1
|
Saadh MJ, Saeed TN, Alfarttoosi KH, Sanghvi G, Roopashree R, Thakur V, Lakshmi L, Kubaev A, Taher WM, Alwan M, Jawad MJ, Al-Nuaimi AMA. Exosomes and MicroRNAs: key modulators of macrophage polarization in sepsis pathophysiology. Eur J Med Res 2025; 30:298. [PMID: 40247413 PMCID: PMC12007276 DOI: 10.1186/s40001-025-02561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/06/2025] [Indexed: 04/19/2025] Open
Abstract
Sepsis is a highly dangerous and complex condition that can result in death. It is characterized by a strong reaction to an infection, causing dysfunction in multiple bodily systems and a high risk of mortality. The transformation of macrophages is a vital stage in the procedure as they possess the capability to interchange between two separate types: M1, which promotes inflammation, and M2, which inhibits inflammation. The choice greatly affects the immune response of the host. This analysis underscores the rapidly expanding roles of exosomes and microRNAs (miRNAs) in regulating the trajectory of macrophage polarization during episodes of sepsis. Exosomes, extremely small extracellular vesicles, facilitate cellular communication by transferring biologically active compounds, including miRNAs, proteins, and lipids. We investigate the impact of changes in exosome production and composition caused by sepsis on macrophage polarization and function. Unique microRNAs present in exosomes play a significant role in controlling crucial signaling pathways that govern the phenotype of macrophages. Through thorough examination of recent progress in this area, we clarify the ways in which miRNAs derived from exosomes can either aggravate or alleviate the inflammatory reactions that occur during sepsis. This revelation not only deepens our comprehension of the underlying mechanisms of sepsis, but it also reveals potential new biomarkers and targets for treatment. This assessment aims to amalgamate diverse research investigations and propose potential avenues for future investigations on the influence that exosomes and miRNAs have on macrophage polarization and the body's response to sepsis. These entities are essential for controlling the host's reaction to sepsis and hold important functions in this mechanism.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Tamara Nazar Saeed
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq.
| | | | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Vishal Thakur
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - L Lakshmi
- Department of Nursing, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, 140100, Samarkand, Uzbekistan
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
2
|
Huimin C, Yuxin Z, Peng W, Wei G, Hong L, Na L, Jianjun Y. Bioinformatics analysis and experimental validation of potential targets and pathways in chronic kidney disease associated with renal fibrosis. J Transl Med 2025; 23:387. [PMID: 40176090 PMCID: PMC11967072 DOI: 10.1186/s12967-024-06058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/24/2024] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) has emerged as a major health problem worldwide. Previous studies have shown that specific miRNA expression profiles of patients with CKD are significantly changed. In this study, we aim to elucidate the role of miRNAs as potential biomarkers in CKD progression by integrating bioinformatics analysis with experimental validation, thereby providing medical evidence for the prevention and treatment of CKD. METHOD Bioinformatics analysis was used to identify potential targets and pathways in CKD-associated renal fibrosis through randomly obtaining miRNA microarray data related to CKD patients in the Gene Expression Omnibus (GEO) database according to the inclusion and exclusion criteria, conducting pathway enrichment analysis and constructing protein-protein interaction (PPI) networks and miRNA-mRNA network by Cytoscape 3.8.0. In vitro experiments were employed to verify the role and mechanism of miR-223-3p in human renal tubular epithelial cells (HK2) through Quantitative real-time PCR assays, Western blot, Immunofluorescence analysis and Double luciferase reporter gene experiment. Multi-group one-way analysis of variance (ANOVA) and the Dunnett-t test were uesd to analyze the results by SPSS24.0. RESULTS 10 up-regulated and 11 down-regulated miRNAs of CKD patients were screened out. Phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) was the first pathway of pathway enrichment analysis. MiR-223-3p (logFC=-2.047, p = 0.002) was one of the four hub miRNAs. Furthermore, we observed a reduction in α-smooth muscle actin (α-SMA) (p = 0.001) and Collagen type I alpha 1 (Col1-a1) (p = 0.023) levels upon miR-223-3p overexpression, which aligned with our bioinformatics predictions. This downregulation was attributed to the inhibition of nuclear factor kappa-B (NF-κB) nuclear translocation and subsequent decrease in the secretion of inflammatory cytokines, such as interleukin-6 (IL-6) (p = 0.005). Conversely, when CHUK was further overexpressed, the inhibitory effect of miR-223-3p on epithelial-mesenchymal transition (EMT) was attenuated, confirming the specific interaction between miR-223-3p and CHUK. CONCLUSION Our findings provide compelling evidence that miR-223-3p acts as a suppressor of EMT in CKD by specifically targeting the CHUK and modulating the PI3K/Akt pathway, which holds great promise as a novel therapeutic target for CKD treatment. Additionally, this study offers a potential avenue for the development of future interventions aimed at halting or reversing the progression of CKD.
