1
|
Zambrano-Vásquez OR, Cortés-Camacho F, Castañeda-Sánchez JI, Aréchaga-Ocampo E, Valle-Velázquez E, Cabrera-Angeles JC, Sánchez-Gloria JL, Sánchez-Muñoz F, Arellano-Buendia AS, Sánchez-Lozada LG, Osorio-Alonso H. Update in non-alcoholic fatty liver disease management: role of sodium-glucose cotransporter 2 inhibitors. Life Sci 2025; 372:123638. [PMID: 40246191 DOI: 10.1016/j.lfs.2025.123638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation in hepatocytes without significant alcohol consumption. It is closely associated with sedentarism, hypercaloric diets, obesity, dyslipidemia, insulin resistance, type 2 diabetes mellitus, and genetic predisposition. NAFLD comprises a spectrum of liver disorders, from simple steatosis to non-alcoholic (NASH) and liver cirrhosis. The complex etiological mechanisms include oxidative stress, inflammation, apoptosis, and fibrosis; therefore, its management is challenging. Sodium-glucose cotransporter type 2 inhibitors (SGLT2i), a class of antidiabetic drugs, have emerged as promising therapeutic agents due to their ability to improve key metabolic parameters, including obesity, dyslipidemia, insulin resistance, and hyperglycemia. This review explores the cellular mechanisms by which SGLT2i, either as monotherapy or combined with other treatments, modulate signaling pathways involved in lipid and carbohydrate metabolism. Additionally, we examine their effects on oxidative stress, inflammation, fibrosis, and apoptosis, which are critical drivers of NAFLD progression. This review is intended to summarize the multiple benefits of SGLT2 inhibitors and to educate healthcare providers on the therapeutic potential of these drugs in order to foster their incorporation into effective NAFLD management plans.
Collapse
Affiliation(s)
- Oscar R Zambrano-Vásquez
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México 04960, Mexico; Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Fernando Cortés-Camacho
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México 04960, Mexico; Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Jorge I Castañeda-Sánchez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, México City 04960, Mexico
| | - Elena Aréchaga-Ocampo
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, México City 05348, Mexico
| | - Estefanía Valle-Velázquez
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Juan C Cabrera-Angeles
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - José L Sánchez-Gloria
- Department of Internal Medicine, Division of Nephrology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Fausto Sánchez-Muñoz
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Abraham S Arellano-Buendia
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Laura G Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico.
| |
Collapse
|
2
|
Du W, Siwan E, Twigg SM, Min D. Alterations in Immune Cell Profiles in the Liver in Diabetes Mellitus: A Systematic Review. Int J Mol Sci 2025; 26:4027. [PMID: 40362271 PMCID: PMC12071842 DOI: 10.3390/ijms26094027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
The aim of this study was to systematically review literature on immune responses in liver tissue pathology in diabetes, focusing on immune cell populations and related cytokines. A systematic search of relevant English full-text articles up to June 2024 from online databases, covering animal and human studies, was conducted using the PRISMA workflow. Thirteen studies met criteria. Immune cells in the liver, including monocytes/macrophages, neutrophils, and iNKT and T cells, were implicated in liver inflammation and fibrosis in diabetes. Pro-inflammatory cytokines, including interferon-ɣ, tumor necrosis factor-α, interleukin (IL)-15, IL-18, and IL-1β were upregulated in the liver, potentially contributing to liver inflammation and fibrosis progression. In contrast, the anti-inflammatory cytokine IL-4 was downregulated, possibly attributing to chronic inflammation in diabetes. Pathological immune responses via the TLR4/MyD88/NF-κB pathway and the IL-17/IL-23 axis were also linked to liver fibrosis in diabetes. In conclusion, this review highlights the putative pivotal role of immune cells in diabetes-related liver fibrosis progression through their regulation of cytokines and signaling pathways. Further research on diabetes and dysmetabolic liver pathology is needed to clarify immune cell localization in the liver and their interactions with resident cells promoting fibrosis. Targeting immune mechanisms may provide therapeutic strategies for managing liver fibrosis in diabetes.
Collapse
Affiliation(s)
- Wanying Du
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (W.D.); (E.S.); (S.M.T.)
| | - Elisha Siwan
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (W.D.); (E.S.); (S.M.T.)
| | - Stephen M. Twigg
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (W.D.); (E.S.); (S.M.T.)
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Danqing Min
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (W.D.); (E.S.); (S.M.T.)
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| |
Collapse
|
3
|
Deshmukh NJ, Kalshetti MS, Patil M, Nandanwar M, Sangle GV. Therapeutic Potential of Sotagliflozin in Animal Models of Non-alcoholic Fatty Liver Disease with and without Diabetes. Drug Res (Stuttg) 2025. [PMID: 40228542 DOI: 10.1055/a-2557-8927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Sotagliflozin, a dual SGLT1/2 inhibitor, enhances glucagon like peptide-1 (GLP-1) levels and GLP-1 receptor agonists are used to manage non-alcoholic fatty liver disease (NAFLD). Study investigates the effects of sotagliflozin on NAFLD, alone and combined with linagliptin, comparing outcomes in normoglycemic and hyperglycemic animal models.Obese fatty liver disease (FLD) model was induced by high-fat diet (HFD) feeding, while a diabetic non-alcoholic steatohepatitis (NASH) model was developed by administering a single dose of streptozotocin to neonatal mice, followed by HFD feeding post-weaning. At termination of the study, parameters including biochemical markers, inflammatory cytokines, hepatic lipid content, and histopathology were assessed.In NASH mice, sotagliflozin and linagliptin reduced hepatic triglycerides by 60% and 44%, respectively, and cholesterol by 46% and 49%. Their combination further decreased triglycerides by 68.5% and cholesterol by 83.9%. In FLD mice, sotagliflozin and linagliptin reduced triglycerides by 33% and 17%, respectively, and cholesterol by 46% and 21%. Combination treatment offered no benefit, reducing triglycerides by 38% and cholesterol by 27%. Both the treatments improved plasma fibroblast growth factor 21, hepatic interlukin-6, glucose tolerance, steatosis and mitigated fat pad weight, but their combination did not show additional benefit. However, combination treatment demonstrated added benefit in modulating NAFLD activity score, liver enzymes, glycogenated hepatic nuclei, plasma glucose and active GLP-1 levels.Study underscores sotagliflozin's potential to mitigate NAFLD and highlights the benefit of combining it with linagliptin in hyperglycemic NASH model, which showed limited efficacy in normoglycemic FLD mice.
Collapse
Affiliation(s)
- Nitin J Deshmukh
- D.S.T.S. Mandal's Collage of Pharmacy, Solapur, Maharashtra, India
- Wockhardt Research Centre, D4 MIDC, Chikalthana, Aurangabad, Maharashtra, India
| | - M S Kalshetti
- D.S.T.S. Mandal's Collage of Pharmacy, Solapur, Maharashtra, India
| | - Mohan Patil
- Wockhardt Research Centre, D4 MIDC, Chikalthana, Aurangabad, Maharashtra, India
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Manohar Nandanwar
- Wockhardt Research Centre, D4 MIDC, Chikalthana, Aurangabad, Maharashtra, India
| | - Ganesh V Sangle
- Wockhardt Research Centre, D4 MIDC, Chikalthana, Aurangabad, Maharashtra, India
- Kashiv BioSciences Private Limited, Ahmedabad, Gujarat
| |
Collapse
|
4
|
Liu Z, Peng H, Liu P, Duan F, Yang Y, Li P, Li Z, Wu J, Chang J, Shang D, Tian Q, Zhang J, Xie Y, Liu Z, An Y. Deciphering significances of autophagy in the development and metabolism of adipose tissue. Exp Cell Res 2025; 446:114478. [PMID: 39978716 DOI: 10.1016/j.yexcr.2025.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
The mechanisms of adipose tissue activation and inactivation have been a hot topic of research in the last decade, from which countermeasures have been attempted to be found against obesity as well as other lipid metabolism-related diseases, such as type 2 diabetes mellitus and non-alcoholic fatty liver disease. Autophagy has been shown to be closely related to the regulation of adipocyte activity, which is involved in the whole process including white adipocyte differentiation/maturation and brown or beige adipocyte generation/activation. Dysregulation of autophagy in adipose tissue has been demonstrated to be associated with obesity. On this basis, we summarize the pathways and mechanisms of autophagy involved in the regulation of lipid metabolism and present a review of its pathophysiological roles in lipid metabolism-related diseases, in the hope of providing ideas for the treatment of these diseases.
Collapse
Affiliation(s)
- Zitao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Haoyuan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengfei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Feiyi Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yutian Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengkun Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiaoyan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiayi Chang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Dandan Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Qiwen Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Jiawei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yucheng Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Zhenzhen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China; Henan Provincial Research Center of Engineering Technology for Nuclear Protein Medical Detection, Zhengzhou Health College, Zhengzhou, 450064, China.
| |
Collapse
|
5
|
Thompson SE, Roy A, Geberhiwot T, Gehmlich K, Steeds RP. Fabry Disease: Insights into Pathophysiology and Novel Therapeutic Strategies. Biomedicines 2025; 13:624. [PMID: 40149601 PMCID: PMC11940501 DOI: 10.3390/biomedicines13030624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Fabry disease (FD) is an X-linked lysosomal storage disorder characterized by deficiency of α-galactosidase A (α-GalA), leading to the accumulation of glycosphingolipids and multi-organ dysfunction, particularly affecting the cardiovascular and renal systems. Disease-modifying treatments such as enzyme replacement therapy (ERT) and oral chaperone therapy (OCT) have limited efficacy, particularly in advanced disease, prompting a need for innovative therapeutic approaches targeting underlying molecular mechanisms beyond glycosphingolipid storage alone. Recent insights into the pathophysiology of FD highlights chronic inflammation and mitochondrial, lysosomal, and endothelial dysfunction as key mediators of disease progression. Adjunctive therapies such as sodium-glucose cotransporter-2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-1) agonists, and mineralocorticoid receptor antagonists (MRAs) demonstrate significant cardiovascular and renal benefits in conditions including heart failure and chronic kidney disease. These drugs also modulate pathways involved in the pathophysiology of FD, such as autophagy, oxidative stress, and pro-inflammatory cytokine signaling. While theoretical foundations support their utility, dedicated trials are necessary to confirm efficacy in the FD-specific population. This narrative review highlights the importance of expanding therapeutic strategies in FD, advocating for a multi-faceted approach involving evidence-based adjunctive treatments to improve outcomes. Tailored research focusing on diverse FD phenotypes, including females and non-classical variants of disease, will be critical to advancing care and improving outcomes in this complex disorder.
Collapse
Affiliation(s)
- Sophie Elizabeth Thompson
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Department of Cardiology, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Ashwin Roy
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Department of Cardiology, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Tarekegn Geberhiwot
- Department of Diabetes, Endocrinology and Metabolism, University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
- Institute of Metabolism and System Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Katja Gehmlich
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX1 2JD, UK
| | - Richard Paul Steeds
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Department of Cardiology, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| |
Collapse
|
6
|
Liu M, Yao Y, Tan F, Wang J, Hu R, Du J, Jiang Y, Yuan X. Sodium-glucose co-transporter 2 (SGLT-2) inhibitors ameliorate renal ischemia-reperfusion injury (IRI) by modulating autophagic processes. Transl Res 2025; 277:27-38. [PMID: 39761911 DOI: 10.1016/j.trsl.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
Renal ischemia-reperfusion injury (IRI) is a common clinical condition that currently lacks effective treatment options. Inhibitors targeting the sodium-glucose co-transporter-2 (SGLT-2), recognized for their role in managing hyperglycemia, have demonstrated efficacy in enhancing the health outcomes for diabetic patients grappling with chronic kidney disease. Nevertheless, the precise impact of SGLT-2 inhibitors on renal ischemia-reperfusion injury (IRI) and the corresponding transcriptomic alterations remain to be elucidated. In our research, we developed a model of IRI using male C57BL/6 mice by clamping the unilateral renal artery and administering empagliflozin Transcriptomic alterations were analyzed using RNA sequencing (RNA-Seq), complemented by proteomic analysis to investigate the effects of empagliflozin. Histological assessments revealed increased renal inflammatory cell infiltration, widespread renal tubular injury, and elevated autophagosomes formation in the IRI group compared to controls. These pathological changes were significantly attenuated following empagliflozin treatment. Besides, renal function impairment can be alleviated in empagliflozin-treated group. RNA-Seq analysis identified lysosomal autophagy as a key biological process in IRI mice. Empagliflozin exerted a renoprotective effect by downregulating lysosome-associated membrane proteins, primarily LAMP1, LAMP2, and LAMP4 (CD68), through the PI3K-Akt, MAPK, and mTOR signaling pathways, thereby inhibiting autophagic processes. In conclusion, this study highlights enhanced inflammation and disrupted metabolism as hallmark transcriptomic signatures of renal. Furthermore, it demonstrates the renoprotective effects of empagliflozin in alleviating renal IRI by modulating autophagic processes.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yuanqing Yao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Fangyan Tan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Rong Hu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yonghong Jiang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
7
|
Li H, Hou Y, Xin W, Ding L, Yang Y, Zhang Y, Wu W, Wang Z, Ding W. The efficacy of sodium-glucose transporter 2 inhibitors in patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis. Pharmacol Res 2025; 213:107647. [PMID: 39929274 DOI: 10.1016/j.phrs.2025.107647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
The efficacy of sodium-glucose transporter 2 (SGLT-2) inhibitors for nonalcoholic fatty liver disease (NAFLD) is unclear. Therefore, we conducted a systematic review and meta-analysis to evaluate SGLT-2 inhibitors efficacy for NAFLD treatment. We systematically searched major electronic databases (PubMed, Cochrane Library, Web of Science, Embase) from inception until 11/2023, identifying randomized controlled trials (RCTs) of SGLT-2 inhibitors treatment for patients with NAFLD. The mean differences (MD or SMD) and 95 % confidence intervals (CIs) were calculated via random-effects models. Eleven articles (n = 805 patients with NAFLD) were included in this study. Of these, 408 participants received SGLT-2 inhibitors, while 397 participants were in the control group. SGLT-2 inhibitors significantly reduced liver enzyme levels, including aspartate alanine aminotransferase (ALT) (MD [95 % CI]; -9.31 U/L [-13.41, -5.21], p < 0.00001), aspartate aminotransferase (AST) (MD [95 % CI]; -6.06 U/L [-10.98, -1.15], p = 0.02), and gamma-glutamyltransferase (GGT) (MD [95 % CI]; -11.72 U/L [-15.65, -7.80], p < 0.00001). SGLT-2 inhibitors intervention was also associated with significant reductions in body weight (MD [95 % CI]; -2.72 kg [-3.49, -1.95], p < 0.00001) and BMI (MD [95 % CI]; -1.11 kg/m2 [-1.39, -0.82], p < 0.00001) and improvements in glycaemic indices, triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C). However, no significant changes in total cholesterol (TC) or low-density lipoprotein cholesterol (LDL-C) were observed. The meta-analysis revealed a beneficial effect of SGLT-2 inhibitors on liver functions and body weight, BMI, TG, HDL-C, and glucose homeostasis in patients with NAFLD, indicating that SGLT-2 inhibitors might be a clinical therapeutic strategy for these patients, especially individuals with concurrent type 2 diabetes mellitus (T2DM).
