results showed that 279 natural compounds treat UC through four main mechanisms, including regulating gut microbiota and metabolites (Mechanism I), protecting the intestinal mucosal barrier (Mechanism II), regulating intestinal mucosal immune response (Mechanism III), as well as regulating other mechanisms (Mechanism Ⅳ) such as cellular autophagy modulation and ferroptosis inhibition. Of these, Mechanism III is regulated by all natural compounds. The 279 natural compounds, including 62 terpenoids, 57 alkaloids, 52 flavonoids, 26 phenols, 19 phenylpropanoids, 9 steroids, 9 saponins, 8 quinonoids, 6 vitamins, and 31 others, can effectively ameliorate UC. Of these, terpenoids, alkaloids, and flavonoids have the greatest potential for treating UC. It is noteworthy to highlight that a total of 54 natural compounds exhibit their therapeutic effects by modulating Mechanisms I, II, and III. Conclusion This review serves as a comprehensive resource for the pharmaceutical industry, researchers, and clinicians seeking novel therapeutic approaches to combat UC. Harnessing the therapeutic potential of these natural compounds may significantly contribute to the improvement of the quality of life of patients with UC and promotion of disease-modifying therapies in the future.
Collapse
Affiliation(s)
- You Huang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuhong Wu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sha Li
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xia Lin
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shasha Yang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Zhu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaomei Fu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Zhang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Li Y, Wu L, Yong Y, Niu X, Gao Y, Zhou Q, Xie H, Liu X, Li Y, Yu Z, Abd El-Aty AM, Ju X. Enhancing gut barrier integrity: Upregulation of tight junction proteins by chitosan oligosaccharide through the ERK1/2 signaling pathway. Nutrition 2024; 124:112428. [PMID: 38663127 DOI: 10.1016/j.nut.2024.112428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 06/17/2024]
Abstract
OBJECTIVES This study aimed to explore the protective mechanism of chitosan oligosaccharide (COS) against lipopolysaccharide (LPS)-induced inflammatory responses in IEC-6 cells and dextran sodium sulfate (DSS)-induced colitis in mice. METHODS The cell inflammation model was constructed by LPS in vitro and enteritis model by DSS in vivo. RESULTS Following LPS exposure, IEC-6 cell proliferation significantly decreased, epithelial cell integrity was compromised, and TNF-α and IL-1β levels were increased. However, COS pretreatment reversed these changes. In vivo, DSS-treated mice exhibited evident pathological alterations, including heightened inflammatory levels and significantly decreased expression of tight junction proteins and critical proteins in the Mitogen activated proteins kinase signaling pathway. Nevertheless, COS administration notably reduced inflammatory levels and increased the expression of tight junction proteins and key proteins in the Mitogen activated proteins kinase signaling pathway. CONCLUSIONS Our findings suggest that COS safeguards gut barrier integrity by upregulating tight junction proteins through the ERK1/2 signaling pathway. Therefore, COS has emerged as a promising candidate for novel drug interventions against inflammatory bowel disease.
Collapse
Affiliation(s)
- Yin Li
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China
| | - Lianyun Wu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xueting Niu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China
| | - Yuan Gao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China
| | - Qiu Zhou
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China
| | - Huili Xie
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Youquan Li
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Zhichao Yu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China.
| |
Collapse
|
14
|
Kulhari U, Rajanan A, Ambujakshan A, Verma S, Mugale MN, Sahu BD. Biochanin A mitigates ulcerative colitis and intestinal inflammation in mice by inhibiting MAPK/NF-kB (p65) axis. J Biochem Mol Toxicol 2024; 38:e23738. [PMID: 38764152 DOI: 10.1002/jbt.23738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/21/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
Ulcerative colitis (UC) is a chronic problem of the intestine and relapsing in nature. Biochanin A is a nature-derived isoflavonoid and has numerous bioactivities. However, its role against UC and intestinal inflammation remains obscure. We aimed to comprehensively explore the pharmacological effect of biochanin A in alleviating colitis and to evaluate the potential mechanisms. Initially, we explored the anti-inflammatory action of biochanin A (15, 30, and 60 μM) by employing lipopolysaccharide (LPS)-activated RAW 264.7 cells. In RAW 264.7 cells under LPS stimulation, biochanin A inhibited the elevation of reactive oxygen species (ROS) (p < 0.0001), interleukin (IL)-1β (p < 0.0001), IL-18 (p < 0.01), and tumor necrosis factor (TNF)-α (p < 0.01) release, nitrite production (p < 0.0001), and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins. Next, we studied the effectiveness of biochanin A (20 and 40 mg/kg) in mouse colitis induced with dextran sulfate sodium (DSS) by assessing colon length, disease activity index (DAI) scoring, and performing colonoscopy and histological analysis. The pro-inflammatory cytokines were estimated using ELISA. Western blot studies were performed to assess underlying mechanisms. In mice, biochanin A treatment alleviated DAI score (p < 0.0001), restored colon length (p < 0.05) and morphology, and re-established colon histopathology. Biochanin A affects the phosphorylation of proteins associated with NF-κB (p65) and mitogen-activated protein kinase (MAPK) axis and regulates colonic inflammation by reducing the expression of inflammatory cytokines and myeloperoxidase (MPO) activity. Altogether, our findings support the idea that the anticolitis potential of biochanin A is allied with anti-inflammatory activity by inhibiting the MAPK/NF-κB (p65) axis. Hence, biochanin A may be an alternative option to alleviate the risk of colitis.