Collapse
Affiliation(s)
- Cui Huimin
- School of Public Health, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
- Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, 750004, China
- School of Nursing, Ningxia Medical University, Yinchuan, 750004, China
| | - Zhao Yuxin
- School of Public Health, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
- Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, 750004, China
| | - Wang Peng
- Emergency Center, Ningxia Medical University General Hospital, Yinchuan, 750004, China
| | - Gong Wei
- School of Public Health, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
- Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, 750004, China
| | - Lin Hong
- School of Public Health, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
- Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, 750004, China
| | - Li Na
- School of Public Health, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
- Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, 750004, China
| | - Yang Jianjun
- School of Public Health, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
- Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, 750004, China.
| |
Collapse
|
3
|
Wang Z, Li W, Li J, Jin T, Chen H, Liang F, Liu S, Jia J, Liu T, Liu Y, Yu L, Xue X, Zhao J, Huang T, Huang X, Wang H, Li Y, Luo B, Zhang Z. Neutrophil-modulated Dicer expression in macrophages influences inflammation resolution. Cell Mol Life Sci 2025; 82:114. [PMID: 40074991 PMCID: PMC11904050 DOI: 10.1007/s00018-025-05644-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/09/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
The precise molecular mechanisms through which neutrophils regulate macrophages in the progression and resolution of acute inflammation remain poorly understood. Here, we present new findings on the role of Dicer in regulating macrophage phenotypic transitions essential for proper inflammatory progression and resolution, influenced by neutrophils. Using a zymosan A (Zym A)-induced self-limited mouse peritonitis model, we observed that Dicer expression in macrophages was significantly reduced by neutrophil-derived IFN-γ during the progression phase, but gradually returned to normal levels during the resolution phase following the engulfment of apoptotic neutrophils. Our study on macrophage-specific Dicer1-depletion (Dicer1-CKO) mice demonstrated that inflammation in these mice was more severe during the progression phase, characterized by increased pro-inflammatory cytokines and enhanced neutrophil trafficking. Additionally, resolution was impaired in Dicer1-CKO mice, leading to the accumulation of uncleared apoptotic neutrophils. Specifically, the absence of Dicer in macrophages resulted in M1 polarization and heightened bactericidal activity, facilitating the progression of acute inflammation. Conversely, inducing Dicer expression promoted macrophage transition to M2 polarization, enhancing apoptotic cell clearance and expediting the resolution of inflammation. Our findings suggest that Dicer plays a central role in regulating the progression and resolution of acute inflammation, with implications for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Zhishang Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Wenhua Li
- Institute of Immunology, Army Medical University, 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Jia Li
- Department of Nephrology, Navy 971 Hospital, 22 Minjiang Road, Qingdao, Shandong, 266000, China
| | - Tianrong Jin
- Medical College of Chongqing University, Chongqing, 400030, China
| | - Hong Chen
- Department of Orthopedics, No. 903 Hospital of PLA Joint Logistic Support Force, 14 Lingyin Road, Lingyin Street, Xihu District, Hangzhou, Zhejiang, 310000, China
| | - Feihong Liang
- Department of Medical Science, Shunde Polytechnic, Foshan, China
| | - Shengran Liu
- Institute of Immunology, Army Medical University, 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Jialin Jia
- Institute of Immunology, Army Medical University, 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Tingting Liu
- Institute of Immunology, Army Medical University, 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Yu Liu
- Institute of Immunology, Army Medical University, 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Liming Yu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Xiaodong Xue
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Jikai Zhao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Tao Huang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Xinyi Huang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Huishan Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China.