Collapse
Affiliation(s)
- Hongsheng Li
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877, Jingshi Rd, Jinan 250062, China; Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, 18877, Jingshi Rd, Jinan 250062, China
| | - Yanli Hou
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877, Jingshi Rd, Jinan 250062, China; Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, 18877, Jingshi Rd, Jinan 250062, China; Shandong Institute of Endocrine and Metabolic Diseases, 18877, Jingshi Rd, Jinan 250062, China
| | - Wenyong Xin
- Department of Retirement Affairs, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877, Jingshi Rd, Jinan 250062, China
| | - Lina Ding
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877, Jingshi Rd, Jinan 250062, China; Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, 18877, Jingshi Rd, Jinan 250062, China; Shandong Institute of Endocrine and Metabolic Diseases, 18877, Jingshi Rd, Jinan 250062, China
| | - Ying Yang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877, Jingshi Rd, Jinan 250062, China; Shandong Institute of Endocrine and Metabolic Diseases, 18877, Jingshi Rd, Jinan 250062, China
| | - Yikun Zhang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877, Jingshi Rd, Jinan 250062, China; Shandong Institute of Endocrine and Metabolic Diseases, 18877, Jingshi Rd, Jinan 250062, China
| | - Wenqi Wu
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877, Jingshi Rd, Jinan 250062, China; Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, 18877, Jingshi Rd, Jinan 250062, China
| | - Zhibin Wang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877, Jingshi Rd, Jinan 250062, China; Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, 18877, Jingshi Rd, Jinan 250062, China; Shandong Institute of Endocrine and Metabolic Diseases, 18877, Jingshi Rd, Jinan 250062, China.
| | - Wenyu Ding
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877, Jingshi Rd, Jinan 250062, China; Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, 18877, Jingshi Rd, Jinan 250062, China; Shandong Institute of Endocrine and Metabolic Diseases, 18877, Jingshi Rd, Jinan 250062, China.
| |
Collapse
|
8
|
Ridha-Salman H, Al-Zubaidy AA, Abbas AH, Hassan DM, Malik SA. The alleviative effects of canagliflozin on imiquimod-induced mouse model of psoriasis-like inflammation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2695-2715. [PMID: 39254877 DOI: 10.1007/s00210-024-03406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
Psoriasis is a life-long immune-mediated dermatosis with thickened, reddish, and flaky skin patches. Canagliflozin is a gliflozin antidiabetic with non-classical remarkable antioxidative, anti-inflammatory, anti-proliferative, and immune-modulating effects. The aim of this study is to examine the probable effects of topical canagliflozin on a mouse model of imiquimod-provoked psoriasis-like dermatitis. The study evaluated 20 Swiss white mice, sorted haphazardly into 4 groups of 5 animals each. Every mouse, with the exception of the control group, had imiquimod applied topically to their shaved backs for 7 days. The control group included healthy mice that were not given any treatment. Mice in the other three groups underwent topical treatment with vehicle (induction group), 0.05% clobetasol propionate ointment (clobetasol group), or 4% canagliflozin emulgel (canagliflozin 4% group) on exactly the same day as imiquimod cream was administered. Topical canagliflozin markedly lowered the intensity of imiquimod-provoked psoriasis eruptions, featuring redness, glossy-white scales, and acanthosis, while also correcting histopathological aberrations. Canagliflozin administration to imiquimod-exposed animals resulted in significantly decreased cutaneous concentrations of inflammatory mediators such as IL-8, IL-17, IL-23, and TNF-α, with raised levels of IL-10. Canagliflozin further lowered proliferative factors involving Ki-67 and PCNA, diminished oxidative indicators such as MDA and MPO, and augmented the activity of antioxidant markers, notably SOD and CAT. Canagliflozin might alleviate the imiquimod-induced animal model of psoriasis, probably thanks to its profound anti-inflammatory, antioxidant, antiangiogenic, and antiproliferative activities.
Collapse
Affiliation(s)
| | - Adeeb Ahmed Al-Zubaidy
- Department of Pharmacology, College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Alaa Hamza Abbas
- College of Pharmacy, Al-Mustaqbal University, Babylon, Hillah, 51001, Iraq
| | - Dhuha M Hassan
- Pedodontic, Orthodontic and Preventive Department, College of Dentistry, Babylon University, Babylon, Iraq
| | - Samir A Malik
- College of Pharmacy, Al-Mustaqbal University, Babylon, Hillah, 51001, Iraq
| |
Collapse
|
9
|
Sharma N, Liu W, Tsai XQE, Wang Z, Outtrim C, Tang A, Pieper MP, Reinhart GA, Huang Y. A novel soluble guanylate cyclase activator, avenciguat, in combination with empagliflozin, protects against renal and hepatic injury in diabetic db/db mice. Am J Physiol Endocrinol Metab 2025; 328:E362-E376. [PMID: 39907739 DOI: 10.1152/ajpendo.00254.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/16/2024] [Accepted: 11/15/2024] [Indexed: 02/06/2025]
Abstract
Diabetic complications are linked to oxidative stress, which hampers the cyclic guanosine monophosphate production by inhibiting nitric oxide/soluble guanylate cyclase (sGC) signaling. This study aimed to determine whether the administration of a novel sGC activator avenciguat alone or in combination with an SGLT2 inhibitor could slow the progression of renal and liver fibrosis in the type 2 diabetic and uninephrectomized db/db mouse model. Experiment groups included normal controls, untreated db/db mice terminated at 12 and 18 wk of age, and db/db mice treated with either one of two doses of avenciguat alone, empagliflozin (Empa) alone, or a combination of both from weeks 12 to 18 of age. Untreated db/db mice exhibited obesity, hyperglycemia, elevated levels of HbA1c and triglycerides (TG), and developed progressive albuminuria, glomerulosclerosis, fatty liver, and liver fibrosis between weeks 12 and 18 of age, accompanied by increased renal and liver production of fibronectin, type-IV collagen, laminin, and increased oxidative stress markers. Avenciguat had no effect on body weight but reduced both blood HbA1c and TG levels, whereas Empa reduced HbA1c but not TG levels as compared with untreated db/db. Both avenciguat and Empa alone effectively slowed the progression of diabetes-associated glomerulosclerosis and liver fibrosis. Importantly, avenciguat, especially at high doses in combination with Empa, further lowered these progression markers compared with baseline measurements. These results suggested that either avenciguat alone or in combination with Empa is therapeutic. Avenciguat in combination with Empa shows promise in halting the progression of diabetic complications.NEW & NOTEWORTHY Whether combining an sGC activator with an SGLT2 inhibitor could better control diabetes-associated oxidative stress and NO-cGMP signal deficiency has not yet been explored. Using the type 2 diabetic db/db mouse model, this study underscores the sGC activator avenciguat as a novel therapy for diabetic nephropathy and liver injury beyond sGLT2 inhibitors. It also highlights the need for further investigation into the combined effects of these two treatments in managing diabetic complications.
Collapse
Affiliation(s)
- Nisha Sharma
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health, Salt Lake City, Utah, United States
| | - Wenjin Liu
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health, Salt Lake City, Utah, United States
| | - Xiao-Qing E Tsai
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health, Salt Lake City, Utah, United States
| | - Zhou Wang
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health, Salt Lake City, Utah, United States
| | - Connor Outtrim
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health, Salt Lake City, Utah, United States
| | - Anna Tang
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health, Salt Lake City, Utah, United States
| | - Michael P Pieper
- Global Cardio-metabolic Diseases, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Glenn A Reinhart
- Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States
| | - Yufeng Huang
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health, Salt Lake City, Utah, United States
| |
Collapse
|
10
|
Yeo YH, Abdelmalek M, Khan S, Moylan CA, Rodriquez L, Villanueva A, Yang JD. Current and emerging strategies for the prevention of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2025; 22:173-190. [PMID: 39653784 DOI: 10.1038/s41575-024-01021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/07/2024] [Indexed: 01/05/2025]
Abstract
Liver cancer is the third leading cause of cancer-related deaths globally, with incident cases expected to rise from 905,700 in 2020 to 1.4 million by 2040. Hepatocellular carcinoma (HCC) accounts for about 80% of all primary liver cancers. Viral hepatitis and chronic excessive alcohol consumption are major risk factors for HCC, but metabolic dysfunction-associated steatotic liver disease is also becoming a dominant cause. The increasing numbers of cases of HCC and changes in risk factors highlight the urgent need for updated and targeted prevention strategies. Preventive interventions encompass strategies to decrease the burden of chronic liver diseases and their progression to HCC. These strategies include nutritional interventions and medications that have shown promise in preclinical models. Although prevailing approaches focus on treating chronic liver disease, leveraging a wider range of interventions represents a promising area to safeguard at-risk populations. In this Review, we explore existing evidence for preventive strategies by highlighting established and potential paths to reducing HCC risk effectively and safely, especially in individuals with chronic liver diseases. We categorize the preventive strategies by the mechanism of action, including anti-inflammatory, antihyperglycaemic, lipid-lowering, nutrition and dietary, antiviral, and antifibrotic pathways. For each category, we discuss the efficacy and safety information derived from mechanistic, translational, observational and clinical trial data, pinpointing knowledge gaps and directions for future research.
Collapse
Affiliation(s)
- Yee Hui Yeo
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Manal Abdelmalek
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Seema Khan
- Robert H. Lurie Comprehensive Cancer Center, Northwestern Memorial Hospital, Chicago, IL, USA
| | - Cynthia A Moylan
- Division of Gastroenterology, Duke University Health System, Durham, NC, USA
| | - Luz Rodriquez
- Gastrointestinal & Other Cancers Research Group, NCI, Rockville, MD, USA
| | - Augusto Villanueva
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Rolski F, Mączewski M. Cardiac Fibrosis: Mechanistic Discoveries Linked to SGLT2 Inhibitors. Pharmaceuticals (Basel) 2025; 18:313. [PMID: 40143092 PMCID: PMC11944955 DOI: 10.3390/ph18030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2is), commonly known as flozins, have garnered attention not only for their glucose-lowering effects in type 2 diabetes mellitus (T2DM) but also for their cardioprotective properties. This review examines the mechanisms underlying the anti-fibrotic effects of SGLT2is, with a focus on key clinical trials and preclinical models. SGLT2is, mainly empagliflozin and dapagliflozin, have demonstrated significant reductions in heart failure-related hospitalizations, cardiovascular death, and fibrosis markers, independent of their glucose-lowering effects. The cardioprotective benefits appear to stem from direct actions on cardiac tissues, modulation of inflammatory responses, and improvements in metabolic parameters. In animal models of heart failure, SGLT2is were demonstrated to reduce cardiac fibrosis through mechanisms involving AMPK activation, reduced oxidative stress, and inhibition of pro-fibrotic pathways, not only through the inhibition of SGLT2 present on cardiac cells but also by targeting several other molecular targets. These findings confirm their efficacy in the treatment of heart failure and align with evidence from human trials, supporting the potential involvement of multiple pathways in mediating cardiac fibrosis. These results also provide a promising basis for clinical trials specifically targeting pathways shared with SGLT2is.
