1
|
Liu X, Mai H, Wang L, Zhang H, Li X, Li X, Wang L. IL-4 polymorphisms (rs2227284, rs2243267, and rs2243270) are associated with reduced risk of rheumatoid arthritis. Autoimmunity 2024; 57:2364684. [PMID: 38902969 DOI: 10.1080/08916934.2024.2364684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/02/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease, and understanding its genetic and molecular basis is crucial for early diagnosis, treatment, and prevention. OBJECTIVE This study aims to explore the association between IL-4 polymorphisms (rs2227284, rs2243267, rs2243270, and rs2243283) and RA risk. METHODS The four IL-4 polymorphisms were genotyped in 493 RA patients and 493 healthy controls using Agena MassARRAY. Logistic regression analysis calculated odds ratio (OR) and 95% confidence interval (CI) to estimate the relationship between IL-4 polymorphisms and RA risk. RESULTS Overall analysis revealed that rs2243267 (GG vs. CC: OR = 0.26, FDR-p = .032; Recessive: OR = 0.27, FDR-p = .048) and rs2243270 (AA vs. GG: OR = 0.26, FDR-p = .024; Recessive: OR = 0.27, FDR-p = .024) were associated with a decreased risk of RA. Stratified analysis indicated that rs2243267 and rs2243270 were correlated with reduced RA risk in female, smoking, BMI <24, and drinking population; rs2227284 was associated with a decreased RA risk in BMI <24 and drinking population. Moreover, rs2243267 and rs2243270 were significantly associated with reduced ACPA positivity. CONCLUSIONS Our findings suggest that IL-4 polymorphisms (rs2227284, rs2243267, and rs2243270) act as protective factors for RA in the Chinese Han population.
Collapse
Affiliation(s)
- Xiaoli Liu
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Huqiang Mai
- Trauma center of Dongfang people's Hospital, Dongfang, Dongfang, Hainan, China
| | - Liang Wang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Hengxun Zhang
- Department of Healthcare, the Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi, China
| | - Xuemei Li
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Xuguang Li
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Li Wang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| |
Collapse
|
2
|
Leerach N, Ngaosuwan K, Mahikul W. Regional variations in serum IL-35 levels and association with systemic lupus erythematosus: a systematic review and meta-analysis. Sci Rep 2024; 14:24820. [PMID: 39438756 PMCID: PMC11496805 DOI: 10.1038/s41598-024-76375-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Interleukin (IL)-35 is an anti-inflammatory cytokine that regulates autoimmune diseases, including systemic lupus erythematosus (SLE). However, the association between the cytokine and disease may vary by geographical region. This study performed a meta-analysis to quantitatively assess the correlation between the serum IL-35 levels in SLE patients and sub-group analyses were conducted. Four main electronic databases-Scopus, Embase, Science Direct, PubMed-were searched for relevant studies. After a database search, Endnote software was used to find and remove duplicate studies. Random-effects models were used to estimate standard mean differences in serum/plasma IL-35 levels by Hedges' g with 95% confidence intervals (CIs). Publication bias was assessed with funnel plots, and risk of bias was assessed according to the Newcastle-Ottawa Scale (NOS). Sixteen studies met the eligibility criteria and were included in a qualitative review; data from 15 studies were included in the meta-analysis. Total IL-35 levels (pg/mL) did not differ among patients with active SLE and healthy controls (Hedges's g: 0.22, 95% CI - 0.51, 0.95, p = 0.55). Sub-group analysis revealed that IL-35 levels in patients with active SLE were lower than in healthy controls in Chinese studies (Hedges's g: - 3.11, 95% CI - 5.72, - 0.51), but not in non-Chinese studies (Hedges's g: 1.63, 95% CI - 0.31, 3.57). This regional difference was statistically significant (p < 0.01). The analysis comparing patients with inactive SLE and healthy controls showed a similar trend. This study suggests that serum IL-35 levels are lower in patients with SLE in studies from China, but not other regions. However, standardized protocols with large sample sizes are needed to confirm these findings.
Collapse
Affiliation(s)
- Nontaphat Leerach
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, 10210, Thailand.
| | - Kanchana Ngaosuwan
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Wiriya Mahikul
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, 10210, Thailand.