Collapse
Affiliation(s)
- Uttam Kulhari
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Assam, India
| | - Ashitha Rajanan
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Assam, India
| | - Anju Ambujakshan
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Assam, India
| | - Smriti Verma
- Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute (CDRI), Lucknow, India
| | - Madhav Nilakanth Mugale
- Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute (CDRI), Lucknow, India
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Assam, India
| |
Collapse
|
15
|
Wu L, Li D, Wang P, Dong L, Zhang W, Xu J, Jin X. In Vitro Stability and Pharmacokinetic Study of Pedunculoside and Its Beta-CD Polymer Inclusion Complex. Pharmaceutics 2024; 16:591. [PMID: 38794253 PMCID: PMC11125186 DOI: 10.3390/pharmaceutics16050591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Pedunculoside, a triterpene saponin derived from various Ilex species, holds potential as a treatment for cardiovascular diseases. However, its clinical application is hindered by poor bioavailability, rapid elimination, and extensive intestinal metabolism to rotundic acid. To address these issues, a water-soluble inclusion complex of pedunculoside, namely, the beta-CD polymer inclusion complex of pedunculoside (pedunculoside-βCDP), was prepared in this study, and a comparative in vitro stability and pharmacokinetic behavior study was performed between pedunculoside and pedunculoside-βCDP. Both pedunculoside and pedunculoside-βCDP exhibited the highest stability in simulated gastric fluid and simulated intestinal fluid but were readily metabolized when co-incubated with Bifidobacterium adolescentis and Bifidobacterium breve. An LC-MS/MS analytical method for the simultaneous determination of pedunculoside and rotundic acid in rat plasma was successfully established, validated, and applied to investigate the pharmacokinetic behavior after rats were intravenously administered with pedunculoside or pedunculoside-βCDP. The results indicated that pedunculoside-βCDP could significantly improve the pharmacokinetic profile of pedunculoside by increasing plasma exposure, retarding elimination, and reducing intestinal metabolism. This study enhances our understanding of pedunculoside-βCDP's metabolic fate and pharmacokinetic properties and potentially advances its further research, development, and clinical application.
Collapse
Affiliation(s)
- Liang Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Danfeng Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peijing Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Linling Dong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wang Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jianjun Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoliang Jin
- Clinical Pharmacology Department, Changchun GeneScience Pharmaceutical Co., Ltd., Shanghai 200235, China
| |
Collapse
|
16
|
Liu K, Yin Y, Shi C, Yan C, Zhang Y, Qiu L, He S, Li G. Asiaticoside ameliorates DSS-induced colitis in mice by inhibiting inflammatory response, protecting intestinal barrier and regulating intestinal microecology. Phytother Res 2024; 38:2023-2040. [PMID: 38384110 DOI: 10.1002/ptr.8129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/23/2024]
Abstract
Ulcerative colitis (UC) is one of the most prevalent inflammatory bowel diseases and poses a serious threat to human health. Currently, safe and effective preventive measures are unavailable. In this study, the protective effects of asiaticoside (AS) on dextran sodium sulfate (DSS)-induced colitis in mice and the underlying molecular mechanism were investigated. In this experiment, colitis was induced in mice with DSS. Subsequently, the role of AS in colitis and its underlying mechanisms were examined using H&E staining, immunofluorescence staining, western blot, Elisa, FMT, and other assays. The results showed that AS significantly attenuated the related symptoms of DSS-induced colitis in mice. In addition, AS inhibited the activation of signaling pathways TLR4/NF-κB and MAPK reduced the release of inflammatory factors, thereby attenuating the inflammatory response in mice. AS administration also restored the permeability of the intestinal barrier by increasing the levels of tight junction-associated proteins (claudin-3, occludin, and ZO-1). In addition, AS rebalanced the intestinal flora of DSS-treated mice by increasing the diversity of the flora. AS can alleviate DSS-induced ulcerative colitis in mice by maintaining the intestinal barrier, thus inhibiting the signaling pathways TLR4/NF-κB and MAPK activation, reducing the release of inflammatory factors, and regulating intestinal microecology.
Collapse
Affiliation(s)
- Kunjian Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yu Yin
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chong Shi
- Anorectal Department, First Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Chengqiu Yan
- Anorectal Department, First Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Yiwen Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Li Qiu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shuangyan He
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Guofeng Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Anorectal Department, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, China
| |
Collapse
|
17
|
Ju Z, Xu J, Tang K, Chen F. Structural modification based on the diclofenac scaffold: Achieving reduced colitis side effects through COX-2/NLRP3 selective inhibition. Eur J Med Chem 2024; 268:116257. [PMID: 38382390 DOI: 10.1016/j.ejmech.2024.116257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
COX-2/NLPR3-targeted therapy might be beneficial for the inflammation diseases. To discover novel anti-inflammatory compounds with favorable safety profiles, three new series of non-carboxylic diclofenac analogues bearing various ring systems, such as oxadiazoles 4a-4w, triazoles 6a-6m, and cyclic imides 7a and 7b, were synthesized. The synthesized analogues were evaluated for their inhibitory activity against COX-2 enzyme. Among them, compound 6k exhibited potent selective COX-2 inhibition (IC50 = 1.53 μM; selectivity ((IC50 (COX-1)/IC50(COX-2) = 17.19). Treatment with compound 6k effectively suppressed the NF-κB/NLRP3 signaling pathway, resulting in reduced expression of pro-inflammatory factors. The in vivo ulcerative colitis assay demonstrated that compound 6k significantly ameliorated histological damages and showed strong protection against DSS-induced acute colitis. The collected results indicated that compound 6k displays anti-inflammatory activity through COX-2/NLRP3 inhibition. Therefore, compound 6k represents a promising candidate for further development as a new lead compound with reduced colitis side effects.