Collapse
Affiliation(s)
| | - Michał Mączewski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Str., 01-813 Warsaw, Poland;
| |
Collapse
|
12
|
Rykova EY, Klimontov VV, Shmakova E, Korbut AI, Merkulova TI, Kzhyshkowska J. Anti-Inflammatory Effects of SGLT2 Inhibitors: Focus on Macrophages. Int J Mol Sci 2025; 26:1670. [PMID: 40004134 PMCID: PMC11854991 DOI: 10.3390/ijms26041670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/21/2025] Open
Abstract
A growing body of evidence indicates that nonglycemic effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors play an important role in the protective effects of these drugs in diabetes, chronic kidney disease, and heart failure. In recent years, the anti-inflammatory potential of SGLT2 inhibitors has been actively studied. This review summarizes results of clinical and experimental studies on the anti-inflammatory activity of SGLT2 inhibitors, with a special focus on their effects on macrophages, key drivers of metabolic inflammation. In patients with type 2 diabetes, therapy with SGLT2 inhibitors reduces levels of inflammatory mediators. In diabetic and non-diabetic animal models, SGLT2 inhibitors control low-grade inflammation by suppressing inflammatory activation of tissue macrophages, recruitment of monocytes from the bloodstream, and macrophage polarization towards the M1 phenotype. The molecular mechanisms of the effects of SGLT2 inhibitors on macrophages include an attenuation of inflammasome activity and inhibition of the TLR4/NF-κB pathway, as well as modulation of other signaling pathways (AMPK, PI3K/Akt, ERK 1/2-MAPK, and JAKs/STAT). The review discusses the state-of-the-art concepts and prospects of further investigations that are needed to obtain a deeper insight into the mechanisms underlying the effects of SGLT2 inhibitors on the molecular, cellular, and physiological levels.
Collapse
Affiliation(s)
- Elena Y. Rykova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia; (E.Y.R.); (V.V.K.); (E.S.); (A.I.K.); (T.I.M.)
| | - Vadim V. Klimontov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia; (E.Y.R.); (V.V.K.); (E.S.); (A.I.K.); (T.I.M.)
- Research Institute of Clinical and Experimental Lymphology, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), Timakov Str. 2, 630060 Novosibirsk, Russia
| | - Elena Shmakova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia; (E.Y.R.); (V.V.K.); (E.S.); (A.I.K.); (T.I.M.)
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia
| | - Anton I. Korbut
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia; (E.Y.R.); (V.V.K.); (E.S.); (A.I.K.); (T.I.M.)
- Research Institute of Clinical and Experimental Lymphology, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), Timakov Str. 2, 630060 Novosibirsk, Russia
| | - Tatyana I. Merkulova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia; (E.Y.R.); (V.V.K.); (E.S.); (A.I.K.); (T.I.M.)
| | - Julia Kzhyshkowska
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia; (E.Y.R.); (V.V.K.); (E.S.); (A.I.K.); (T.I.M.)
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
13
|
Geng W, Liao W, Cao X, Yang Y. Therapeutic Targets and Approaches to Manage Inflammation of NAFLD. Biomedicines 2025; 13:393. [PMID: 40002806 PMCID: PMC11853636 DOI: 10.3390/biomedicines13020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its advanced form, non-alcoholic steatohepatitis (NASH), are the leading causes of chronic liver disease globally. They are driven by complex mechanisms where inflammation plays a pivotal role in disease progression. Current therapies, including lifestyle changes and pharmacological agents, are limited in efficacy, particularly in addressing the advanced stages of the disease. Emerging approaches targeting inflammation, metabolic dysfunction, and fibrosis offer promising new directions, though challenges such as treatment complexity and heterogeneity persist. This review concludes the main therapeutic targets and approaches to manage inflammation currently and emphasizes the critical need for future drug development and combination therapy for NAFLD/NASH management.
Collapse
Affiliation(s)
- Wanying Geng
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China;
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Wanying Liao
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Xinyuan Cao
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Yingyun Yang
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| |
Collapse
|
14
|
Wang D, Liu R. The IL-12 family of cytokines: pathogenetic role in diabetic retinopathy and therapeutic approaches to correction. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:125-133. [PMID: 39120722 DOI: 10.1007/s00210-024-03360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
One vision-threatening side effect of systematic diabetes mellitus is diabetic retinopathy (DR). Recent studies have revealed that the development and progression of DR depend critically on inflammation resulting from diabetes. By attracting leukocytes to endothelium, the higher production of the inflammatory mediators induces degeneration of retinal capillaries, hence increasing vascular permeability and thrombosis probability. The leukocytes that are recruited eventually generate additional proinflammatory and proangiogenic substances, resulting in the increased infiltration of leukocytes in the retina. This process also leads to changes in the blood retinal barrier and the formation of new blood vessels, which helps to counteract the damage caused by the blockage of blood flow. IL-12 family members, IL-12, IL-23, IL-27, and IL-35, play a crucial role in regulating the responses of T helper (Th)1 and Th17 cell populations. The collected data from studies investigating the levels of IL-12 family members in the blood and eye tissues suggest that IL-12 is linked to DR, indicating that it may have a role in the development of DR as a sequential component of the immune response. This review specifically examines the possibility of using IL-12 family cytokines as a therapeutic approach for diabetes, taking into consideration their involvement in the development of DR.
Collapse
Affiliation(s)
- Dan Wang
- The Fifth Department of Geriatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Ruixia Liu
- The Fifth Department of Geriatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
15
|
Misceo D, Mocciaro G, D'Amore S, Vacca M. Diverting hepatic lipid fluxes with lifestyles revision and pharmacological interventions as a strategy to tackle steatotic liver disease (SLD) and hepatocellular carcinoma (HCC). Nutr Metab (Lond) 2024; 21:112. [PMID: 39716321 DOI: 10.1186/s12986-024-00871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024] Open
Abstract
Steatotic liver disease (SLD) and Hepatocellular Carcinoma (HCC) are characterised by a substantial rewiring of lipid fluxes caused by systemic metabolic unbalances and/or disrupted intracellular metabolic pathways. SLD is a direct consequence of the interaction between genetic predisposition and a chronic positive energy balance affecting whole-body energy homeostasis and the function of metabolically-competent organs. In this review, we discuss how the impairment of the cross-talk between peripheral organs and the liver stalls glucose and lipid metabolism, leading to unbalances in hepatic lipid fluxes that promote hepatic fat accumulation. We also describe how prolonged metabolic stress builds up toxic lipid species in the liver, and how lipotoxicity and metabolic disturbances drive disease progression by promoting a chronic activation of wound healing, leading to fibrosis and HCC. Last, we provide a critical overview of current state of the art (pre-clinical and clinical evidence) regarding mechanisms of action and therapeutic efficacy of candidate SLD treatment options, and their potential to interfere with SLD/HCC pathophysiology by diverting lipids away from the liver therefore improving metabolic health.
Collapse
Affiliation(s)
- Davide Misceo
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Gabriele Mocciaro
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK
| | - Simona D'Amore
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Clinica Medica "G. Baccelli", "Aldo Moro" University of Bari, 70124, Bari, Italy.
| | - Michele Vacca
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy.
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK.
| |
Collapse
|
16
|
Lin XF, Cui XN, Yang J, Jiang YF, Wei TJ, Xia L, Liao XY, Li F, Wang DD, Li J, Wu Q, Yin DS, Le YY, Yang K, Wei R, Hong TP. SGLT2 inhibitors ameliorate NAFLD in mice via downregulating PFKFB3, suppressing glycolysis and modulating macrophage polarization. Acta Pharmacol Sin 2024; 45:2579-2597. [PMID: 39294445 PMCID: PMC11579449 DOI: 10.1038/s41401-024-01389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/30/2024] [Indexed: 09/20/2024]
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitor (SGLT2i) is a novel class of anti-diabetic drug, which has displayed a promising benefit for non-alcoholic fatty liver disease (NAFLD). In this study, we investigated the protective effects of SGLT2i against NAFLD and the underlying mechanisms. The db/db mice and western diet-induced NAFLD mice were treated with dapagliflozin (1 mg·kg-1·d-1, i.g.) or canagliflozin (10 mg·kg-1·d-1, i.g.) for 8 weeks. We showed that the SGLT2i significantly improved NAFLD-associated metabolic indexes, and attenuated hepatic steatosis and fibrosis. Notably, SGLT2i reduced the levels of pro-inflammatory cytokines and chemokines, downregulated M1 macrophage marker expression and upregulated M2 macrophage marker expression in liver tissues. In cultured mouse bone marrow-derived macrophages and human peripheral blood mononuclear cell-derived macrophages, the SGLT2i (10, 20 and 40 μmol/L) significantly promoted macrophage polarization from M1 to M2 phenotype. RNA sequencing, Seahorse analysis and liquid chromatography-tandem mass spectrometry analysis revealed that the SGLT2i suppressed glycolysis and triggered metabolic reprogramming in macrophages. By using genetic manipulation and pharmacological inhibition, we identified that the SGLT2i targeted PFKFB3, a key enzyme of glycolysis, to modulate the macrophage polarization of M1 to M2 phenotype. Using a co-culture of macrophages with hepatocytes, we demonstrated that the SGLT2i inhibited lipogenesis in hepatocytes via crosstalk with macrophages. In conclusion, this study highlights a potential therapeutic application for repurposing SGLT2i and identifying a potential target PFKFB3 for NAFLD treatment.
Collapse
Affiliation(s)
- Xia-Fang Lin
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Xiao-Na Cui
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, 100191, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Ya-Fei Jiang
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Tian-Jiao Wei
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Li Xia
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Xin-Yue Liao
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Fei Li
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Dan-Dan Wang
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Jian Li
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Qi Wu
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - De-Shan Yin
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Yun-Yi Le
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Kun Yang
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Rui Wei
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China.
| | - Tian-Pei Hong
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
17
|
Long J, Ren Z, Duan Y, Tao W, Li X, Li S, Li K, Huang Q, Chen J, Yang M, Li Y, Luo X, Liu D. Empagliflozin rescues lifespan and liver senescence in naturally aged mice. GeroScience 2024; 46:4969-4986. [PMID: 38922380 PMCID: PMC11336130 DOI: 10.1007/s11357-024-01250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Empagliflozin is currently known to decrease blood glucose levels, delay renal failure, and reduce the risk of cardiovascular death and all-cause mortality in patients with type 2 diabetes with cardiovascular disease. However, the effects of empagliflozin on the lifespan and health of naturally aged organisms are unclear. This study was designed to investigate the impacts and potential mechanisms of empagliflozin on lifespan and liver senescence in naturally aged mice. Our study revealed that empagliflozin improved survival and health in naturally aged mice. Empagliflozin extended the median survival of male mice by 5.9%. Meanwhile, empagliflozin improved learning memory and motor balance, decreased body weight, and downregulated the hepatic protein expression of P21, P16, α-SMA, and COL1A1. Empagliflozin modulates the structure of the intestinal flora, increasing the relative abundance of Lachnospiraceae, Ruminococcaceae, Lactobacillus, Blautia, and Muribaculaceae and decreasing the relative abundance of Erysipelotrichaceae, Turicibacter, and Dubosiella in naturally aged mice. Further exploration discovered that empagliflozin increased the concentration of SCFAs, decreased the levels of the inflammatory factors TNF-α, IL-6, and CXCL9, and regulated the PI3K/AKT/P21 and AMPK/SIRT1/NF-κB pathways, which may represent the underlying mechanisms involved in these beneficial hepatic effects. Taken together, the above results indicated that empagliflozin intervention could be considered a potential strategy for extending lifespan and slowing liver senescence in naturally aged mice.
Collapse
Affiliation(s)
- Jiangchuan Long
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Ziyu Ren
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Yaqian Duan
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Wei Tao
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400010, China
| | - Xi Li
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China
| | - Shengbing Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Ke Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Qixuan Huang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Jie Chen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Mengliu Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Yang Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Xie Luo
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Dongfang Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
- Chongqing Clinical Research Center for Geriatrics and Gerontology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
18
|
Yadav M, Verma S, Tiwari P, Mugale MN. Unraveling the mechanisms of hepatogenous diabetes and its therapeutic perspectives. Life Sci 2024; 353:122934. [PMID: 39089644 DOI: 10.1016/j.lfs.2024.122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
The review focused mainly on the pathogenesis of hepatogenous diabetes (HD) in liver cirrhosis (LC). This review reveals parallels between the mechanisms of metabolic dysfunction observed in LC and type II diabetes (T2DM), suggesting a shared pathway leading to HD. It underscores the role of insulin in HD pathogenesis, highlighting key factors such as insulin signaling, glucose metabolism, insulin resistance (IR), and the influence of adipocytes. Furthermore, the impact of adipose tissue accumulation, fatty acid metabolism, and pro-inflammatory cytokines like Tumor necrosis factor-α (TNF-α) on IR are discussed in the context of HD. Altered signaling pathways, disruptions in the endocrine system, liver inflammation, changes in muscle mass and composition, and modifications to the gut microbiota collectively contribute to the complex interplay linking cirrhosis and HD. This study highlights how important it is to identify and treat this complex condition in cirrhotic patients by thoroughly analyzing the link between cirrhosis, IR, and HD. It also emphasizes the vitality of targeted interventions. Cellular and molecular investigations into IR have revealed potential therapeutic targets for managing and preventing HD.