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Bangwei Luo
- Institute of Immunology, Army Medical University, 30 Gaotanyan Main Street, Chongqing, 400038, China.
| | - Zhiren Zhang
- Institute of Immunology, Army Medical University, 30 Gaotanyan Main Street, Chongqing, 400038, China.
| |
Collapse
|
4
|
Qu M, Su S, Jiang L, Yu X, Zhang J, Zhu H, Han K, Zhang X. Exosomal miR-27a-5p attenuates inflammation through Toll-like receptor 7 in foodborne Salmonella infections. Vet Microbiol 2025; 302:110394. [PMID: 39823714 DOI: 10.1016/j.vetmic.2025.110394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/20/2025]
Abstract
Salmonella is a common food-borne pathogen that is highly pathogenic and infectious, causing serious harm to livestock breeding and food safety. Uncovering the mechanisms of Salmonella infection and immune evasion can effectively prevent Salmonella contamination of livestock and poultry food. Here, small RNA sequencing results showed that exosomes produced by naïve murine macrophages RAW 264.7 cells contained a unique enrichment of a set of microRNAs (miRNAs) after Salmonella infection. Quantitative real-time polymerase chain reaction (qPCR) analysis verified that the tested miRNA (i.e. miR-27a-5p, miR-92a-1-5p and miR-1249-5p) showed similar expression patterns, consistent with small RNA sequencing data. TargetScan database predicted that the most promising targets for the differentially expressed miRNAs were abundant in the immune system, infectious diseases, and signal transduction pathways. Dual-luciferase reporter assays confirmed that Toll-like receptor 7 (TLR7) was the target of miR-27a-5p. Western blotting and enzyme-linked immunosorbent assay (ELISA) results revealed that overexpression of miR-27a-5p suppressed inflammation by targeting TLR7/nuclear factor kappa-B (NF-κB) signaling pathway and leading interleukin-6 (IL-6) and IL-1β cytokines slightly reduction in recipient macrophages, suggesting that exosomal miR-27a-5p uptake by naïve macrophages may inhibit pro-inflammatory macrophage differentiation. Therefore, these results contribute to our systematic understanding of the mechanism of exosomal miRNA in Salmonella infection, providing a potential target for preventing immune escape from Salmonella.
Collapse
Affiliation(s)
- Mingjuan Qu
- School of Life Sciences, Ludong University, Yantai, China; Collaborative Innovation Center for the Pet Infectious Diseases and Public Health in the Middle and Lower Stream Regions of the Yellow River, Yantai 264025, China; Shandong Engineering Research Center for Aquaculture Environment Control, Yantai 264025, China
| | - Shengfa Su
- School of Life Sciences, Ludong University, Yantai, China; Collaborative Innovation Center for the Pet Infectious Diseases and Public Health in the Middle and Lower Stream Regions of the Yellow River, Yantai 264025, China
| | - Linlin Jiang
- School of Life Sciences, Ludong University, Yantai, China; Collaborative Innovation Center for the Pet Infectious Diseases and Public Health in the Middle and Lower Stream Regions of the Yellow River, Yantai 264025, China; Shandong Engineering Research Center for Aquaculture Environment Control, Yantai 264025, China
| | - Xin Yu
- School of Life Sciences, Ludong University, Yantai, China; Collaborative Innovation Center for the Pet Infectious Diseases and Public Health in the Middle and Lower Stream Regions of the Yellow River, Yantai 264025, China
| | - Jianlong Zhang
- School of Life Sciences, Ludong University, Yantai, China; Shandong Engineering Research Center for Aquaculture Environment Control, Yantai 264025, China
| | - Hongwei Zhu
- School of Life Sciences, Ludong University, Yantai, China; Collaborative Innovation Center for the Pet Infectious Diseases and Public Health in the Middle and Lower Stream Regions of the Yellow River, Yantai 264025, China
| | - Kexue Han
- Jinan Baiming Biopharmaceutical Co., Ltd, Ji'nan, Shandong 250101, China
| | - Xingxiao Zhang
- School of Life Sciences, Ludong University, Yantai, China; Collaborative Innovation Center for the Pet Infectious Diseases and Public Health in the Middle and Lower Stream Regions of the Yellow River, Yantai 264025, China; Shandong Engineering Research Center for Aquaculture Environment Control, Yantai 264025, China.