Collapse
Affiliation(s)
- Zhiran Ju
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Junde Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Keshuang Tang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fener Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China.
| |
Collapse
|
18
|
Liu K, Shi C, Yan C, Yin Y, Qiu L, He S, Chen W, Li G. Fufangxiaopi formula alleviates DSS-induced colitis in mice by inhibiting inflammatory reaction, protecting intestinal barrier and regulating intestinal microecology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117365. [PMID: 38380568 DOI: 10.1016/j.jep.2023.117365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 02/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fufangxiaopi Formula (FF) is a modified form of Sishen Wan, traditionally used for treating diarrhea. The application of FF for treating ulcerative colitis (UC) has achieved desirable outcomes in clinical settings. However, the underlying mechanism of the effect of FF on UC is yet to be determined. AIM OF STUDY This study aimed to evaluate the protective effect and underlying mechanism of FF on mice with dextran sodium sulfate (DSS)-induced colitis. MATERIALS AND METHODS In vivo, the efficacy of FF on the symptoms associated with DSS-induced colitis in mice was clarified by observing the body weight change, colon length, DAI score, and H&E staining. The release of inflammatory mediators in mouse colon tissues was detected by ELISA and MPO, and the contents of TLR4/NF-κB signaling pathway and MAPK signaling pathway-related proteins, as well as intestinal barrier-related proteins, were detected in mouse colon tissues by western blot method. Changes in the content of barrier proteins in mouse colon tissues were detected by immunofluorescence. 16S rRNA sequencing and FMT were performed to clarify the effects of FF on intestinal flora. In vitro, the effect of FF-containing serum on LPS-induced inflammatory mediator release from RAW264.7 cells were detected by qRT-PCR. The contents of TLR4/NF The effects of FF-containing serum on B signaling pathway and MAPK signaling pathway related proteins in RAW264.7 cells and intestinal barrier related proteins in Caco-2 cells were detected by western blot. The effects of FF-containing serum on LPS-induced nuclear translocation of p65 protein in RAW264.7 cells and barrier-associated protein in Caco-2 cells were detected by immunofluorescence. RESULTS In vivo studies showed that FF could significantly alleviate the symptoms of UC, including reducing colon length, weight loss, clinical score, and colon tissue injury in mice. FF could significantly reduce the secretion of proinflammatory cytokines by suppressing the activation of the TLR4/NF-κB and MAPK signaling pathways. Moreover, FF could protect the integrity of intestinal barriers by significantly increasing claudin-3, occludin, and ZO-1 expression levels. 16S rRNA sequencing and FMT elucidate that FF can alleviate symptoms associated with colitis in mice by interfering with intestinal flora. In vitro studies showed that FF drug-containing serum could significantly inhibit proinflammatory responses and attenuate the secretion of iNOS, IL-1β, TNF-α, IL-6, and COX-2 by suppressing the activation of TLR4/NF-κB and MAPK signaling pathways in RAW264.7 cells. Furthermore, FF could protect the Caco-2 cell epithelial barrier. CONCLUSION FF could alleviate DSS-induced colitis in mice by maintaining the intestinal barrier, inhibiting the activation of TLR4/NF-κB and MAPK signaling pathways, reducing the release of proinflammatory factors, and regulating intestinal microecology.
Collapse
Affiliation(s)
- Kunjian Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Chong Shi
- Anorectal Department, First Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130021, China
| | - Chengqiu Yan
- Anorectal Department, First Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130021, China
| | - Yu Yin
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Li Qiu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Shuangyan He
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Weijie Chen
- Office of Student Affairs, First Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130021, China
| | - Guofeng Li
- Anorectal Department, First Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
19
|
Li Y, Tian YY, Wang J, Lin R, Zhang Y, Zhang MM, Dong TW, Li M, Xie YH, Zheng XH, Yang Q, Yuan JN, Si-Wang W. Main active components of Ilex rotunda Thunb. protect against ulcerative colitis by restoring the intestinal mucosal barrier and modulating the cytokine-cytokine interaction pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116961. [PMID: 37541404 DOI: 10.1016/j.jep.2023.116961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ilex rotunda Thunb. (IR) is widely used for gastrointestinal diseases by Yao physician, and it has a better clinical curative effect on ulcerative colitis (UC). However, the main active components and mechanism of IR in the treatment of UC remain to be clarified. AIM OF THE STUDY To investigate the main active components and mechanism of IR in the treatment of UC. MATERIALS AND METHODS Ten biological active components of IR were quantified by UPLC-MS/MS. In vitro, Caco2 cell monolayers were stimulated by lipopolysaccharide, and were treated with 10 biologically active components individually to investigate the protective role of the components of IR in mucosal barrier damage. In vivo, a mouse model of UC was induced by dextran sulfate sodium and administered with the candidate active components of IR. On day 8, the serum and colon tissue were collected for histological and molecular analysis to investigate the main active components and mechanism of IR. RESULTS Ziyuglycoside I, ziyuglycoside II, syringin, and pedunculoside in IR reduced phenol red transmission of the monolayer, and inhibited the protein expression of oncostatin M and oncostatin M receptor in Caco2 cells. Notably, ziyuglycoside II and syringin decreased the transepithelial electrical resistance of the monolayer, and promoted the protein expression of Occludin, Claudin-1 and zonula occludens-1 (ZO-1) in Caco2 cells. In vivo, ziyuglycoside II and syringin improved the symptoms of UC mice, including body weight, disease activity score, shortening of colon length, damaging of acidic mucus layer, histopathological changes, and protein expression of Occludin, Claudin-1, and ZO-1. Pedunculoside reduced the neutrophils and inflammatory response in the UC mice. Moreover, when the combination of ziyuglycoside II, syringin and pedunculoside was used for the treatment of UC, syringin and pedunculoside enhanced the therapeutic effect of ziyuglycoside II. Finally, RNA sequencing and RT-qPCR analysis revealed that ziyuglycoside II + syringin + pedunculoside and IR coregulated up to 42.7% of genes, and mainly reduced the overexpression of C-X-C motif ligand 1(CXCL1), oncostatin M receptor (OSMR), interleukin 1 receptor type I (IL1R1), tumor necrosis factor receptor superfamily member 9 (TNFRSF9), C-X-C motif chemokine 13 (CXCL13), oncostatin M (OSM), and interleukin 6 (IL-6) in the cytokine-cytokine interaction pathways. CONCLUSIONS The combination of ziyuglycoside II, syringin, and pedunculoside protects against UC by modulating the intestinal mucosal barrier and inhibiting the cytokine-cytokine interaction pathways, and the effect is relatively equivalent to that of the water extract of Ilex rotunda Thunb.