Collapse
Affiliation(s)
- Manisha Yadav
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Smriti Verma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Purnima Tiwari
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
19
|
Satyam SM, Bairy LK, Rehman A, Farook M, Khan S, Nair AA, Binu NN, Yehya M, Khan MM. Dapagliflozin: A Promising Strategy to Combat Cisplatin-Induced Hepatotoxicity in Wistar Rats. BIOLOGY 2024; 13:672. [PMID: 39336099 PMCID: PMC11428795 DOI: 10.3390/biology13090672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Recognizing the challenges posed by chemotherapy, specifically the hepatotoxic effects of drugs like cisplatin, this study aimed to examine the hepatoprotective potential of dapagliflozin to mitigate cisplatin-induced hepatotoxicity in a rat model. This study focused on repurposing drugs such as dapagliflozin and natural agents like silymarin as potential interventions to address cisplatin-induced hepatotoxicity. Thirty adult female Wistar rats were distributed into five groups and treated with cisplatin alone, silymarin, dapagliflozin, or a combination of dapagliflozin and silymarin accordingly for 45 days. Body weight, fasting blood glucose levels, liver function tests, and histopathological analysis were conducted to evaluate the hepatoprotective effects. Cisplatin-induced hepatotoxicity significantly (p < 0.05) increased the serum levels of ALT, AST, TB, and reduced the TP and albumin levels. Dapagliflozin administration led to significant reductions in ALT, AST, TB, and increased albumin levels. Silymarin demonstrated comparable effects. Combining dapagliflozin and silymarin showed synergistic effects, further reducing the liver enzymes and improving albumin levels. Histopathological examination supported these findings, revealing the restoration of liver structure with dapagliflozin and silymarin treatment. Dapagliflozin and silymarin exhibited substantial hepatoprotective benefits against cisplatin-induced hepatotoxicity in rats. The combination therapy demonstrated synergistic effects, highlighting a potential therapeutic approach for mitigating chemotherapy-induced liver damage. Further research into molecular mechanisms and clinical translation is warranted, offering hope for improved clinical outcomes in cancer patients undergoing cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Shakta Mani Satyam
- Faculty of Pharmacology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Laxminarayana Kurady Bairy
- Faculty of Pharmacology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Abdul Rehman
- Faculty of Pathology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Mohamed Farook
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Sofiya Khan
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Anuradha Asokan Nair
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Nirmal Nachiketh Binu
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Mohamed Yehya
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Mohammed Moin Khan
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| |
Collapse
|
20
|
Ferdous SE, Ferrell JM. Pathophysiological Relationship between Type 2 Diabetes Mellitus and Metabolic Dysfunction-Associated Steatotic Liver Disease: Novel Therapeutic Approaches. Int J Mol Sci 2024; 25:8731. [PMID: 39201418 PMCID: PMC11354927 DOI: 10.3390/ijms25168731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM), often featuring hyperglycemia or insulin resistance, is a global health concern that is increasing in prevalence in the United States and worldwide. A common complication is metabolic dysfunction-associated steatotic liver disease (MASLD), the hepatic manifestation of metabolic syndrome that is also rapidly increasing in prevalence. The majority of patients with T2DM will experience MASLD, and likewise, individuals with MASLD are at an increased risk for developing T2DM. These two disorders may act synergistically, in part due to increased lipotoxicity and inflammation within the liver, among other causes. However, the pathophysiological mechanisms by which this occurs are unclear, as is how the improvement of one disorder can ameliorate the other. This review aims to discuss the pathogenic interactions between T2D and MASLD, and will highlight novel therapeutic targets and ongoing clinical trials for the treatment of these diseases.
Collapse
Affiliation(s)
- Shifat-E Ferdous
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Jessica M. Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
21
|
Shen Q, Yang M, Wang S, Chen X, Chen S, Zhang R, Xiong Z, Leng Y. The pivotal role of dysregulated autophagy in the progression of non-alcoholic fatty liver disease. Front Endocrinol (Lausanne) 2024; 15:1374644. [PMID: 39175576 PMCID: PMC11338765 DOI: 10.3389/fendo.2024.1374644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinicopathologic syndrome characterized by excessive fat deposition in hepatocytes and a major cause of end-stage liver disease. Autophagy is a metabolic pathway responsible for degrading cytoplasmic products and damaged organelles, playing a pivotal role in maintaining the homeostasis and functionality of hepatocytes. Recent studies have shown that pharmacological intervention to activate or restore autophagy provides benefits for liver function recovery by promoting the clearance of lipid droplets (LDs) in hepatocytes, decreasing the production of pro-inflammatory factors, and inhibiting activated hepatic stellate cells (HSCs), thus improving liver fibrosis and slowing down the progression of NAFLD. This article summarizes the physiological process of autophagy, elucidates the close relationship between NAFLD and autophagy, and discusses the effects of drugs on autophagy and signaling pathways from the perspectives of hepatocytes, kupffer cells (KCs), and HSCs to provide assistance in the clinical management of NAFLD.
Collapse
Affiliation(s)
- Qiaohui Shen
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ming Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Song Wang
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Xingyu Chen
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Sulan Chen
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Rui Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhuang Xiong
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yan Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
22
|
Duan HY, Barajas-Martinez H, Antzelevitch C, Hu D. The potential anti-arrhythmic effect of SGLT2 inhibitors. Cardiovasc Diabetol 2024; 23:252. [PMID: 39010053 PMCID: PMC11251349 DOI: 10.1186/s12933-024-02312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/16/2024] [Indexed: 07/17/2024] Open
Abstract
Sodium-glucose cotransporter type 2 inhibitors (SGLT2i) were initially recommended as oral anti-diabetic drugs to treat type 2 diabetes (T2D), by inhibiting SGLT2 in proximal tubule and reduce renal reabsorption of sodium and glucose. While many clinical trials demonstrated the tremendous potential of SGLT2i for cardiovascular diseases. 2022 AHA/ACC/HFSA guideline first emphasized that SGLT2i were the only drug class that can cover the entire management of heart failure (HF) from prevention to treatment. Subsequently, the antiarrhythmic properties of SGLT2i have also attracted attention. Although there are currently no prospective studies specifically on the anti-arrhythmic effects of SGLT2i. We provide clues from clinical and fundamental researches to identify its antiarrhythmic effects, reviewing the evidences and mechanism for the SGLT2i antiarrhythmic effects and establishing a novel paradigm involving intracellular sodium, metabolism and autophagy to investigate the potential mechanisms of SGLT2i in mitigating arrhythmias.
Collapse
Affiliation(s)
- Hong-Yi Duan
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, Hubei, China
| | - Hector Barajas-Martinez
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnewood, PA, 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, 19107, USA
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnewood, PA, 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, 19107, USA
| | - Dan Hu
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China.
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, Hubei, China.
| |
Collapse
|
23
|
Huang D, Wu Z, Wu Z, Li N, Hao L, Li K, Zeng J, Qiu B, Zhang S, Yan J. Enhanced Antipediatric Sarcoma Effect of Everolimus with Secukinumab by Targeting IL17A. Mol Cancer Ther 2024; 23:721-732. [PMID: 38295302 DOI: 10.1158/1535-7163.mct-23-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/02/2023] [Accepted: 01/25/2024] [Indexed: 02/02/2024]
Abstract
In this study, we explored the therapeutic potential of everolimus, an mTOR inhibitor, in a patient-derived xenograft (PDX) of rhabdomyosarcoma, the most prevalent malignant pediatric sarcoma. In addition, rhabdoid tumor cell line A-204 and Ewings sarcoma cell line A-673 were cultured to assess the in vitro effect of everolimus. Furthermore, the cell-derived xenograft (CDX) of A-673 was established and treated with everolimus in vivo. IHC and Western blotting were performed to detect the expressions of pertinent proteins. Results showed that everolimus intervention had limited inhibitory effect on PDX tumor growth compared with cyclophosphamide. Nevertheless, everolimus treatment significantly influenced the phosphorylation levels of S6 kinase beta 1 (S6K1) and eIF4E-binding protein 1 (p-4E-BP1), resulting in the inhibition of angiogenesis in vitro and in vivo. Interestingly, everolimus led to an upregulation in the level of IL17A in sarcoma cells. Notably, when secukinumab, a mAb of IL17A, was combined with everolimus, it synergistically enhanced the inhibitory effect of everolimus on sarcoma cell proliferation in vitro and on the growth of PDX or CDX xenograft tumors in vivo. Importantly, this combination therapy did not affect the mTOR signaling. These results indicate that everolimus exerts an antipediatric sarcoma effect by inhibiting mTOR signal. However, everolimus induces sarcoma cells to produce IL17A, which promotes tumor cell survival and counteracts its antipediatric sarcoma effect. The combination of secukinumab effectively eliminates the effects of IL17A, thereby improving the therapeutic efficacy of everolimus in the context of pediatric sarcomas.
Collapse
Affiliation(s)
- Dan Huang
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhipeng Wu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhengyi Wu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Nuoya Li
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Liang Hao
- Department of Orthopaedics, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Kuangfan Li
- Department of General Surgery, The Affiliated Children's Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Junquan Zeng
- Department of Oncology, The Affiliated Hospital of Jinggangshan University, Ji'an, Jiangxi Province, China
| | - Bingbing Qiu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Shouhua Zhang
- Department of General Surgery, The Affiliated Children's Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Jinlong Yan
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
24
|
Alsereidi FR, Khashim Z, Marzook H, Gupta A, Al-Rawi AM, Ramadan MM, Saleh MA. Targeting inflammatory signaling pathways with SGLT2 inhibitors: Insights into cardiovascular health and cardiac cell improvement. Curr Probl Cardiol 2024; 49:102524. [PMID: 38492622 DOI: 10.1016/j.cpcardiol.2024.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have attracted significant attention for their broader therapeutic impact beyond simply controlling blood sugar levels, particularly in their ability to influence inflammatory pathways. This review delves into the anti-inflammatory properties of SGLT2 inhibitors, with a specific focus on canagliflozin, empagliflozin, and dapagliflozin. One of the key mechanisms through which SGLT2 inhibitors exert their anti-inflammatory effects is by activating AMP-activated protein kinase (AMPK), a crucial regulator of both cellular energy balance and inflammation. Activation of AMPK by these inhibitors leads to the suppression of pro-inflammatory pathways and a decrease in inflammatory mediators. Notably, SGLT2 inhibitors have demonstrated the ability to inhibit the release of cytokines in an AMPK-dependent manner, underscoring their direct influence on inflammatory signaling. Beyond AMPK activation, SGLT2 inhibitors also modulate several other inflammatory pathways, including the NLRP3 inflammasome, expression of Toll-like receptor 4 (TLR-4), and activation of NF-κB (Nuclear factor kappa B). This multifaceted approach contributes to their efficacy in reducing inflammation and managing associated complications in conditions such as diabetes and cardiovascular disorders. Several human and animal studies provide support for the anti-inflammatory effects of SGLT2 inhibitors, demonstrating protective effects on various cardiac cells. Additionally, these inhibitors exhibit direct anti-inflammatory effects by modulating immune cells. Overall, SGLT2 inhibitors emerge as promising therapeutic agents for targeting inflammation in a range of pathological conditions. Further research, particularly focusing on the molecular-level pathways of inflammation, is necessary to fully understand their mechanisms of action and optimize their therapeutic potential in inflammatory diseases.
Collapse
Affiliation(s)
- Fatmah R Alsereidi
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Zenith Khashim
- Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, Rochester, MN, United States
| | - Hezlin Marzook
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Anamika Gupta
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmed M Al-Rawi
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mahmoud M Ramadan
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Cardiology, Faculty of Medicine, Mansoura University, 35516 Egypt
| | - Mohamed A Saleh
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt.
| |
Collapse
|
25
|
Mashayekhi M, Safa BI, Gonzalez MSC, Kim SF, Echouffo-Tcheugui JB. Systemic and organ-specific anti-inflammatory effects of sodium-glucose cotransporter-2 inhibitors. Trends Endocrinol Metab 2024; 35:425-438. [PMID: 38423898 PMCID: PMC11096060 DOI: 10.1016/j.tem.2024.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Inflammation plays an essential role and is a common feature in the pathogenesis of many chronic diseases. The exact mechanisms through which sodium-glucose cotransporter-2 (SGLT2) inhibitors achieve their much-acclaimed clinical benefits largely remain unknown. In this review, we detail the systemic and tissue- or organ-specific anti-inflammatory effects of SGLT2 inhibitors using evidence from animal and human studies. We discuss the potential pathways through which SGLT2 inhibitors exert their anti-inflammatory effects, including oxidative stress, mitochondrial, and inflammasome pathways. Finally, we highlight the need for further investigation of the extent of the contribution of the anti-inflammatory effects of SGLT2 inhibition to improvements in cardiometabolic and renal outcomes in clinical studies.