| |
Collapse
|
5
|
Khidr EG, El-Sayyad GS, Abulsoud AI, Rizk NI, Zaki MB, Raouf AA, Elrebehy MA, Abdel Hady MMM, Elballal MS, Mohammed OA, Abdel-Reheim MA, El-Dakroury WA, Abdel Mageed SS, Al-Noshokaty TM, Doghish AS. Unlocking the Potential of miRNAs in Sepsis Diagnosis and Prognosis: From Pathophysiology to Precision Medicine. J Biochem Mol Toxicol 2025; 39:e70156. [PMID: 39871533 DOI: 10.1002/jbt.70156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/25/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025]
Abstract
The clinical syndrome appears as a dysregulated host response to infection that results in life-threatening organ dysfunction known as Sepsis. Sepsis is a serious public health concern where for every five deaths in ICU there is one patient who dies with sepsis worldwide. Sepsis is featured as unbalanced inflammation and immunosuppression which is sustained and profound, increasing patient susceptibility to secondary infections and mortality. microRNAs (miRNAs) play a central role in the control of many biological processes, and the deregulation of their expression has been linked to the development of oncological, cardiovascular, neurodegenerative, and metabolic diseases. In this review, we discuss the role of miRNAs in sepsis pathophysiology. Overall, miRNAs are seen as promising biomarkers, and it has been proposed to develop miRNA-based diagnosis and therapies for sepsis. Yet, the picture is not so straightforward because of miRNAs' versatile and dynamic features. More research is needed to clarify the expression and role of miRNAs in sepsis and promote the use of miRNAs for sepsis management. This study provides an extensive, current, and thorough analysis of the involvement of miRNAs in sepsis. Its purpose is to encourage future research in this area, as tiny miRNAs have the potential to be used for rapid diagnosis, prognosis, and treatment of sepsis.
Collapse
Affiliation(s)
- Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Gharieb S El-Sayyad
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Cairo, Egypt
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Menoufia National University, Menofia, Egypt
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Mahmoud A Elrebehy
- Biochemistry Department, Faculty of Pharmacy, Galala University, Suez, Egypt
| | - Manal M M Abdel Hady
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | | | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | | | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
6
|
Li S, Liu Y, Weng L, Zhao Y, Zhang Y, Zhang Z, Yang Y, Chen Q, Liu X, Zhang H. The F 1F o-ATP synthase α subunit of Candida albicans induces inflammatory responses by controlling amino acid catabolism. Virulence 2023; 14:2190645. [PMID: 36914568 PMCID: PMC10072111 DOI: 10.1080/21505594.2023.2190645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/08/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Sepsis is a leading cause of fatality in invasive candidiasis. The magnitude of the inflammatory response is a determinant of sepsis outcomes, and inflammatory cytokine imbalances are central to the pathophysiological processes. We previously demonstrated that a Candida albicans F1Fo-ATP synthase α subunit deletion mutant was nonlethal to mice. Here, the potential effects of the F1Fo-ATP synthase α subunit on host inflammatory responses and the mechanism were studied. Compared with wild-type strain, the F1Fo-ATP synthase α subunit deletion mutant failed to induce inflammatory responses in Galleria mellonella and murine systemic candidiasis models and significantly decreased the mRNA levels of the proinflammatory cytokines IL-1β, IL-6 and increased those of the anti-inflammatory cytokine IL-4 in the kidney. During C. albicans-macrophage co-culture, the F1Fo-ATP synthase α subunit deletion mutant was trapped inside macrophages in yeast form, and its filamentation, a key factor in inducing inflammatory responses, was inhibited. In the macrophage-mimicking microenvironment, the F1Fo-ATP synthase α subunit deletion mutant blocked the cAMP/PKA pathway, the core filamentation-regulating pathway, because it failed to alkalinize environment by catabolizing amino acids, an important alternative carbon source inside macrophages. The mutant downregulated Put1 and Put2, two essential amino acid catabolic enzymes, possibly due to severely impaired oxidative phosphorylation. Our findings reveal that the C. albicans F1Fo-ATP synthase α subunit induces host inflammatory responses by controlling its own amino acid catabolism and it is significant to find drugs that inhibit F1Fo-ATP synthase α subunit activity to control the induction of host inflammatory responses.