Collapse
Affiliation(s)
- Yao Li
- The College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China.
| | - Yun-Yuan Tian
- The College of Life Sciences, Northwest University, Xi'an, China
| | - Juan Wang
- The College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Rui Lin
- Department of Pharmacy, Xijing Hospital, Xi'an, China
| | - Yan Zhang
- The College of Life Sciences, Northwest University, Xi'an, China
| | - Meng-Meng Zhang
- The College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Tai-Wei Dong
- The College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Min Li
- The College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yan-Hua Xie
- The College of Life Sciences, Northwest University, Xi'an, China
| | - Xiao-Hui Zheng
- The College of Life Sciences, Northwest University, Xi'an, China
| | - Qian Yang
- Department of Chinese Materia Medica and Natural Medicines, Air Force Medical University, Xi'an, China
| | - Jia-Ni Yuan
- Air Force Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China
| | - Wang Si-Wang
- The College of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
20
|
Chiș A, Noubissi PA, Pop OL, Mureșan CI, Fokam Tagne MA, Kamgang R, Fodor A, Sitar-Tăut AV, Cozma A, Orășan OH, Hegheș SC, Vulturar R, Suharoschi R. Bioactive Compounds in Moringa oleifera: Mechanisms of Action, Focus on Their Anti-Inflammatory Properties. PLANTS (BASEL, SWITZERLAND) 2023; 13:20. [PMID: 38202328 PMCID: PMC10780634 DOI: 10.3390/plants13010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Moringa oleifera (M. oleifera) is a tropical tree native to Pakistan, India, Bangladesh, and Afghanistan; it is cultivated for its nutritious leaves, pods, and seeds. This scientific study was conducted to outline the anti-inflammatory properties and mechanisms of action of bioactive compounds from M. oleifera. The existing research has found that the plant is used in traditional medicine due to its bioactive compounds, including phytochemicals: flavonoids and polyphenols. The compounds are thought to exert their anti-inflammatory effects due to: (1) inhibition of pro-inflammatory enzymes: quercetin and kaempferol inhibit the pro-inflammatory enzymes (cyclooxygenase and lipoxygenase); (2) regulation of cytokine production: isothiocyanates modulate signaling pathways involved in inflammation, such as the nuclear factor-kappa B (NF-kappa B) pathway; isothiocyanates inhibit the production of pro-inflammatory cytokines such as TNF-α (tumor necrosis factor α) and IL-1β (interleukin-1β); and (3) antioxidant activity: M. oleifera contains flavonoids, polyphenols, known to reduce oxidative stress and inflammation. The review includes M. oleifera's effects on cardiovascular protection, anti-hypertensive activities, type 2 diabetes, inflammatory bowel disease, and non-alcoholic fatty liver disease (NAFLD). This research could prove valuable for exploring the pharmacological potential of M. oleifera and contributing to the prospects of developing effective medicines for the benefit of human health.
Collapse
Affiliation(s)
- Adina Chiș
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Louis Pasteur St, 400349 Cluj-Napoca, Romania; (A.C.); (R.V.)
| | - Paul Aimé Noubissi
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (P.A.N.); (R.K.)
| | - Oana-Lelia Pop
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.-L.P.); (R.S.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania
| | - Carmen Ioana Mureșan
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.-L.P.); (R.S.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania
| | - Michel Archange Fokam Tagne
- Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, Ngaoundéré P.O. Box 454, Cameroon;
| | - René Kamgang
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (P.A.N.); (R.K.)
| | - Adriana Fodor
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Iuliu Hațieganu” University of Medicine and Pharmacy, 2-4 Clinicilor St., 400012 Cluj-Napoca, Romania;
| | - Adela-Viviana Sitar-Tăut
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-V.S.-T.); (A.C.); (O.H.O.)
| | - Angela Cozma
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-V.S.-T.); (A.C.); (O.H.O.)
| | - Olga Hilda Orășan
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-V.S.-T.); (A.C.); (O.H.O.)
| | - Simona Codruța Hegheș
- Department of Drug Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| | - Romana Vulturar
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Louis Pasteur St, 400349 Cluj-Napoca, Romania; (A.C.); (R.V.)