Collapse
Affiliation(s)
- Mona Mashayekhi
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, TN, USA
| | - Bilgunay Ilkin Safa
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, TN, USA
| | - Matthew S C Gonzalez
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, TN, USA
| | - Sangwon F Kim
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baltimore, MD, USA
| | - Justin B Echouffo-Tcheugui
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baltimore, MD, USA.
| |
Collapse
|
26
|
Liu Z, Hua W, Jin S, Wang Y, Pang Y, Wang B, Zhao N, Song Y, Qi J. Canagliflozin protects against hyperglycemia-induced cerebrovascular injury by preventing blood-brain barrier (BBB) disruption via AMPK/Sp1/adenosine A2A receptor. Eur J Pharmacol 2024; 968:176381. [PMID: 38341077 DOI: 10.1016/j.ejphar.2024.176381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Diabetes mellitus causes brain microvascular endothelial cell (MEC) damage, inducing dysfunctional angiogenic response and disruption of the blood-brain barrier (BBB). Canagliflozin is a revolutionary hypoglycemic drug that exerts neurologic and/or vascular-protective effects beyond glycemic control; however, its underlying mechanism remains unclear. In the present study, we hypothesize that canagliflozin ameliorates BBB permeability by preventing diabetes-induced brain MEC damage. Mice with high-fat diet/streptozotocin-induced diabetes received canagliflozin for 8 weeks. We assessed vascular integrity by measuring cerebrovascular neovascularization indices. The expression of specificity protein 1 (Sp1), as well as tight junction proteins (TJs), phosphorylated AMP-activated protein kinase (p-AMPK), and adenosine A2A receptors was examined. Mouse brain MECs were grown in high glucose (30 mM) to mimic diabetic conditions. They were treated with/without canagliflozin and assessed for migration and angiogenic ability. We also performed validation studies using AMPK activator (AICAR), inhibitor (Compound C), Sp1 small interfering RNA (siRNA), and adenosine A2A receptor siRNA. We observed that cerebral pathological neovascularization indices were significantly normalized in mice treated with canagliflozin. Increased Sp1 and adenosine A2A receptor expression and decreased p-AMPK and TJ expression were observed under diabetic conditions. Canagliflozin or AICAR treatment alleviated these changes. However, this alleviation effect of canagliflozin was diminished again after Compound C treatment. Either Sp1 siRNA or adenosine A2A receptor siRNA could increase the expression of TJs. Luciferase reporter assay confirmed that Sp1 could bind to the adenosine A2A receptor gene promoter. Our study identifies the AMPK/Sp1/adenosine A2A receptor pathway as a treatment target for diabetes-induced cerebrovascular injury.
Collapse
Affiliation(s)
- Zhiyi Liu
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Wei Hua
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Sinan Jin
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Yueying Wang
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Yuxin Pang
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Benshuai Wang
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Nan Zhao
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Yuejia Song
- Department of Endocrinology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China.
| | - Jiping Qi
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China.
| |
Collapse
|
27
|
Huang C, Qian J, Liu Y, Zhang L, Yang Y. Empagliflozin attenuates liver fibrosis in high-fat diet/streptozotocin-induced mice by modulating gut microbiota. Clin Exp Pharmacol Physiol 2024; 51:e13842. [PMID: 38302074 DOI: 10.1111/1440-1681.13842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
The effects of SGLT2 inhibitors on hepatic fibrosis in diabetes remain unclear. This study aimed to investigate the effects of empagliflozin on liver fibrosis in high-fat diet/streptozotocin-induced mice and the correlation with gut microbiota. After the application of empagliflozin for 6 weeks, we performed oral glucose tolerance and intraperitoneal insulin tolerance tests to assess glucose tolerance and insulin resistance, and stained liver sections to evaluate histochemical and hepatic pathological markers of liver fibrosis. Moreover, 16S rRNA amplicon sequencing was performed on stool samples to explore changes in the composition of intestinal bacteria. We finally analysed the correlation between gut microbiome and liver fibrosis scores or indicators of glucose metabolism. The results showed that empagliflozin intervention improved glucose metabolism and liver function with reduced liver fibrosis, which might be related to changes in intestinal microbiota. In addition, the abundance of intestinal probiotic Lactobacillus increased, while Ruminococcus and Adlercreutzia decreased after empagliflozin treatment, and correlation analysis showed that the changes in microbiota were positively correlated with liver fibrosis and glucose metabolism. Overall, considering the contribution of the gut microbiota in metabolism, empagliflozin might have improved the beneficial balance of intestinal bacteria composition. The present study provides evidence and indicates the involvement of the gut-liver axis by SGLT2 inhibitors in T2DM with liver fibrosis.
Collapse
Affiliation(s)
- Chuxin Huang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiali Qian
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Liu
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Zhang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yehong Yang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Xu H, Fu J, Tu Q, Shuai Q, Chen Y, Wu F, Cao Z. The SGLT2 inhibitor empagliflozin attenuates atherosclerosis progression by inducing autophagy. J Physiol Biochem 2024; 80:27-39. [PMID: 37792168 DOI: 10.1007/s13105-023-00974-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/10/2023] [Indexed: 10/05/2023]
Abstract
Cardiovascular disease due to atherosclerosis is one of the leading causes of death worldwide; however, the underlying mechanism has yet to be defined. The sodium-dependent glucose transporter 2 inhibitor (SGLT2i) empagliflozin is a new type of hypoglycemic drug. Recent studies have shown that empagliflozin not only reduces high glucose levels but also exerts cardiovascular-protective effects and slows the process of atherosclerosis. The purpose of this study was to elucidate the mechanism by which empagliflozin ameliorates atherosclerosis. Male apolipoprotein E-deficient (ApoE-/-) mice were fed a high-fat Western diet to establish an atherosclerosis model. The area and size of atherosclerotic lesions in ApoE-/- mice were then assessed by performing hematoxylin-eosin (HE) staining after empagliflozin treatment. Concurrently, oxidized low-density lipoprotein (oxLDL) was used to mimic atherosclerosis in three different types of cells. Then, following empagliflozin treatment of macrophage cells (RAW264.7), human aortic smooth muscle cells (HASMCs), and human umbilical vein endothelial cells (HUVECs), western blotting was applied to measure the levels of autophagy-related proteins and proinflammatory cytokines, and green fluorescent protein (GFP)-light chain 3 (LC3) puncta were detected using confocal microscopy to confirm autophagosome formation. Oil Red O staining was performed to detect the foaming of macrophages and HASMCs, and flow cytometry was used for the cell cycle analysis. 5-ethynyl-2'-deoxyuridine (EdU), cell counting kit-8 (CCK-8), and scratch assays were also performed to examine the proliferation and migration of HASMCs. Empagliflozin suppressed the progression of atherosclerotic lesions in ApoE-/- mice. Empagliflozin also induced autophagy in RAW246.7 cells, HASMCs, and HUVECs via the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, and it significantly increased the levels of the Beclin1 protein, the LC3B-II/I ratio, and p-AMPK protein. In addition, empagliflozin decreased the expression of P62 and the protein levels of inflammatory cytokines, and it inhibited the foaming of RAW246.7 cells and HASMCs, as well as the expression of inflammatory factors by inducing autophagy. Empagliflozin activated autophagy through the AMPK signaling pathway to delay the progression of atherosclerosis. Furthermore, the results of flow cytometry, EdU assays, CCK-8 cell viability assays, and scratch assays indicated that empagliflozin blocked HASMCs proliferation and migration. Empagliflozin activates autophagy through the AMPK signaling pathway to delay the evolution of atherosclerosis, indicating that it may represent a new and effective drug for the clinical treatment of atherosclerosis.
Collapse
Affiliation(s)
- Hualin Xu
- Postgraduate Training Basement of Jinzhou Medical University, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Jie Fu
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Qiang Tu
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Qingyun Shuai
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yizhi Chen
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Fuyun Wu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Zheng Cao
- Postgraduate Training Basement of Jinzhou Medical University, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
29
|
Zhang SX, Hui DC, Sun MY. Progress in research of type 2 diabetes with nonalcoholic fatty liver in traditional Chinese and Western medicine. Shijie Huaren Xiaohua Zazhi 2024; 32:16-22. [DOI: 10.11569/wcjd.v32.i1.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/24/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
By analyzing the recent relevant literature on type 2 diabetes with nonalcoholic fatty liver disease, this paper summarizes its etiology, pathogenesis, syndrome differentiation and treatment, clinical treatment, and other aspects from the perspective of traditional Chinese medicine (TCM) and Western medicine. There has been some progress in the treatment of this disease in both TCM and Western medicine, but further in-depth study is required to explore its pathogenesis. Moreover, the etiology, pathogenesis, and syndrome differentiation of this disease in TCM are not yet unified, and large-scale, multicenter, and prospective clinical research is insufficient. There is also a lack of research on the action and targets of TCM in this disease.
Collapse
Affiliation(s)
- Shun-Xiao Zhang
- Department of Endocrinology, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 201999, China
| | - Deng-Cheng Hui
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ming-Yu Sun
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
30
|
Mai Y, Meng L, Deng G, Qin Y. The Role of Type 2 Diabetes Mellitus-Related Risk Factors and Drugs in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:159-171. [PMID: 38268569 PMCID: PMC10806369 DOI: 10.2147/jhc.s441672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
With changes in modern lifestyles, type 2 diabetes mellitus (T2DM) has become a global epidemic metabolic disease, and hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. T2DM is a complex metabolic disorder and has been considered an independent risk factor for HCC. Growing evidence supports that T2DM-related risk factors facilitate hepatocarcinogenesis via abundant mechanisms. With the wide implementation of microbiomics, transcriptomics, and immunotherapy, the understanding of the complex mechanisms of intestinal flora and immune cell subsets have advanced tremendously in T2DM-related HCC, uncovering new findings in T2DM-related HCC patients. In addition, reports have indicated the different effects of anti-DM drugs on the progression of HCC. In this review, we summarize the effects of major T2DM-related risk factors (including hyperglycemia, hyperinsulinemia, insulin, chronic inflammation, obesity, nonalcoholic fatty liver disease, gut microbiota and immunomodulation), and anti-DM drugs on the carcinogensis and progression of HCC, as well as their potential molecular mechanisms. In addition, other factors (miRNAs, genes, and lifestyle) related to T2DM-related HCC are discussed. We propose a refined concept by which T2DM-related risk factors and anti-DM drugs contribute to HCC and discuss research directions prompted by such evidence worth pursuing in the coming years. Finally, we put forward novel therapeutic approaches to improve the prognosis of T2DM-related HCC, including exploiting novel diagnostic biomarkers, combination therapy with immunocheckpoint inhibitors, and enhancement of the standardized management of T2DM patients.
Collapse
Affiliation(s)
- Yuhua Mai
- Department of Endocrinology, The First Affiliated Hospital of GuangXi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, People’s Republic of China
| | - Liheng Meng
- Department of Endocrinology, The First Affiliated Hospital of GuangXi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Ganlu Deng
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, People’s Republic of China
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Yingfen Qin
- Department of Endocrinology, The First Affiliated Hospital of GuangXi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|
31
|
Savage P, Dixon L, Grieve D, Watson C. SGLT2 Inhibition in Heart Failure: Clues to Cardiac Effects? Cardiol Rev 2024:00045415-990000000-00189. [PMID: 38189526 DOI: 10.1097/crd.0000000000000637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Following the publication of several landmark clinical trials such as dapagliflozin in patients with heart failure and reduced ejection fraction, dapagliflozin evaluation to improve the lives of patients with preserved ejection fraction heart failure, and empagliflozin outcome trial in patients with chronic heart failure with preserved ejection fraction, sodium-glucose cotransport 2 inhibitors have been rapidly incorporated as a guideline-directed therapy in the treatment of heart failure. Moreover, their benefits appear to extend across the spectrum of left ventricular dysfunction which in some respects, can be seen as the holy grail of heart failure pharmacotherapy. Despite its plethora of proven cardioprotective benefits, the mechanisms by which it exerts these effects remain poorly understood, however, it is clear that these extend beyond that of promotion of glycosuria and natriuresis. Several hypotheses have emerged over the years including modification of cardiovascular risk profile via weight reduction, improved glucose homeostasis, blood pressure control, and natriuretic effect; however, these mechanisms do not fully explain the potent effects of the drug demonstrated in large-scale randomized trials. Other mechanisms may be at play, specifically the down-regulation of inflammatory pathways, improved myocardial sodium homeostasis, modulation of profibrotic pathways, and activation of nutrient deprivation signaling pathways promoting autophagic flux. This review seeks to summarize the cardioprotective benefits demonstrated in major clinical trials and provide a succinct review of the current theories of mechanisms of action, based on the most recent evidence derived from both clinical and laboratory data.