Collapse
Affiliation(s)
- Shuixiu Li
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| | - Yuting Liu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| | - Luobei Weng
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| | - Yajing Zhao
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| | - Yishan Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| | - Zhanpeng Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| | - Yang Yang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| | - Qiaoxin Chen
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| | - Xiaocong Liu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| | - Hong Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Li Z, Lei Z, Cai Y, Cheng DB, Sun T. MicroRNA therapeutics and nucleic acid nano-delivery systems in bacterial infection: a review. J Mater Chem B 2023; 11:7804-7833. [PMID: 37539650 DOI: 10.1039/d3tb00694h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Bacteria that have worked with humans for thousands of years pose a major threat to human health even today, as drug resistance has become a prominent problem. Compared to conventional drug therapy, nucleic acid-based therapies are a promising and potential therapeutic strategy for diseases in which nucleic acids are delivered through a nucleic acid delivery system to regulate gene expression in specific cells, offering the possibility of curing intractable diseases that are difficult to treat at this stage. Among the many nucleic acid therapeutic ideas, microRNA, a class of small nucleic acids with special properties, has made great strides in biology and medicine in just over two decades, showing promise in preclinical drug development. In this review, we introduce recent advances in nucleic acid delivery systems and their clinical applications, highlighting the potential of nucleic acid therapies, especially miRNAs extracted from traditional herbs, in combination with the existing set of nucleic acid therapeutic systems, to potentially open up a new line of thought in the treatment of cancer, viruses, and especially bacterial infectious diseases.
Collapse
Affiliation(s)
- Ze Li
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Yilun Cai
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
8
|
Wang Z, Wang Z. The role of macrophages polarization in sepsis-induced acute lung injury. Front Immunol 2023; 14:1209438. [PMID: 37691951 PMCID: PMC10483837 DOI: 10.3389/fimmu.2023.1209438] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Sepsis presents as a severe infectious disease frequently documented in clinical settings. Characterized by its systemic inflammatory response syndrome, sepsis has the potential to trigger multi-organ dysfunction and can escalate to becoming life-threatening. A common fallout from sepsis is acute lung injury (ALI), which often progresses to acute respiratory distress syndrome (ARDS). Macrophages, due to their significant role in the immune system, are receiving increased attention in clinical studies. Macrophage polarization is a process that hinges on an intricate regulatory network influenced by a myriad of signaling molecules, transcription factors, epigenetic modifications, and metabolic reprogramming. In this review, our primary focus is on the classically activated macrophages (M1-like) and alternatively activated macrophages (M2-like) as the two paramount phenotypes instrumental in sepsis' host immune response. An imbalance between M1-like and M2-like macrophages can precipitate the onset and exacerbate the progression of sepsis. This review provides a comprehensive understanding of the interplay between macrophage polarization and sepsis-induced acute lung injury (SALI) and elaborates on the intervention strategy that centers around the crucial process of macrophage polarization.