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.-L.P.); (R.S.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania
| |
Collapse
|
21
|
Zhong Y, Li L, Chen W, Xing D, Wu X. Effects of Ilicis Chinensis folium extract supplementation on growth performance, serum parameters, intestinal morphology, and antioxidant capacity of broiler chickens. BMC Vet Res 2023; 19:94. [PMID: 37496032 PMCID: PMC10373348 DOI: 10.1186/s12917-023-03667-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Ilicis chinensis folium extract (ICFE) is a powder extracted and processed with Ilex chinensis Sims (ICS) which has numerous bioactivities and is conventionally used in traditional Chinese medicine. Nonetheless, there has been no definitive study evaluating ICFE's application as a feed supplement for broilers. This research sought to determine the chemical composition and evaluate how dietary ICFE supplementation affects the growth performance, serum metrics, intestinal structure, and antioxidant capacity of broilers. METHODS A total of 360 one-day-old broiler chicks were assigned to four treatments (with 9 replicates of 10 chicks, each) of dietary supplementation with ICFE at 0, 250, 500, and 1,000 mg /kg for 42 days. RESULTS Ten polyphenolic compounds and two triterpenoid glycosides were detected by HPLC. In the grower stage and overall, broilers supplemented with 500 and 1,000 mg/kg ICFE exhibited a higher ADFI (P < 0.05) than the controls. Additionally, compared to the controls, broilers receiving low, medium, or high dosages of ICFE exhibited higher average daily gains (P < 0.05) throughout the starter stage and overall. Organ indices showed no significant variation, suggesting that ICFE was non-toxic. ICFE supplementation increased the height of villi in the duodenum and jejunum, reduced crypt depth, and increased the villus/crypt ratio in the duodenum (P < 0.05). Serum concentrations of IL-4 and IgA were increased in ICFE-supplemented broilers. The serum malondialdehyde concentration was reduced, whereas superoxide dismutase activity and total antioxidant capacity increased through supplementation with ICFE. CONCLUSION ICFE supplementation can improve intestinal morphology, antioxidant capacity, and growth performance of broilers. Hence, ICFE is a promising and safe alternative to antibiotics in broilers, and 500 mg/kg appears to be the optimal dose.
Collapse
Affiliation(s)
- Yingjie Zhong
- Department of Orthopedics, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Liang Li
- Foss Analytical Co.Ltd, Beijing, China
| | - Wujun Chen
- Department of Orthopedics, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Dongming Xing
- Department of Orthopedics, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaolin Wu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
22
|
Niu Y, Zhang J, Shi D, Zang W, Niu J. Glycosides as Potential Medicinal Components for Ulcerative Colitis: A Review. Molecules 2023; 28:5210. [PMID: 37446872 DOI: 10.3390/molecules28135210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic, non-specific disease of unknown etiology. The disease develops mainly in the rectum or colon, and the main clinical symptoms include abdominal pain, diarrhea, and purulent bloody stools, with a wide variation in severity. The specific causative factors and pathogenesis of the disease are not yet clear, but most scholars believe that the disease is caused by the interaction of genetic, environmental, infectious, immune, and intestinal flora factors. As for the treatment of UC, medications are commonly used in clinical practice, mainly including aminosalicylates, glucocorticoids, and immunosuppressive drugs. However, due to the many complications associated with conventional drug therapy and the tendency for UC to recur, there is an urgent need to discover new, safer, and more effective drugs. Natural compounds with biodiversity and chemical structure diversity from medicinal plants are the most reliable source for the development of new drug precursors. Evidence suggests that glycosides may reduce the development and progression of UC by modulating anti-inflammatory responses, inhibiting oxidative stress, suppressing abnormal immune responses, and regulating signal transduction. In this manuscript, we provide a review of the epidemiology of UC and the available drugs for disease prevention and treatment. In addition, we demonstrate the protective or therapeutic role of glycosides in UC and describe the possible mechanisms of action to provide a theoretical basis for preclinical studies in drug development.
Collapse
Affiliation(s)
- Yating Niu
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| | - Jun Zhang
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Dianhua Shi
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Weibiao Zang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jianguo Niu
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
23
|
Fan Q, Liang X, Xu Z, Li S, Han S, Xiao Y, Xu Q, Yuan R, Yang S, Gao H. Pedunculoside inhibits epithelial-mesenchymal transition and overcomes Gefitinib-resistant non-small cell lung cancer through regulating MAPK and Nrf2 pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154884. [PMID: 37209605 DOI: 10.1016/j.phymed.2023.154884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Lung cancer is the primary cause of cancer-related mortality worldwide owing to its strong metastatic ability. EGFR-TKI (Gefitinib) has demonstrated efficacy in metastatic lung cancer therapy, but most patients ultimately develop resistance to Gefitinib, leading to a poor prognosis. Pedunculoside (PE), a triterpene saponin extracted from Ilex rotunda Thunb., has shown anti-inflammatory, lipid-lowering and anti-tumor effects. Nevertheless, the therapeutic effect and potential mechanisms of PE on NSCLC treatment are unclear. PURPOSE To investigate the inhibitory effect and prospective mechanisms of PE on NSCLC metastases and Gefitinib-resistant NSCLC. METHODS In vitro, A549/GR cells were established by Gefitinib persistent induction of A549 cells with a low dose and shock with a high dose. The cell migratory ability was measured using wound healing and Transwell assays. Additionally, EMT-related Markers or ROS production were assessed by RT-qPCR, immunofluorescence, Western blotting, and flow cytometry assays in A549/GR and TGF-β1-induced A549 cells. In vivo, B16-F10 cells were intravenously injected into mice, and the effect of PE on tumor metastases were determined using hematoxylin-eosin staining, Caliper IVIS Lumina, DCFH2-DA staining, and western blotting assays. RESULTS PE reversed TGF-β1-induced EMT by downregulating EMT-related protein expression through MAPK and Nrf2 pathways, decreasing ROS production, and inhibiting cell migration and invasion ability. Moreover, PE treatment enabled A549/GR cells to retrieve the sensitivity to Gefitinib and mitigate the biological characteristics of EMT. PE also significantly inhibited lung metastasis in mice by reversing EMT proteins expression, decreasing ROS production, and inhibiting MAPK and Nrf2 pathways. CONCLUSIONS Collectively, this research presents a novel finding that PE can reverse NSCLC metastasis and improve Gefitinib sensitivity in Gefitinib-resistant NSCLC through the MAPK and Nrf2 pathways, subsequently suppressing lung metastasis in B16-F10 lung metastatic mice model. Our findings indicate that PE is a potential agent for inhibiting metastasis and improving Gefitinib resistance in NSCLC.