Collapse
Affiliation(s)
| | - Lana Dixon
- From the Royal Victoria Hospital Cardiology Department
| | - David Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, Northern Ireland
| | - Chris Watson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, Northern Ireland
| |
Collapse
|
32
|
Luo J, Ning T, Li X, Jiang T, Tan S, Ma D. Targeting IL-12 family cytokines: A potential strategy for type 1 and type 2 diabetes mellitus. Biomed Pharmacother 2024; 170:115958. [PMID: 38064968 DOI: 10.1016/j.biopha.2023.115958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Diabetes is a common metabolic disease characterized by an imbalance in blood glucose levels. The pathogenesis of diabetes involves the essential role of cytokines, particularly the IL-12 family cytokines. These cytokines, which have a similar structure, play multiple roles in regulating the immune response. Recent studies have emphasized the importance of IL-12 family cytokines in the development of both type 1 and type 2 diabetes mellitus. As a result, they hold promise as potential therapeutic targets for the treatment of these conditions. This review focuses on the potential of targeting IL-12 family cytokines for diabetes therapy based on their roles in the pathogenesis of both types of diabetes. We have summarized various therapies that target IL-12 family cytokines, including drug therapy, combination therapy, cell therapy, gene therapy, cytokine engineering therapy, and gut microbiota modulation. By analyzing the advantages and disadvantages of these therapies, we have evaluated their feasibility for clinical application and proposed possible solutions to overcome any challenges. In conclusion, targeting IL-12 family cytokines for diabetes therapy provides updated insights into their potential benefits, such as controlling inflammation, preserving islet β cells, reversing the onset of diabetes, and impeding the development of diabetic complications.
Collapse
Affiliation(s)
- Jiayu Luo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tingting Ning
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xing Li
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tao Jiang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shenglong Tan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
33
|
Cui Y, Chen J, Zhang Z, Shi H, Sun W, Yi Q. The role of AMPK in macrophage metabolism, function and polarisation. J Transl Med 2023; 21:892. [PMID: 38066566 PMCID: PMC10709986 DOI: 10.1186/s12967-023-04772-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is a ubiquitous sensor of energy and nutritional status in eukaryotic cells. It plays a key role in regulating cellular energy homeostasis and multiple aspects of cell metabolism. During macrophage polarisation, AMPK not only guides the metabolic programming of macrophages, but also counter-regulates the inflammatory function of macrophages and promotes their polarisation toward the anti-inflammatory phenotype. AMPK is located at the intersection of macrophage metabolism and inflammation. The metabolic characteristics of macrophages are closely related to immune-related diseases, infectious diseases, cancer progression and immunotherapy. This review discusses the structure of AMPK and its role in the metabolism, function and polarisation of macrophages. In addition, it summarises the important role of the AMPK pathway and AMPK activators in the development of macrophage-related diseases.
Collapse
Affiliation(s)
- Yinxing Cui
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
- Department of General Surgery, Dongguan Huangjiang Hospital, Dongguan, 523061, Guangdong, China
| | - Junhua Chen
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Zhao Zhang
- Department of General Surgery, Dongguan Huangjiang Hospital, Dongguan, 523061, Guangdong, China
| | - Houyin Shi
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Weichao Sun
- Department of Bone Joint and Bone Oncology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China.
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China.
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
34
|
Bendotti G, Montefusco L, Pastore I, Lazzaroni E, Lunati ME, Fiorina P. The anti-inflammatory and immunological properties of SGLT-2 inhibitors. J Endocrinol Invest 2023; 46:2445-2452. [PMID: 37535237 DOI: 10.1007/s40618-023-02162-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Sodium-glucose cotransporter-2 inhibitors (SGLT-2i) are antidiabetic oral drugs that act on proximal renal tubules promoting renal glucose excretion. Although SGLT-2i belong to the class of hypoglycemic agents, in the last years great interest has emerged in studying their pleiotropic effects, beyond their ability to lower glucose levels. PURPOSE In this review we are describing the anti-inflammatory and immunological properties of SGLT-2i; furthermore, we are addressing how the mechanisms associated with the aforementioned anti-inflammatory properties may contribute to the beneficial effects of SGLT-2i in diabetes. METHODS A systematic search was undertaken for studies related the properties of SGLT-2i in reducing the inflammatory milieu of acute and chronic disease by acting on the immune system, independently by glycemia. RESULTS Recently, some data described the anti-inflammatory and immunological properties of SGLT-2 in both pre-clinical and clinical studies. Numerous data confirmed the cardio- and -renal protective effects of SGLT-2i in patients with heart failure and kidney diseases, with or without diabetes. CONCLUSIONS SGLT-2i are promising drugs with anti-inflammatory and immunological properties. Despite the mechanism of action of SGLT-2i is not fully understood, these drugs demonstrated anti-inflammatory effects, which may help in keeping under control the variety of complications associated with diabetes.
Collapse
Affiliation(s)
- G Bendotti
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
- Endocrinology and Metabolic Diseases Unit, AO S.S. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - L Montefusco
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - I Pastore
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - E Lazzaroni
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - M E Lunati
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - P Fiorina
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy.
- International Center for T1D, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy.
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave. Enders Building 5th floor En511, Boston, MA, 02115, USA.
| |
Collapse
|
35
|
Liu C, Guo X, Zhou Y, Wang H. AMPK Signalling Pathway: A Potential Strategy for the Treatment of Heart Failure with Chinese Medicine. J Inflamm Res 2023; 16:5451-5464. [PMID: 38026240 PMCID: PMC10676094 DOI: 10.2147/jir.s441597] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Heart failure (HF) is a complex clinical syndrome that represents the advanced stage of cardiovascular disease, characterized by systolic and diastolic dysfunction of the heart. Despite continuous updates in HF treatment drugs, the morbidity and mortality rates remain high, necessitating ongoing exploration for new therapeutic targets. Adenosine monophosphate-activated protein kinase (AMPK) is the serine/threonine protein kinase which responds to adenosine monophosphate (AMP) levels.Activation of AMPK shifts cellular metabolic patterns from synthesis to catabolism, enhancing energy metabolism in pathological conditions such as inflammation, ischemia, obesity, and aging. Numerous studies have identified AMPK as a vital target for HF treatment, with herbal monomers/extracts and compounds affecting key signaling factors including rapamycin targeting protein (mTOR), silencing regulator protein 1 (SIRT1), nuclear transcription factor E2-related factor 2 (Nrf2), and nuclear transcription factor-κB (NF-κB) through regulation of the AMPK signaling pathway.This modulation can achieve the effects of improving metabolism, autophagy, reducing oxidative stress and inflammatory response in the treatment of heart failure, with the advantages of multi-targeting, comprehensive action and low toxicity.The modulation of the AMPK pathway by Traditional Chinese Medicine (TCM) has emerged as a crucial research direction for the prevention and treatment of HF, but a systematic summary and generalization in this field is lacking. This article provides an overview of the composition, regulation, and mechanism of the AMPK signaling pathway's influence on HF, as well as a summary of current research on the regulation of the AMPK pathway by TCM for HF prevention and treatment. The aim is to serve as a reference for the diagnosis and treatment of HF using TCM and the development of new drugs.
Collapse
Affiliation(s)
- Changxing Liu
- First Clinical Medical School, Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Xinyi Guo
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, People’s Republic of China
| | - Yabin Zhou
- Department of Cardiology, The First Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - He Wang
- Department of Cardiology, The First Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| |
Collapse
|
36
|
Qin J, Ling X, Wang Q, Huang Z, Guo B, Zhang C, Meng M, Feng S, Guo Y, Zheng H, Liang Y, Su Z. Integrated Gut Microbiota and Urine Metabolite Analyses of T2DM with NAFLD Rat Model. Appl Biochem Biotechnol 2023; 195:6478-6494. [PMID: 36870027 DOI: 10.1007/s12010-023-04419-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/05/2023]
Abstract
Globally 80% type 2 diabetes mellitus (T2DM) patients suffer nonalcoholic fatty liver disease (NAFLD). The interplay of gut microbiota and endogenous metabolic networks has not yet been reported in the setting of T2DM with NAFLD. As such, this study utilized 16S rRNA gene sequencing to assess the changes in intestinal flora and nuclear magnetic resonance spectroscopy (1H NMR) to identify potential metabolites in a T2DM with NAFLD rat model. Spearman correlation analysis was performed to explore the relationship between gut microbiota and metabolites. Results revealed that among T2DM with NAFLD rats, diversity indexes of intestinal microbiota were distinctly decreased while levels of 18 bacterial genera within the intestinal tract were significantly altered. In addition, levels of eight metabolites mainly involved in the synthesis and degradation of ketone bodies, the TCA cycle, and butanoate metabolism were altered. Correlation analysis revealed that gut bacteria such as Blautia, Ruminococcus torques group, Allobaculum, and Lachnoclostridium strongly associate with 3-hydroxybutyrate, acetone, acetoacetate, 2-oxoglutarate, citrate, creatinine, hippurate, and allantoin. Our findings can provide a basis for future development of targeted treatments.
Collapse
Affiliation(s)
- Jinghua Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Xue Ling
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Qianyi Wang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Zheng Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Bingjian Guo
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Chi Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Mingwei Meng
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Shisui Feng
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Yue Guo
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning, 530022, People's Republic of China
| | - Hua Zheng
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.
| | - Yonghong Liang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Nanning, 530021, China.
- Guangxi Engineering Research Center for Beibu Gulf Marine Biomedicine Precision Development and High-Value Utilization, Nanning, 530021, China.
- Guangxi Health Commission Key Laboratory of Basic Research On Antigeriatric Drugs, Nanning, 530021, China.
| |
Collapse
|
37
|
Yang Q, Gao J, Wang TY, Ding JC, Hu PF. Integration of RNA-Seq and Machine Learning Identifies Hub Genes for Empagliflozin Benefitable Heart Failure with Reduced Ejection Fraction. J Inflamm Res 2023; 16:4733-4749. [PMID: 37872956 PMCID: PMC10590560 DOI: 10.2147/jir.s429096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
Purpose This study aimed to analyze the hub genes of heart failure with reduced ejection fraction (HFrEF) treated with Empagliflozin using RNA sequencing (RNA-seq) and bioinformatics methods, including machine learning. Methods From February 2021 to February 2023, nine patients with HFrEF were enrolled from our hospital's cardiovascular department. In addition to routine drug treatment, these patients received 10 mg of Empagliflozin once daily for two months. Efficacy was assessed and RNA-seq was performed on peripheral blood before and after treatment with empagliflozin. HFrEF-related hub genes were identified through bioinformatics analyses including differential gene expression analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, immune infiltration analysis, machine learning, immune cell correlation analysis and clinical indicator correlation analysis. Results The nine patients included in this study completed a two-month treatment regimen, with an average age of 62.11 ± 6.36 years. By performing bioinformatics analysis on the transcriptome from the treatment groups, 42 differentially expressed genes were identified, with six being up-regulated and 36 being down-regulated (|log2FC|>1 and adj.pvalue<0.05). Immune infiltration analysis of these genes demonstrated a significant difference in the proportion of plasma between the pre-treatment and post-treatment groups (p<0.05). Two hub genes, GTF2IP14 and MTLN, were finally identified through machine learning. Further analysis of the correlation between the hub genes and immune cells suggested a negative correlation between GTF2IP14 and naive B cells, and a positive correlation between MTLN and regulatory T cells and resting memory CD4+ T cells (p<0.05). Conclusion Through RNA-seq and bioinformatics analysis, this study identified GTF2IP14 and MTLN as the hub genes of HFrEF, and their mechanisms may be related to immune inflammatory responses and various immune cells.