Collapse
Affiliation(s)
| | - Zhong Wang
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
9
|
Shi M, Lu Q, Zhao Y, Ding Z, Yu S, Li J, Ji M, Fan H, Hou S. miR-223: a key regulator of pulmonary inflammation. Front Med (Lausanne) 2023; 10:1187557. [PMID: 37465640 PMCID: PMC10350674 DOI: 10.3389/fmed.2023.1187557] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Small noncoding RNAs, known as microRNAs (miRNAs), are vital for the regulation of diverse biological processes. miR-223, an evolutionarily conserved anti-inflammatory miRNA expressed in cells of the myeloid lineage, has been implicated in the regulation of monocyte-macrophage differentiation, proinflammatory responses, and the recruitment of neutrophils. The biological functions of this gene are regulated by its expression levels in cells or tissues. In this review, we first outline the regulatory role of miR-223 in granulocytes, macrophages, endothelial cells, epithelial cells and dendritic cells (DCs). Then, we summarize the possible role of miR-223 in chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), coronavirus disease 2019 (COVID-19) and other pulmonary inflammatory diseases to better understand the molecular regulatory networks in pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Mingyu Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Ziling Ding
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Sifan Yu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Junfeng Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Mengjun Ji
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
| |
Collapse
|
10
|
Zhou J, Yan X, Bi X, Lu S, Liu X, Yang C, Shi Y, Luo L, Yin Z. γ-Glutamylcysteine rescues mice from TNBS-driven inflammatory bowel disease through regulating macrophages polarization. Inflamm Res 2023; 72:603-621. [PMID: 36690783 DOI: 10.1007/s00011-023-01691-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/30/2022] [Accepted: 01/08/2023] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE To explore the molecular mechanism of γ-glutamylcysteine (γ-GC) in response to inflammation in vivo and in vitro on regulating the polarization of macrophages. METHODS The expressions of gene or protein were assessed by qPCR and Western blot assays, respectively. Cell viability was investigated by CCK-8 assay. Eight-week-old male BALB/c mice were established to examine the therapeutic effects of γ-GC in vivo. The release of TNF-α and IL-4 was determined by ELISA assay. Macrophages polarization was identified by flow cytometry assay. RESULTS Our data showed that γ-GC treatment significantly improved the survival, weight loss, and colon tissue damage of IBD mice. Furthermore, we established M1- and M2-polarized macrophages, respectively, and our findings provided evidence that γ-GC switched M1/M2-polarized macrophages through activating AMPK/SIRT1 axis and inhibiting inflammation-related signaling pathway. CONCLUSION Collectively, both in vivo and in vitro experiments suggested that γ-GC has the potential to become a promising novel therapeutic dipeptide for the treatment of IBD, which provide new ideas for the treatment of inflammatory diseases in the future.
Collapse
Affiliation(s)
- Jinyi Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Xintong Yan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Xiaowen Bi
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, People's Republic of China
| | - Shuai Lu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Xianli Liu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Chen Yang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Yingying Shi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210023, People's Republic of China.
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, People's Republic of China.
| |
Collapse
|
11
|
Tang S, Zhang X, Duan Z, Xu M, Kong M, Zheng S, Bai L, Chen Y. The novel hepatoprotective mechanisms of silibinin-phospholipid complex against d-GalN/LPS-induced acute liver injury. Int Immunopharmacol 2023; 116:109808. [PMID: 36764278 DOI: 10.1016/j.intimp.2023.109808] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND & AIMS Silibinin-phospholipid complex (SPC) has been utilized to treat acute liver injury clinically. Nevertheless, the hepatoprotective mechanism of SPC remains to be further dissected in response to new insights into the pathogenesis of acute liver injury. Very recently, we have documented, for the first time, that M2-like macrophages exert the hepatoprotection against acute insult through inhibiting necroptosis-S100A9-necroinflammation. In the present work, we integrated this new finding into the mechanism of action of SPC, and attempted to dissect the hepatoprotective mechanism of SPC from this new perspective. METHODS SPC and corresponding controls were administered intragastrically into control mice subjected to d-GalN/LPS challenge. The hepatic damage was assessed, and the expression of necroptosis-S100A9-necroinflammation signaling molecules was detected. The correlation between SPC and macrophage activation was investigated. The expression of miR-223-3p and its regulation on macrophage activation were analyzed. The targeted inhibitory effects of miR-223-3p on necroptosis and necroinflammation signaling molecules were confirmed. RESULTS SPC alleviated remarkably the hepatic damage triggered by d-GalN/LPS. The administration of SPC inhibited the expression of necroptosis-S100A9-necroinflammation signaling molecules. The levels of M2-like macrophage markers were increased significantly in SPC-treated mice or macrophages. miR-223-3p expression was enhanced in SPC-treated mice. miR-223-3p transfer led to up-regulated expression of M2-like macrophage markers. miR-223-3p directly targeted 3' UTR of RIPK3 and NLRP3, and the expression of necroptosis and necroinflammation signaling molecules was inhibited in miR-223-3p-transferred hepatocytes and macrophages. CONCLUSIONS SPC alleviates acute liver injury through up-regulating the expression of miR-223-3p. MiR-223-3p further promotes M2-like macrophage activation and the targeted inhibition of necroptosis and necroinflammation. Our findings provide novel insight into the hepatoprotective mechanism of SPC against acute liver injury.