Collapse
Affiliation(s)
- Qiumei Fan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Xiaowei Liang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Zhipeng Xu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Siyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Yuntian Xiao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Qiongming Xu
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Renyikun Yuan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China.
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China.
| |
Collapse
|
24
|
Liu C, Chen H, Zhang Y, Li M, Jiang Q, Wang Z, Yu L, Wang Q, Pan H, Zhuo Y. Combination of chemical profiling and network pharmacology analysis to investigate the potential mechanism of Li-Zhong-Xiao-Pi granules in the treatment of gastric precancerous lesions. Biomed Chromatogr 2023; 37:e5589. [PMID: 36689998 DOI: 10.1002/bmc.5589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023]
Abstract
Li-Zhong-Xiao-Pi granules (LZXP) are effective for treating gastric precancerous lesions (GPL) in traditional Chinese medicine. However, the active compounds of LZXP and their potential therapeutic mechanism in GPL remained unclarified. The purpose of this study is to investigate the chemical composition and potential targets of LZXP. Based on the accurate masses, ion fragments, and literature data, a total of 128 compounds were identified in the LZXP sample using ultra-performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) in both positive and negative ion modes, and 28 of these compounds were exactly determined by comparison with authentic reference standards. Meanwhile, 11 typical components were quantified via UPLC during a 24 min period. The linearity, accuracy, stability and recovery of the method were all proven. Through the network pharmacological analysis, six chemicals (quercetin, 4'-hydroxywogonin, sinensetin, 5, 7, 8, 3', 4'-pentamethoxyflavanone, 8-gingerdione and quercetin) were identified as the active ingredients, and five LZXP targets (AKT1, CYP1B1, PTGS2, MMP9 and EGFR) were found to be the crucial molecules in the treatment of GPL. This study provides a systematic and applicable method for the rapid screening and identification of the chemical constituents from LZXP, and an effective understanding the mechanism of LZXP in the treatment of GPL.
Collapse
Affiliation(s)
- Chenchen Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiling Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yida Zhang
- Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qiyao Jiang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhendong Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liangwen Yu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
25
|
Zeng W, Cui H, Yang W, Zhao Z. A systematic review: Botany, phytochemistry, traditional uses, pharmacology, toxicology, quality control and pharmacokinetics of Ilex rotunda Thunb. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115419. [PMID: 35781006 DOI: 10.1016/j.jep.2022.115419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ilex rotunda Thunb. (I. rotunda) is an Ilex species of Aquifoliaceae, widely distributed in East Asia. Its dried bark is commonly used as a medicinal part in the field of traditional Chinese medicine (TCM), named Ilicis Rotundae Cortex. This medicinal plant is commonly used for clearing heat and removing toxin, draining dampness and relieving pain in TCM to treat tonsillitis, acute gastroenteritis, gastric and duodenal ulcer, rheumatism, traumatic injury, and so on. It also has significant development value on lipid-lowering, hepatoprotection and anti-inflammation, but the potential mechanism needs to be further explored. AIM OF THE REVIEW More and more medicinal substances are being discovered in I. rotunda with multiple biological activities, which help to advance the ethno-pharmacological research in I. rotunda. However, to date there is a lack of a systematic summary of research progress on I. rotunda. This review aims to provide a critical summary of the current studies on I. rotunda. The progress in research on botany, phytochemistry, traditional uses, pharmacology, toxicology, quality control and pharmacokinetics of the plant is discussed. It hopes to provide useful references and guidance for the future directions of research on I. rotunda. MATERIALS AND METHODS Studies of I. rotunda were collected via Google Scholar and Baidu Scholar, PubMed, ScienceDirect, SciFinder, Web of Science, China National Knowledge Infrastructure (CNKI), WANFANG DATA and libraries. Some local books, official websites, PhD or MS's dissertations were also included. The literature cited in this review covered the period from 1956 to January 2022. RESULTS Analysis of the literature indicates that I. rotunda is a potentially valuable herbal medicine for the therapeutic of various diseases. To date, 120 compounds were found and identified in I. rotunda, mainly including triterpenoids, phenylpropanoids, etc. Modern pharmacological studies also found that the plant has the activities of protecting the cardiovascular system, lowering lipids and protecting the liver, as well as being an anti-inflammatory, anti-tumor and antibacterial. CONCLUSIONS This review summarizes the results from current studies of I. rotunda. However, the current explanation seems insufficient and unsatisfactory, in terms of the relationships between the traditional uses and the modern pharmacological activities, the mechanisms and the material basis. Thus, a critical and comprehensive evaluation is necessary to explore its future research prospects and development direction.