Collapse
Affiliation(s)
- Qiang Yang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| | - Jing Gao
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, Zhejiang Province, 310018, People’s Republic of China
| | - Tian-Yu Wang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| | - Jun-Can Ding
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| | - Peng-Fei Hu
- Department of Cardiology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310005, People’s Republic of China
| |
Collapse
|
38
|
Zhang P, Wang TY, Luo ZY, Ding JC, Yang Q, Hu PF. Identification of Key Immune-Related Genes in the Treatment of Heart Failure After Myocardial Infarction with Empagliflozin Based on RNA-Seq. J Inflamm Res 2023; 16:4679-4696. [PMID: 37872957 PMCID: PMC10590601 DOI: 10.2147/jir.s428747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
Purpose Heart failure is a serious complication after acute myocardial infarction (AMI). It is crucial to investigate the mechanism of action of empagliflozin in the treatment of heart failure. Methods A total of 20 wild type (WT) male C57BL6/J mice were used to establish a model of heart failure after myocardial infarction and randomly divided into 2 groups: treatment group and control group. The treatment group was treated with empagliflozin, and the control group was treated with placebo. After 8 weeks of treatment, mouse heart tissues were collected for next generation sequencing. Bioinformatics methods were used to screen the key genes. Finally, the correlation between clinical data and gene expression was analyzed. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression of key genes. Results A mouse model of heart failure was successfully constructed. By DEG analysis, a total of 740 DEGs in the treatment group vs the control group were obtained. Dendritic cells, granulocytes, follicular B, plasma cell, cDC1, cDC2, pDC and neutrophils were 8 different immune cells identified by immunoinfiltration analysis. Through WGCNA, the turquoise module with the highest correlation with the above differential immune cells was selected. One hundred and forty-two immune-related DEGs were obtained by taking intersection of the DEGs and the genes of the turquoise module. Col17a1 and Gria4 were finally screened out as key immune-related genes via PPI analysis and machine learning. Col17a1 was significantly up-regulated, while Gria4 was significantly down-regulated in the treatment group. At the same time, the expression level of Col17a1 was significantly correlated with left ventricular ejection fraction (LVEF), left ventricular fraction shortening (LVFS) and left ventricular internal dimension systole (LVIDs). Conclusion Col17a1 and Gria4 are key immune-related genes of empagliflozin in the treatment of heart failure after myocardial infarction. This study provides a scientific basis for elucidating the mechanism of action of empagliflozin in treating heart failure after myocardial infarction.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, Zhejiang Province, 310018, People’s Republic of China
| | - Tian-Yu Wang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| | - Zi-Yue Luo
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| | - Jun-Can Ding
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| | - Qiang Yang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| | - Peng-Fei Hu
- Department of Cardiology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310005, People’s Republic of China
| |
Collapse
|
39
|
Khaznadar F, Petrovic A, Khaznadar O, Roguljic H, Bojanic K, Kuna Roguljic L, Siber S, Smolic R, Bilic-Curcic I, Wu GY, Smolic M. Biomarkers for Assessing Non-Alcoholic Fatty Liver Disease in Patients with Type 2 Diabetes Mellitus on Sodium-Glucose Cotransporter 2 Inhibitor Therapy. J Clin Med 2023; 12:6561. [PMID: 37892698 PMCID: PMC10607797 DOI: 10.3390/jcm12206561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
In the current modern era of unhealthy lifestyles, non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease and has become a serious global health problem. To date, there is no approved pharmacotherapy for the treatment of NAFLD, and necessary lifestyle changes such as weight loss, diet, and exercise are usually not sufficient to manage this disease. Patients with type 2 diabetes mellitus (T2DM) have a significantly higher risk of developing NAFLD and vice versa. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are antidiabetic agents that have recently been approved for two other indications: chronic kidney disease and heart failure in diabetics and non-diabetics. They are also emerging as promising new agents for NAFLD treatment, as they have shown beneficial effects on hepatic inflammation, steatosis, and fibrosis. Studies in animals have reported favorable effects of SGLT2 inhibitors, and studies in patients also found positive effects on body mass index (BMI), insulin resistance, glucose levels, liver enzymes, apoptosis, and transcription factors. There are some theories regarding how SGLT2 inhibitors affect the liver, but the exact mechanism is not yet fully understood. Therefore, biomarkers to evaluate underlying mechanisms of action of SGLT2 inhibitors on the liver have now been scrutinized to assess their potential as a future in-label therapy for NAFLD. In addition, finding suitable non-invasive biomarkers could be helpful in clinical practice for the early detection of NAFLD in patients. This is crucial for a positive disease outcome. The aim of this review is to provide an overview of the most recent findings on the effects of SGLT2 inhibitors on NAFLD biomarkers and the potential of SGLT2 inhibitors to successfully treat NAFLD.
Collapse
Affiliation(s)
- Farah Khaznadar
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Ana Petrovic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
| | - Omar Khaznadar
- Department of Radiology, “Dr. Juraj Njavro” National Memorial Hospital Vukovar, 32000 Vukovar, Croatia;
| | - Hrvoje Roguljic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Clinical Hospital Center, 31000 Osijek, Croatia
| | - Kristina Bojanic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Health Center Osijek-Baranja County, 31000 Osijek, Croatia
| | - Lucija Kuna Roguljic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
| | - Stjepan Siber
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
| | - Robert Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
| | - Ines Bilic-Curcic
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Clinical Hospital Center, 31000 Osijek, Croatia
| | - George Y. Wu
- Department of Medicine, Division of Gastrenterology/Hepatology, University of Connecticut Health Center, Farmington, CT 06030, USA;
| | - Martina Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
| |
Collapse
|
40
|
Zhao X, Bie LY, Pang DR, Li X, Yang LF, Chen DD, Wang YR, Gao Y. The role of autophagy in the treatment of type II diabetes and its complications: a review. Front Endocrinol (Lausanne) 2023; 14:1228045. [PMID: 37810881 PMCID: PMC10551182 DOI: 10.3389/fendo.2023.1228045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
Type II diabetes mellitus (T2DM) is a chronic metabolic disease characterized by prolonged hyperglycemia and insulin resistance (IR). Its incidence is increasing annually, posing a significant threat to human life and health. Consequently, there is an urgent requirement to discover effective drugs and investigate the pathogenesis of T2DM. Autophagy plays a crucial role in maintaining normal islet structure. However, in a state of high glucose, autophagy is inhibited, resulting in impaired islet function, insulin resistance, and complications. Studies have shown that modulating autophagy through activation or inhibition can have a positive impact on the treatment of T2DM and its complications. However, it is important to note that the specific regulatory mechanisms vary depending on the target organ. This review explores the role of autophagy in the pathogenesis of T2DM, taking into account both genetic and external factors. It also provides a summary of reported chemical drugs and traditional Chinese medicine that target the autophagic pathway for the treatment of T2DM and its complications.
Collapse
Affiliation(s)
- Xuan Zhao
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lu-Yao Bie
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Dao-Ran Pang
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Long-Fei Yang
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dan-Dan Chen
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yue-Rui Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Gao
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
41
|
Schönberger E, Mihaljević V, Steiner K, Šarić S, Kurevija T, Majnarić LT, Bilić Ćurčić I, Canecki-Varžić S. Immunomodulatory Effects of SGLT2 Inhibitors-Targeting Inflammation and Oxidative Stress in Aging. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6671. [PMID: 37681811 PMCID: PMC10487537 DOI: 10.3390/ijerph20176671] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Given that the increase in the aging population has grown into one of the largest public health issues, inflammation and oxidative stress, which are closely associated with the aging process, became a focus of recent research. Sodium-glucose co-transporter 2 (SGLT2) inhibitors, a group of drugs initially developed as oral antidiabetics, have shown many beneficial effects over time, including improvement in renal function and cardioprotective effects. It has been shown that SGLT2 inhibitors, as a drug class, have an immunomodulatory and antioxidative effect, affecting endothelial function as well as metabolic parameters. Therefore, it is not surprising that various studies have investigated the potential mechanisms of action of SGLT2 inhibitors in age-related diseases. The proposed mechanisms by which SGLT2 inhibitors can achieve their anti-inflammatory effects include influence on AMPK/SIRT1/PGC-1α signaling, various cytokines, and the NLRP3 inflammasome. The antioxidative effect is related to their action on mitochondria and their influence on the signaling pathways of transforming growth factor β and nuclear erythroid 2-related factor 2/antioxidant response element. Also, SGLT2 inhibitors achieve their anti-inflammatory and antioxidative effects by affecting metabolic parameters, such as uric acid reduction, stimulation of ketogenesis, reduction of body weight, lipolysis, and epicardial fat tissue. Finally, SGLT2 inhibitors display anti-atherosclerotic effects that modulate inflammatory reactions, potentially resulting in improvement in endothelial function. This narrative review offers a complete and comprehensive overview of the possible pathophysiologic mechanisms of the SGLT2 inhibitors involved in the aging process and development of age-related disease. However, in order to use SGLT2 inhibitor drugs as an anti-aging therapy, further basic and clinical research is needed to elucidate the potential effects and complex mechanisms they have on inflammation processes.
Collapse
Affiliation(s)
- Ema Schönberger
- Department of Endocrinology, University Hospital Osijek, 31000 Osijek, Croatia; (E.S.); (K.S.); (S.C.-V.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Vjera Mihaljević
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| | - Kristina Steiner
- Department of Endocrinology, University Hospital Osijek, 31000 Osijek, Croatia; (E.S.); (K.S.); (S.C.-V.)
| | - Sandra Šarić
- Department for Cardiovascular Disease, University Hospital Osijek, 31000 Osijek, Croatia;
- Department of Internal Medicine and History of Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Tomislav Kurevija
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia; (T.K.); (L.T.M.)
- Health Center Osjecko-Baranjska County, 31000 Osijek, Croatia
| | - Ljiljana Trtica Majnarić
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia; (T.K.); (L.T.M.)
| | - Ines Bilić Ćurčić
- Department of Endocrinology, University Hospital Osijek, 31000 Osijek, Croatia; (E.S.); (K.S.); (S.C.-V.)
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Silvija Canecki-Varžić
- Department of Endocrinology, University Hospital Osijek, 31000 Osijek, Croatia; (E.S.); (K.S.); (S.C.-V.)
- Department of Pathophysiology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| |
Collapse
|
42
|
Lyu Y, Huo J, Jiang W, Yang W, Wang S, Zhang S, Cheng Y, Jiang Z, Shan Q. Empagliflozin ameliorates cardiac dysfunction in heart failure mice via regulating mitochondrial dynamics. Eur J Pharmacol 2023; 942:175531. [PMID: 36690056 DOI: 10.1016/j.ejphar.2023.175531] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Empagliflozin has cardioprotective effects in patients with heart failure (HF). However, the mechanism by which empagliflozin protects against HF remains controversial. Study aimed to evaluate the effect of empagliflozin on myocardial fibrosis and cardiac function in HF mice and its possible mechanism. C57BL/6 mice were induced with HF by ligation of the left anterior descending coronary artery. At 4 weeks postoperation, mice were randomly given normal saline or empagliflozin for 8 weeks. Echocardiography was used to assess cardiac function. Masson's staining, immunohistochemistry and Western blot analysis were used to detect the degree of myocardial fibrosis. Changes in mitochondria were detected by observing mitochondrial morphology, measuring mitochondrial dynamics-related proteins and analysing the levels of adenosine triphosphate (ATP), adenosine monophosphate (AMP) and adenosine diphosphate (ADP). The mitochondrial fission inhibitor, mdivi1, was used to detect the relationship between mitochondrial dysfunction and cardiac dysfunction in HF mice. HF led to myocardial fibrosis and cardiac dysfunction. However, treatment with empagliflozin reduced these effects. Empagliflozin inhibited mitochondrial fission and improved energy metabolic efficiency in HF mice by regulating the expression of mitochondrial dynamics-related proteins. Similarly, mdivi1 attenuated mitochondrial dysfunction and cardiac dysfunction by inhibiting mitochondrial fission in HF mice. Regulation of mitochondrial dynamics, especially inhibition of mitochondrial fission, may be a potential target for reducing cardiac damage in patients with HF. Empagliflozin improved myocardial fibrosis and cardiac dysfunction by modulating mitochondrial dynamics in HF mice. Thus, the cardiac protective effect of empagliflozin may be related to the normalization of mitochondria and the increase in ATP production.
Collapse
Affiliation(s)
- YiTing Lyu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - JunYu Huo
- Department of Cardiology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - WanYing Jiang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - ShengChan Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - ShiGeng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - YanDi Cheng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - ZhiXin Jiang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - QiJun Shan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
43
|
Xiao Z, Liu M, Yang F, Liu G, Liu J, Zhao W, Ma S, Duan Z. Programmed cell death and lipid metabolism of macrophages in NAFLD. Front Immunol 2023; 14:1118449. [PMID: 36742318 PMCID: PMC9889867 DOI: 10.3389/fimmu.2023.1118449] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has now become the leading chronic liver disease worldwide with lifestyle changes. This may lead to NAFLD becoming the leading cause of end-stage liver disease in the future. To date, there are still no effective therapeutic drugs for NAFLD. An in-depth exploration of the pathogenesis of NAFLD can help to provide a basis for new therapeutic agents or strategies. As the most important immune cells of the liver, macrophages play an important role in the occurrence and development of liver inflammation and are expected to become effective targets for NAFLD treatment. Programmed cell death (PCD) of macrophages plays a regulatory role in phenotypic transformation, and there is also a certain connection between different types of PCD. However, how PCD regulates macrophage polarization has still not been systematically elucidated. Based on the role of lipid metabolic reprogramming in macrophage polarization, PCD may alter the phenotype by regulating lipid metabolism. We reviewed the effects of macrophages on inflammation in NAFLD and changes in their lipid metabolism, as well as the relationship between different types of PCD and lipid metabolism in macrophages. Furthermore, interactions between different types of PCD and potential therapeutic agents targeting of macrophages PCD are also explored.