| |
Collapse
|
3
|
Gao L, Xiong YJ, Liang YX, Huang PF, Liu S, Xiao Y, Huang Q, Wang H, Wu HM. The effects of IL-27 and IL-35 gene variation and expression levels on the susceptibility and clinical manifestations of pulmonary tuberculosis. Front Immunol 2024; 15:1267624. [PMID: 38690286 PMCID: PMC11058845 DOI: 10.3389/fimmu.2024.1267624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/26/2024] [Indexed: 05/02/2024] Open
Abstract
Inflammatory cytokines have crucial roles in the pathogenesis of tuberculosis (TB), and interleukin (IL)-27 and IL-35 have a pro-inflammatory and anti-inflammatory effect on many diseases, including infectious diseases. Therefore, we evaluated the relationship between IL-27 and IL-35 gene polymorphism, expression levels, and pulmonary TB (PTB) susceptibility. Nine single-nucleotide polymorphisms (SNPs) in the IL-27 gene (rs181206, rs153109, and rs17855750) and the IL-35 gene (rs4740, rs428253, rs9807813, rs2243123, rs2243135, and rs568408) were genotyped by the SNPscan technique in 497 patients with PTB and 501 controls. There was no significant difference regarding the genotype and allele frequencies of the above SNPs in the IL-27 and IL-35 genes between patients with PTB and controls. Haplotype analysis showed that the frequency of the GAC haplotype in the IL-35 gene was significantly decreased in patients with PTB when compared to controls (p = 0.036). Stratified analysis suggested that the frequency of the IL-27 rs17855750 GG genotype was significantly increased in patients with PTB with fever. Moreover, the lower frequency of the IL-35 rs568408 GA genotype was associated with drug-induced liver injury in patients with PTB. The IL-35 rs428253 GC genotype, as well as the rs4740 AA genotype and A allele, showed significant relationships with hypoproteinemia in patients with PTB. When compared with controls, the IL-27 level was significantly increased in patients with PTB. Taken together, IL-35 gene variation might contribute to a protective role on the susceptibility to PTB, and IL-27 and IL-35 gene polymorphisms were associated with several clinical manifestations of patients with PTB.
Collapse
Affiliation(s)
- Lei Gao
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Tuberculosis, Anhui Chest Hospital, Hefei, Anhui, China
| | - Yan-Jun Xiong
- Department of Tuberculosis, Anhui Chest Hospital, Hefei, Anhui, China
| | - Ya-Xue Liang
- Department of Tuberculosis, Anhui Chest Hospital, Hefei, Anhui, China
| | - Peng-Fei Huang
- Department of Tuberculosis, Anhui Chest Hospital, Hefei, Anhui, China
| | - Shuang Liu
- Department of Tuberculosis, Anhui Chest Hospital, Hefei, Anhui, China
| | - Yu Xiao
- Department of Tuberculosis, Anhui Chest Hospital, Hefei, Anhui, China
| | - Qian Huang
- Department of Public Health, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Tuberculosis, Anhui Chest Hospital, Hefei, Anhui, China
| | - Hui-Mei Wu
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
4
|
Meng X, Layhadi JA, Keane ST, Cartwright NJ, Durham SR, Shamji MH. Immunological mechanisms of tolerance: Central, peripheral and the role of T and B cells. Asia Pac Allergy 2023; 13:175-186. [PMID: 38094089 PMCID: PMC10715743 DOI: 10.5415/apallergy.0000000000000128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 02/01/2025] Open
Abstract
T and B cells are key components of the adaptive immune system. Through their immune properties and their interactions with other immune cells and cytokines around them, they build a complex network to achieve immune tolerance and maintain homeostasis of the body. This is achieved through mechanisms of central and peripheral tolerance, both of which are associated with advantages and disadvantages. For this reason, the immune system is tightly regulated and their dysregulation can result in the subsequent initiation of various diseases. In this review, we will summarize the roles played by T cells and B cells within immune tolerance with specific examples in the context of different diseases that include allergic disease. In addition, we will also provide an overview on their suitability as biomarkers of allergen-specific immunotherapy.
Collapse
Affiliation(s)
- Xun Meng
- Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Janice A. Layhadi
- Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sean T. Keane
- Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Natanya J.K. Cartwright
- Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stephen R. Durham
- Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Mohamed H. Shamji
- Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Szostak B, Gorący A, Pala B, Rosik J, Ustianowski Ł, Pawlik A. Latest models for the discovery and development of rheumatoid arthritis drugs. Expert Opin Drug Discov 2022; 17:1261-1278. [PMID: 36184990 DOI: 10.1080/17460441.2022.2131765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic autoimmune disease that reduces the quality of life. The current speed of development of therapeutic agents against RA is not satisfactory. Models on which initial experiments are conducted do not fully reflect human pathogenesis. Overcoming this oversimplification might be a crucial step to accelerate studies on RA treatment. AREAS COVERED The current approaches to produce novel models or to improve currently available models for the development of RA drugs have been discussed. Advantages and drawbacks of two- and three-dimensional cell cultures and animal models have been described based on recently published results of the studies. Moreover, approaches such as tissue engineering or organ-on-a-chip have been reviewed. EXPERT OPINION The cell cultures and animal models used to date appear to be of limited value due to the complexity of the processes involved in RA. Current models in RA research should take into account the heterogeneity of patients in terms of disease subtypes, course, and activity. Several advanced models and tools using human cells and tissues have been developed, including three-dimensional tissues, liquid bioreactors, and more complex joint-on-a-chip devices. This may increase knowledge of the molecular mechanisms leading to disease development, to help identify new biomarkers for early detection, and to develop preventive strategies and more effective treatments.