Collapse
Affiliation(s)
- Wei Zeng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hui Cui
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Weiqun Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhongxiang Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
26
|
Zhang M, Zhu J, Zhou L, Kan J, Zhao M, Huang R, Liu J, Marchioni E. Antarctic krill oil high internal phase Pickering emulsion stabilized by bamboo protein gels and the anti-inflammatory effect in vitro and in vivo. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
27
|
Yin Y, Liu K, Li G. Protective Effect of Prim-O-Glucosylcimifugin on Ulcerative Colitis and Its Mechanism. Front Pharmacol 2022; 13:882924. [PMID: 35662727 PMCID: PMC9158503 DOI: 10.3389/fphar.2022.882924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/31/2022] [Indexed: 11/23/2022] Open
Abstract
Intestinal epithelial immune dysfunction or imbalance in the homeostasis of intestinal flora can lead to the occurrence or exacerbation of ulcerative colitis (UC). Prim-O-glucosylcimifugin (POG) is an extract of Chinese traditional medicine (TCM) Saposhnikov, which has analgesic, anti-inflammatory, and antioxidant effects. The present work discussed how the POG alternated ulcerative colitis (UC) along with its underlying mechanism. This was clarified by performing animal studies in a mice model, wherein UC was induced by dextran sulfate sodium (DSS). In vivo studies have found that POG increased clinical score, colonic length, and weight of mice in the ulcerative colitis model. It repaired the pathological injury of an intestinal mucosa within mice while inhibiting the inflammatory factor levels such as IL-1β, TNF-α, and IL-6. Meanwhile, by16SrDNA sequencing analysis, it was found that POG regulated the richness of intestinal microbiota structure and repaired the intestinal immune barrier by upregulating the expression levels of tight junction proteins Occludin, Claudin-3, and ZO-1. To further confirm the above results, we found in in vitro studies that POG also protected lipopolysaccharide- (LPS-) induced RAW264.7 cells. POG dramatically suppressed inflammatory factor production (including TNF-α, IL-1β, and IL-6) within LPS-treated RAW264.7 cells by inhibiting the activation of ERK1/2, AKT, JNK1/2, IκB-α, P38, and P65 phosphorylation. In conclusion, POG plays a protective role against UC by inhibiting the activation of pro-inflammatory signaling pathways MAPK, AKT, and NF-κB; repairing the integrity of the intestinal barrier; and regulating the diversity and abundance of intestinal flora.
Collapse
Affiliation(s)
| | | | - Guofeng Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
28
|
Li Y, Yang X, Yuan JN, Lin R, Tian YY, Li YX, Zhang Y, Wang XF, Xie YH, Wang SW, Zheng XH. Ilex rotunda Thunb Protects Against Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice by Restoring the Intestinal Mucosal Barrier and Modulating the Oncostatin M/Oncostatin M Receptor Pathway. Front Pharmacol 2022; 13:819826. [PMID: 35645824 PMCID: PMC9140055 DOI: 10.3389/fphar.2022.819826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Ilex rotunda Thunb (IR) is a traditional Chinese medicine used for the clinical treatment of gastric ulcers and duodenal ulcers; however, the effect of IR on ulcerative colitis (UC) and its underlying mechanism remains unclear. This study investigated the therapeutic effect of IR on UC mice induced by dextran sulfate sodium (DSS) as well as the potential underlying mechanism. The main components of IR were analyzed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Then we established a model of UC mice by administering 2.0% DSS for 7 days followed by 2 weeks of tap water for three cycles and administered IR. On day 56, the disease activity index (DAI), colon length, pathological changes, and inflammatory response of the colon tissue of mice were assessed. The oxidative stress and apoptosis of colon tissue were detected, and the integrity of the intestinal mucosal barrier was evaluated to assess the effect of IR. Furthermore, the relationship between oncostatin M (OSM) and its receptor (OSMR) in addition to the IR treatment of UC were evaluated using a mouse model and Caco2 cell model. The results showed that IR significantly alleviated the symptoms of UC including rescuing the shortened colon length; reducing DAI scores, serum myeloperoxidase and lipopolysaccharide levels, pathological damage, inflammatory cell infiltration and mRNA levels of interleukin one beta, tumor necrosis factor alpha, and interleukin six in colon tissue; alleviating oxidative stress and apoptosis by decreasing kelch-like ECH-associated protein 1 expression and increasing nuclear factor-erythroid factor 2-related factor 2 and heme oxygenase-1 protein expression; and promoting the regeneration of epithelial cells. IR also promoted the restoration of the intestinal mucosal barrier and modulated the OSM/OSMR pathway to alleviate UC. It was found that IR exerted therapeutic effects on UC by restoring the intestinal mucosal barrier and regulating the OSM/OSMR pathway.