Collapse
Affiliation(s)
- Shan Tang
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Xiaodan Zhang
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Zhongping Duan
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Manman Xu
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Ming Kong
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Sujun Zheng
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Li Bai
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China.
| | - Yu Chen
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
12
|
Qu M, Zhu H, Zhang X. Extracellular vesicle-mediated regulation of macrophage polarization in bacterial infections. Front Microbiol 2022; 13:1039040. [PMID: 36619996 PMCID: PMC9815515 DOI: 10.3389/fmicb.2022.1039040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are nanoscale membrane-enveloped vesicles secreted by prokaryotic and eukaryotic cells, which are commonly defined as membrane vesicles (MVs) and exosomes, respectively. They play critical roles in the bacteria-bacteria and bacteria-host interactions. In infectious diseases caused by bacteria, as the first line of defense against pathogens, the macrophage polarization mode commonly determines the success or failure of the host's response to pathogen aggression. M1-type macrophages secrete pro-inflammatory factors that support microbicidal activity, while alternative M2-type macrophages secrete anti-inflammatory factors that perform an antimicrobial immune response but partially allow pathogens to replicate and survive intracellularly. Membrane vesicles (MVs) released from bacteria as a distinctive secretion system can carry various components, including bacterial effectors, nucleic acids, or lipids to modulate macrophage polarization in host-pathogen interaction. Similar to MVs, bacteria-infected macrophages can secrete exosomes containing a variety of components to manipulate the phenotypic polarization of "bystander" macrophages nearby or long distance to differentiate into type M1 or M2 to regulate the course of inflammation. Exosomes can also repair tissue damage associated with the infection by upregulating the levels of anti-inflammatory factors, downregulating the pro-inflammatory factors, and regulating cellular biological behaviors. The study of the mechanisms by which EVs modulate macrophage polarization has opened new frontiers in delineating the molecular machinery involved in bacterial pathogenesis and challenges in providing new strategies for diagnosis and therapy.
Collapse
Affiliation(s)
- Mingjuan Qu
- School of Life Sciences, Ludong University, Yantai, China,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| | - Hongwei Zhu
- School of Life Sciences, Ludong University, Yantai, China,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China,Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Jinan, China
| | - Xingxiao Zhang
- School of Life Sciences, Ludong University, Yantai, China,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China,Shandong Breeding Environmental Control Engineering Laboratory, Yantai, China,*Correspondence: Xingxiao Zhang, ✉
| |
Collapse
|
13
|
Fang H, Chen J, Luo J, Hu J, Wang D, Lv L, Zhang W. Abietic acid attenuates sepsis-induced lung injury by inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway to inhibit M1 macrophage polarization. Exp Anim 2022; 71:481-490. [PMID: 35644586 PMCID: PMC9671762 DOI: 10.1538/expanim.22-0018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/03/2022] [Indexed: 08/17/2024] Open
Abstract
Lung injury is one of the leading causes of death in sepsis. Abietic acid (AA) has demonstrated anti-inflammatory and bacteriostatic properties. Herein, we established a mouse model of sepsis by cecal ligation and puncture, and intraperitoneally injected AA to treat. Lung injury was assessed by H&E staining and the inflammation in bronchoalveolar lavage fluid (BALF) were assessed by counting the number of inflammatory cells and detecting the content of inflammatory factors. Meanwhile, we also designed to study the effect of AA on lipopolysaccharide (LPS)-induced inflammatory response and macrophage marker gene expression in RAW264.7 cells in vitro. In this study, we found that AA inhibited LPS-induced secretion of inflammatory mediators (IL-1β, TNF-α, IL-6 and MIP-2), and decreased the expression of M1 macrophage e markers (CD16 and iNOS) and p-p65 protein, while increased the expression of M2 macrophage markers (CD206 and Arg-1) in RAW264.7 cells in vitro. In vivo, the therapy of AA not only rescued septic animals, but also attenuated lung injury in sepsis mice. Moreover, AA decreased the number of total cells, neutrophils and macrophages, the conceration of total protein, and the levels of inflammatory mediators in BALF of sepsis mice. Further, we found that AA inhibited M1 macrophage polarization and blocked nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway in BALF of sepsis mice. In conclusion, Abietic acid attenuates sepsis-induced lung injury, and its mechanism may be related to reducing inflammation by inhibiting NF-κB signaling to inhibit M1 macrophage polarization.