Collapse
Affiliation(s)
- Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Anna Gorący
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, Szczecin, Poland
| | - Bartłomiej Pala
- Department of Neurosurgery, Pomeranian Medical University Hospital No. 1, Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland.,Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Łukasz Ustianowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
6
|
Ye C, Yano H, Workman CJ, Vignali DAA. Interleukin-35: Structure, Function and Its Impact on Immune-Related Diseases. J Interferon Cytokine Res 2021; 41:391-406. [PMID: 34788131 DOI: 10.1089/jir.2021.0147] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The balance between inflammatory and anti-inflammatory immune responses is maintained through immunoregulatory cell populations and immunosuppressive cytokines. Interleukin-35 (IL-35), an inhibitory cytokine that belongs to the IL-12 family, is capable of potently suppressing T cell proliferation and inducing IL-35-producing induced regulatory T cells (iTr35) to limit inflammatory responses. Over the past decade, a growing number of studies have indicated that IL-35 plays an important role in controlling immune-related disorders, including autoimmune diseases, infectious diseases, and cancer. In this review, we summarize the current knowledge about the biology of IL-35 and its contribution in different diseases, and we discuss the potential of and barriers to harnessing IL-35 as a clinical biomarker or immunotherapy.
Collapse
Affiliation(s)
- Cheng Ye
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hiroshi Yano
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Xu WD, Wu Q, He YW, Huang AF, Lan YY, Fu L, Zhou J, Liu XY. Gene polymorphisms of LGALS2, LGALS3 and LGALS9 in patients with rheumatoid arthritis. Cell Immunol 2021; 368:104419. [PMID: 34371260 DOI: 10.1016/j.cellimm.2021.104419] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/11/2021] [Accepted: 07/31/2021] [Indexed: 01/05/2023]
Abstract
Rheumatoid arthritis (RA) is a complicated rheumatic autoimmune disease. Lectin, galactoside-binding soluble, 2 (LGALS2), LGALS3 and LGALS9, three members of the galectin family, play potential roles in autoimmune diseases, including RA. However, association of genetic polymorphisms of LGALS2, LGALS3 and LGALS9 with RA risk in a Southern Chinese Han population has not been elucidated. A case-control study was conducted herein, including 500 RA patients and 650 healthy individuals of Southern Chinese Han origin. Twelve single nucleotide polymorphisms (SNPs), including rs7291467 for the LGALS2 gene, rs4644, rs4652, rs1009977, rs2274273 and rs17128183 for the LGALS3 gene, and rs4795835, rs3763959, rs4239242, rs3751093, rs732222 and rs4794976 for the LGALS9 gene, were genotyped. Polymorphisms were genotyped using the KASP method. Frequencies of rs1009977 genotype TG and rs3751093 genotype GA of LGALS3 gene were significantly different between RA patients and healthy controls (P = 0.049, P = 0.033). Allele T and genotypes TT and TT + TG of rs4794976 for LGALS9 gene were significantly correlated with RA risk (P = 0.017, P = 0.012, P = 0.041). Subgroup analysis revealed that rs1009977, rs2274273 and rs17128183 polymorphisms of LGALS3 gene and rs4795835 polymorphism of LGALS9 gene were correlated with several RA clinical manifestations (all P < 0.05). In addition, haplotype GCGTT showed an increased risk for RA (OR = 1.216, 95% CI: 1.028-1.438, P = 0.023), whereas haplotype GCGTG showed a reduced risk for RA susceptibility (OR = 0.779, 95% CI: 0.625-0.971, P = 0.026). In conclusion, LGALS3 and LGALS9 gene polymorphisms may associate with RA predisposition in a Southern Chinese Han population.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| | - Qian Wu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yan-Wei He
- Department of Orthopaedics, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - You-Yu Lan
- Department of Rheumatology and Immunology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Lu Fu
- Laboratory Animal Center, Southwest Medical University, Luzhou, Sichuan, China
| | - Jie Zhou
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiao-Yan Liu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
8
|
Xin PL, Jie LF, Cheng Q, Bin DY, Dan CW. Pathogenesis and Function of Interleukin-35 in Rheumatoid Arthritis. Front Pharmacol 2021; 12:655114. [PMID: 34054534 PMCID: PMC8155723 DOI: 10.3389/fphar.2021.655114] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/13/2021] [Indexed: 01/06/2023] Open
Abstract
It is well known that RA (Rheumatoid arthritis) is an autoimmune disease characterized by multiple and symmetric arthropathy. The main pathological features of RA are synovial hyperplasia, angiogenesis, pannus formation, inflammatory cell infiltration, articular cartilage, bone destruction, and ultimately joint dysfunction, even deformity. IL-35 (Interleukin-35) is a new member of the IL-12 (Interleukin-12) family, which is an immunosuppressive and anti-inflammatory cytokine secreted mainly by Treg (T regulatory cells). There is evidence suggested that IL-35 can attenuate the progression of RA through influencing the immune and pathological process. It suggests that IL-35 played an important role in the pathogenesis of RA, and can be used as a potential target for the future treatment of RA. This review summarizes the recent advances of IL-35 in the pathological roles and the therapeutic potential roles in RA.
Collapse
Affiliation(s)
- Pan Lin Xin
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Li Fan Jie
- Department of Orthopedic, Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qian Cheng
- Research and Experimental Center of Anhui Medical University, Hefei, China
| | - Du Yi Bin
- Department of Orthopedic, Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cheng Wen Dan
- Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|