Collapse
Affiliation(s)
- Zhun Xiao
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Minghao Liu
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Fangming Yang
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Guangwei Liu
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiangkai Liu
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Wenxia Zhao
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Suping Ma
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China,*Correspondence: Suping Ma, ; Zhongping Duan,
| | - Zhongping Duan
- Beijing Institute of Hepatology, Beijing Youan Hospital Capital Medical University, Beijing, China,*Correspondence: Suping Ma, ; Zhongping Duan,
| |
Collapse
|
44
|
Tan X, Huang X, Lu Z, Chen L, Hu J, Tian X, Qiu Z. The essential effect of mTORC1-dependent lipophagy in non-alcoholic fatty liver disease. Front Pharmacol 2023; 14:1124003. [PMID: 36969837 PMCID: PMC10030502 DOI: 10.3389/fphar.2023.1124003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/23/2023] [Indexed: 03/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic progressive liver disease with increasing prevalence. Lipophagy is a type of programmed cell death that plays an essential role in maintaining the body's balance of fatty acid metabolism. However, the livers of NAFLD patients are abnormally dysregulated in lipophagy. mTORC1 is a critical negative regulator of lipophagy, which has been confirmed to participate in the process of lipophagy through various complex mechanisms. Therefore, targeting mTORC1 to restore failed autophagy may be an effective therapeutic strategy for NAFLD. This article reviews the main pathways through which mTORC1 participates in the formation of lipophagy and the intervention effect of mTORC1-regulated lipophagy in NAFLD, providing new therapeutic strategies for the prevention and treatment of NAFLD in the future.
Collapse
Affiliation(s)
- Xiangyun Tan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xinyu Huang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhuhang Lu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Liang Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Zhenpeng Qiu, ; Xianxiang Tian, ; Junjie Hu,
| | - Xianxiang Tian
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Zhenpeng Qiu, ; Xianxiang Tian, ; Junjie Hu,
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Zhenpeng Qiu, ; Xianxiang Tian, ; Junjie Hu,
| |
Collapse
|
45
|
Lessons on Drug Development: A Literature Review of Challenges Faced in Nonalcoholic Fatty Liver Disease (NAFLD) Clinical Trials. Int J Mol Sci 2022; 24:ijms24010158. [PMID: 36613602 PMCID: PMC9820446 DOI: 10.3390/ijms24010158] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
NAFLD is the most common chronic liver disease worldwide, occurring in both obese and lean patients. It can lead to life-threatening liver diseases and nonhepatic complications, such as cirrhosis and cardiovascular diseases, that burden public health and the health care system. Current care is weight loss through diet and exercise, which is a challenging goal to achieve. However, there are no FDA-approved pharmacotherapies for NAFLD. This review thoroughly examines the clinical trial findings from 22 drugs (Phase 2 and above) and evaluates the future direction that trials should take for further drug development. These trialed drugs can broadly be categorized into five groups-hypoglycemic, lipid-lowering, bile-pathway, anti-inflammatory, and others, which include nutraceuticals. The multitude of challenges faced in these yet-to-be-approved NAFLD drug trials provided insight into a few areas of improvement worth considering. These include drug repurposing, combinations, noninvasive outcomes, standardization, adverse event alleviation, and the need for precision medicine with more extensive consideration of NAFLD heterogenicity in drug trials. Understandably, every evolution of the drug development landscape lies with its own set of challenges. However, this paper believes in the importance of always learning from lessons of the past, with each potential improvement pushing clinical trials an additional step forward toward discovering appropriate drugs for effective NAFLD management.
Collapse
|
46
|
Zuo Q, Zhang G, He L, Ma S, Ma H, Zhai J, Wang Z, Zhang T, Wang Y, Guo Y. Canagliflozin Attenuates Hepatic Steatosis and Atherosclerosis Progression in Western Diet-Fed ApoE-Knockout Mice. Drug Des Devel Ther 2022; 16:4161-4177. [PMID: 36510490 PMCID: PMC9741490 DOI: 10.2147/dddt.s388823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose To investigate the effect of canagliflozin (20 mg/kg) on hepatic steatosis and atherosclerosis, and further to explore its possible mechanism. Methods Blood glucose, blood lipid, oxidative stress response and inflammatory cytokines were examined by intraperitoneal glucose tolerance test and ELISA assay. HE and Oil Red O staining were used to estimate the extent of hepatic steatosis and atherosclerosis. RNA-seq and qRT-PCR were used to further investigate the potential mechanism. The effects of canagliflozin on autophagy were detected using transmission electron microscopy and Western blotting. The endothelial function-related markers were determined by qRT-PCR. Results Canagliflozin notably alleviated the elevation in blood glucose and insulin resistance in western diet-fed ApoE-/- mice. In ApoE-/-+Cana group, ApoE-/- mice had lower levels of TG, TC, LDL-C, TNF-α, IL-6, IL-1β, and MCP-1. HE and Oil Red O staining presented that canagliflozin restrained the atherosclerotic plaque development and lipid accumulation. RNA-seq showed that 87 DEGs were relevant to improvement of hepatic steatosis and atherosclerosis by canagliflozin. Among them, CPS1, ASS1, ASL, ARG1, MATLA, GLS2, GOT1, SREBP1, Plin5, Retreg1, and C/EBPβ were verified. KEGG enrichment analysis indicated that DEGs were mainly involved in amino acid metabolism. Besides, we observed that canagliflozin reduced the contents of aspartic acid and citrulline in liver. Western blotting showed that ASS1 and p-AMPK/AMPK was remarkably elevated after administration of canagliflozin. Correspondingly, canagliflozin down-regulated SREBP1, FAS, ACC1, HMGCR, p-mTOR/m-TOR, p-ULK1/ULK1 and p62, but up-regulated CPT1, Beclin 1 and LC3 II/LC3I. TEM showed that canagliflozin reduced the number of lipid droplets and increased the autophagosomes. Moreover, we found that canagliflozin elevated the aortic endothelial function-associated markers including ASS1, ASL and eNOS. Conclusion Canagliflozin may attenuate hepatic steatosis by improving lipid metabolism, enhancing autophagy, and reducing inflammatory response through ASS1/AMPK pathway. Besides, canagliflozin further effectively improves the aortic endothelial function, thereby suppressing atherosclerosis development.
Collapse
Affiliation(s)
- Qingjuan Zuo
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China,Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Guorui Zhang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China,Department of Cardiology, the Third Hospital of Shijiazhuang City Affiliated to Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Lili He
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Sai Ma
- Department of Internal Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Huijuan Ma
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Jianlong Zhai
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Zhongli Wang
- Department of Physical Examination Center, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Tingting Zhang
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Yan Wang
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Yifang Guo
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China,Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, People’s Republic of China,Correspondence: Yifang Guo, Department of Geriatric Cardiology, Hebei General Hospital, No. 348, Heping West Road, Xinhua District, Shijiazhuang, Hebei, 050051, People’s Republic of China, Tel +86-15100189182, Email
| |
Collapse
|
47
|
Furuya F, Fujita Y, Matsuo N, Minamino H, Oguri Y, Isomura N, Ikeda K, Takesue K, Li Y, Kondo A, Mano F, Inagaki N. Liver autophagy-induced valine and leucine in plasma reflect the metabolic effect of sodium glucose co-transporter 2 inhibitor dapagliflozin. EBioMedicine 2022; 86:104342. [PMID: 36423374 PMCID: PMC9682354 DOI: 10.1016/j.ebiom.2022.104342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 09/14/2022] [Accepted: 10/19/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Sodium glucose co-transporter 2 (SGLT2) inhibitors are anti-diabetic drugs for type 2 diabetes that lower blood glucose levels and body weight. It is of special interest that SGLT2 inhibitors also improve liver metabolism and fatty liver. Liver is an important organ in regulation of energy metabolism, but the metabolic action of SGLT inhibitors in liver remains unclear. METHODS We investigated the factors associated with the beneficial effects of dapagliflozin, a SGLT2 inhibitor, in the liver after confirming its glucose-lowering and weight loss effects using an obesity and diabetes mouse model. We also performed clinical study of patients with type 2 diabetes to explore candidate biomarkers that reflect the beneficial action of dapagliflozin in the liver. FINDINGS In animal study, dapagliflozin induced autophagy in the liver (LC3-II to LC3-I expression ratio: P < 0·05 vs. control), and valine and leucine levels were increased in plasma (P < 0·01 vs. control) as well as in liver (P < 0·05 vs. control). Thus, increased plasma valine and leucine levels are potential biomarkers for improved liver metabolism. Clinical study found that valine and leucine levels were markedly higher in patients treated with dapagliflozin (valine: P < 0·05 vs. control, leucine: P < 0·01 vs. control) than those not treated after one week intervention. INTERPRETATION Dapagliflozin improves liver metabolism via hepatic autophagy, and plasma valine and leucine levels may reflect its metabolic effect. FUNDING AstraZeneca K.K., Ono Pharmaceutical Co., Ltd., Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan Society for the Promotion of Science (JSPS), Japan Agency for Medical Research and Development (AMED), Novo Nordisk Pharma Ltd., and Japan Foundation for Applied Enzymology, and MSD Life Science Foundation International.
Collapse
Affiliation(s)
| | - Yoshihito Fujita
- Corresponding author. Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | | | | | | - Nobuya Inagaki
- Corresponding author. Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
48
|
Zhou Y, Li Z, Xu M, Zhang D, Ling J, Yu P, Shen Y. O-GlycNacylation Remission Retards the Progression of Non-Alcoholic Fatty Liver Disease. Cells 2022; 11:cells11223637. [PMID: 36429065 PMCID: PMC9688300 DOI: 10.3390/cells11223637] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disease spectrum associated with insulin resistance (IR), from non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma (HCC). O-GlcNAcylation is a posttranslational modification, regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Abnormal O-GlcNAcylation plays a key role in IR, fat deposition, inflammatory injury, fibrosis, and tumorigenesis. However, the specific mechanisms and clinical treatments of O-GlcNAcylation and NAFLD are yet to be elucidated. The modification contributes to understanding the pathogenesis and development of NAFLD, thus clarifying the protective effect of O-GlcNAcylation inhibition on liver injury. In this review, the crucial role of O-GlcNAcylation in NAFLD (from NAFL to HCC) is discussed, and the effect of therapeutics on O-GlcNAcylation and its potential mechanisms on NAFLD have been highlighted. These inferences present novel insights into the pathogenesis and treatments of NAFLD.
Collapse
Affiliation(s)
- Yicheng Zhou
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, Nanchang 330031, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Jitao Ling
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
- Correspondence: (P.Y.); (Y.S.)
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
- Correspondence: (P.Y.); (Y.S.)
| |
Collapse
|
49
|
Packer M. Critical Reanalysis of the Mechanisms Underlying the Cardiorenal Benefits of SGLT2 Inhibitors and Reaffirmation of the Nutrient Deprivation Signaling/Autophagy Hypothesis. Circulation 2022; 146:1383-1405. [PMID: 36315602 PMCID: PMC9624240 DOI: 10.1161/circulationaha.122.061732] [Citation(s) in RCA: 235] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 02/06/2023]
Abstract
SGLT2 (sodium-glucose cotransporter 2) inhibitors produce a distinctive pattern of benefits on the evolution and progression of cardiomyopathy and nephropathy, which is characterized by a reduction in oxidative and endoplasmic reticulum stress, restoration of mitochondrial health and enhanced mitochondrial biogenesis, a decrease in proinflammatory and profibrotic pathways, and preservation of cellular and organ integrity and viability. A substantial body of evidence indicates that this characteristic pattern of responses can be explained by the action of SGLT2 inhibitors to promote cellular housekeeping by enhancing autophagic flux, an effect that may be related to the action of these drugs to produce simultaneous upregulation of nutrient deprivation signaling and downregulation of nutrient surplus signaling, as manifested by an increase in the expression and activity of AMPK (adenosine monophosphate-activated protein kinase), SIRT1 (sirtuin 1), SIRT3 (sirtuin 3), SIRT6 (sirtuin 6), and PGC1-α (peroxisome proliferator-activated receptor γ coactivator 1-α) and decreased activation of mTOR (mammalian target of rapamycin). The distinctive pattern of cardioprotective and renoprotective effects of SGLT2 inhibitors is abolished by specific inhibition or knockdown of autophagy, AMPK, and sirtuins. In the clinical setting, the pattern of differentially increased proteins identified in proteomics analyses of blood collected in randomized trials is consistent with these findings. Clinical studies have also shown that SGLT2 inhibitors promote gluconeogenesis, ketogenesis, and erythrocytosis and reduce uricemia, the hallmarks of nutrient deprivation signaling and the principal statistical mediators of the ability of SGLT2 inhibitors to reduce the risk of heart failure and serious renal events. The action of SGLT2 inhibitors to augment autophagic flux is seen in isolated cells and tissues that do not express SGLT2 and are not exposed to changes in environmental glucose or ketones and may be related to an ability of these drugs to bind directly to sirtuins or mTOR. Changes in renal or cardiovascular physiology or metabolism cannot explain the benefits of SGLT2 inhibitors either experimentally or clinically. The direct molecular effects of SGLT2 inhibitors in isolated cells are consistent with the concept that SGLT2 acts as a nutrient surplus sensor, and thus, its inhibition causes enhanced nutrient deprivation signaling and its attendant cytoprotective effects, which can be abolished by specific inhibition or knockdown of AMPK, sirtuins, and autophagic flux.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX. Imperial College, London, United Kingdom
| |
Collapse
|
50
|
Salah HM, Fudim M. Sodium-glucose Cotransporter 2 Inhibitors and Nonalcoholic Fatty Liver Disease. Heart Fail Clin 2022; 18:625-634. [DOI: 10.1016/j.hfc.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|