Collapse
Affiliation(s)
- Yao Li
- The College of Life Sciences, Northwest University, Xi’an, China
| | - Xu Yang
- The College of Life Sciences, Northwest University, Xi’an, China
| | - Jia-ni Yuan
- Air Force Hospital of Western Theater Command, Chengdu, China
| | - Rui Lin
- Department of Pharmacy, Xijing Hospital, Xi’an, China
| | - Yun-yuan Tian
- Department of Chinese Materia Medica and Natural Medicines, Air Force Medical University, Xi’an, China
| | - Yu-xin Li
- The College of Life Sciences, Northwest University, Xi’an, China
| | - Yan Zhang
- The College of Life Sciences, Northwest University, Xi’an, China
| | - Xu-fang Wang
- The College of Life Sciences, Northwest University, Xi’an, China
| | - Yan-hua Xie
- The College of Life Sciences, Northwest University, Xi’an, China
| | - Si-wang Wang
- The College of Life Sciences, Northwest University, Xi’an, China
| | - Xiao-hui Zheng
- The College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
29
|
Yong Y, Fang B, Huang Y, Li J, Yu T, Wu L, Hu C, Liu X, Yu Z, Ma X, Gooneratne R, Li S, Abd El-Aty AM, Ju X. Tea Tree Oil Terpinen-4-ol Protects Gut Barrier Integrity by Upregulation of Tight Junction Proteins via the ERK1/2-Signaling Pathway. Front Nutr 2022; 8:805612. [PMID: 35155524 PMCID: PMC8829435 DOI: 10.3389/fnut.2021.805612] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
Tea tree oil (TTO) exhibits a potent antioxidant, antibacterial, and anti-inflammatory activity and is commonly used in skincare products. However, it is not clear whether TTO can protect gut barrier damage in inflammatory bowel disease (IBD) patients. Herein, we report the impact of terpinen-4-ol (TER, the primary constituent of TTO), on lipopolysaccharide (LPS)-induced intestinal epithelial cell barrier function impairment in intestinal porcine epithelial cell lines (IPEC-J2) and dextran sulfate sodium (DSS)-induced IBD in mice. TER protected against LPS-induced damage in IPEC-J2 cells in vitro and attenuated DSS-induced colitis in vivo. Added TER promoted the tight junction (TJ) proteins expressing in vitro and in vivo and attenuated the LPS-induced upregulation of ERK phosphorylation in IPEC-J2 cells. However, when an inhibitor of ERK phosphorylation was added, TER did not promote the expression of TJ protein, denoting that the ERK signaling pathway mediates the upregulation of TJ proteins. Our data may propose the potential application of TER in treating IBD.
Collapse
Affiliation(s)
- Yanhong Yong
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Biao Fang
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yingxin Huang
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Junyu Li
- Department of Animal Science, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Tianyue Yu
- Department of Animal Science, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Lianyun Wu
- Department of Animal Science, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Canying Hu
- Department of Animal Science, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xiaoxi Liu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Zhichao Yu
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xingbin Ma
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Sidong Li
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, China
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Xianghong Ju
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- *Correspondence: Xianghong Ju
| |
Collapse
|
30
|
Protective Effect of Salvianolic Acid B in Acetic Acid-Induced Experimental Colitis in a Mouse Model. Processes (Basel) 2021. [DOI: 10.3390/pr9091589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In its prominent experimental studies salvianolic acid B (Sal B) is novel because of its well-defined, common physiological effects, which include anti-inflammatory, anti-depressant, cardioprotective, DNA protective, neuroprotective and hepatoprotective activity in experimental animals. Initially, Sal B was studied for its anti-inflammatory properties, used as a remedy for a wide range of disease conditions, but its specific efficacy on inflammatory bowel disease is still unclear. The aim of this current study was to understand the therapeutic potential of Sal B in an acetic acid (AA)—triggered experimental mouse colitis model. Colitis was triggered by intrarectal injection of 5% AA, and then laboratory animals were given Sal B (10, 20 and 40 μg/kg) for seven days. The ulcerated colonic mucosa was assessed by clinical experiment, macroscopical, biological and histopathological analysis. The results showed depleted SOD, CAT, GSH levels and consequential elevated MPO and MDA levels and aberrant crypt foci and mast cells were seen in the AA-induced colonic mucosa of experimental animals. The data obtained from this study demonstrate that a dose of 40 µg/kg showed an efficacious anti-ulcer effect against AA-induced experimental colitis. Based on its antioxidant efficacy, Sal B may therefore be useful as a therapeutic approach for ulcerative colitis.
Collapse
|
31
|
Wang Y, Liu K, Qi Z, Chen T, Yu W, Jiang Y, Li G, Xiao H. Therapeutic Mechanism and Effect of Camptothecin on Dextran Sodium Sulfate-Induced Ulcerative Colitis in Mice. J Immunol Res 2021; 2021:5556659. [PMID: 33987448 PMCID: PMC8093050 DOI: 10.1155/2021/5556659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 12/30/2022] Open
Abstract
Camptothecin (CPT) is a cytotoxic quinoline alkaloid isolated from the bark and branches of the Chinese tree Camptotheca acuminata. CPT inhibits topoisomerase I. It possesses various antitumor activities and is mainly used in the treatment of colon, ovarian, liver, and bone cancers as well as leukemia. CPT inhibits the expressions of inflammatory genes and can prevent death from chronic inflammation. Therefore, we investigated the effect of CPT treatment in ulcerative colitis (UC) using DSS-induced UC mouse model; after that, we explored its potential mechanisms. Here, we found that CPT exerted protection on DSS-induced UC in rats. In addition, the administration prominently reduced the disease activity index as well as colon length of the model rats and remarkably reduced the inflammatory cytokines. Further, CPT significantly reduced several vital proinflammatory proteins in LPS-induced RAW264.7 cells. In summary, our findings demonstrate that CPT is hopefully to act as a therapeutic agent for UC.
Collapse
Affiliation(s)
- Yizhuo Wang
- 1Department of Cancer Center, First Hospital of Jilin University, Changchun 130000, China
| | - Kunjian Liu
- 2Department of Anorectal, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
| | - Zhiyong Qi
- 3Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Tong Chen
- 3Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Wei Yu
- 3Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yang Jiang
- 3Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Guofeng Li
- 2Department of Anorectal, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
| | - Huijie Xiao
- 3Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|