Collapse
Affiliation(s)
- Honglong Fang
- Department of Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou Zhejiang, 324000, P.R. China
| | - Juan Chen
- Department of Laboratory Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou Zhejiang, 324000, P.R. China
| | - Jian Luo
- Department of Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou Zhejiang, 324000, P.R. China
| | - Jianhua Hu
- Department of Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou Zhejiang, 324000, P.R. China
| | - Danqiong Wang
- Department of Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou Zhejiang, 324000, P.R. China
| | - Liang Lv
- Department of Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou Zhejiang, 324000, P.R. China
| | - Weiwen Zhang
- Department of Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou Zhejiang, 324000, P.R. China
| |
Collapse
|
14
|
Deny M, Arroba Nuñez LA, Romano M, Denis O, Casimir G, Chamekh M. Sex difference in innate inflammatory response and macrophage polarization in Streptococcus agalactiae-induced pneumonia and potential role of microRNA-223-3p. Sci Rep 2022; 12:17126. [PMID: 36224333 PMCID: PMC9555696 DOI: 10.1038/s41598-022-21587-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/29/2022] [Indexed: 01/04/2023] Open
Abstract
While number of studies have shown that biological sex is a risk factor in the incidence and severity of infection-induced inflammatory diseases, the underlying mechanisms are still poorly understood. In this study, we compared the innate inflammatory response in male and female mice with group B streptococcal (GBS)-induced pneumoniae. Although male and female mice displayed similar bacterial burdens, males exhibited more innate inflammatory cytokines and chemokines and a higher proportion of infiltrating monocytes/macrophages. The analysis of the distribution of macrophage subtypes M1 (pro-inflammatory) versus M2 (anti-inflammatory) yielded a higher M1/M2 ratio in infected males compared with females. Given the importance of the chromosome X-linked microRNA-223-3p (miR-223-3p) in modulating the inflammatory process and macrophage polarization, we investigated its potential contribution in sex bias of GBS-induced innate inflammatory response. Knock-down of miR-223-3p with specific antagomiR resulted in increased inflammatory response and higher M1/M2 ratio following GBS infection. Notably, compared to male mice, we detected higher amount of miR-223-3p in macrophages from females that correlated negatively with M1 phenotype. These results suggest that differential expression of miR-233-3p may impact macrophage polarization, thereby contributing to fine-tune sex differences in inflammatory response.
Collapse
Affiliation(s)
- Maud Deny
- Inflammation Unit, Laboratory of Pediatric Research, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
- ULB Center for Research in Immunology (U-CRI), Brussels, Belgium
| | - Luis Alexis Arroba Nuñez
- Inflammation Unit, Laboratory of Pediatric Research, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
- ULB Center for Research in Immunology (U-CRI), Brussels, Belgium
| | - Marta Romano
- Immune Response Service, Sciensano, Brussels, Belgium
| | - Olivier Denis
- Immune Response Service, Sciensano, Brussels, Belgium
| | - Georges Casimir
- Inflammation Unit, Laboratory of Pediatric Research, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
- Queen Fabiola University Children's Hospital, Brussels, Belgium
| | - Mustapha Chamekh
- Inflammation Unit, Laboratory of Pediatric Research, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.
- ULB Center for Research in Immunology (U-CRI), Brussels, Belgium.
| |
Collapse
|
15
|
Hao X, Wei H. LncRNA H19 alleviates sepsis-induced acute lung injury by regulating the miR-107/TGFBR3 axis. BMC Pulm Med 2022; 22:371. [PMID: 36180862 PMCID: PMC9524034 DOI: 10.1186/s12890-022-02091-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/27/2022] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Acute lung injury (ALI) increases sepsis morbidity and mortality. LncRNA H19 plays a critical role in sepsis. miR-107 is highly-expressed and TGFβ type III receptor (TGFBR3) is poorly-expressed in sepsis, yet their roles in sepsis development require further investigation. This study aimed to investigate the mechanism of H19 in alleviating sepsis-induced ALI through the miR-107/TGFBR3 axis. METHODS Mice were intravenously injected with Ad-H19 adenovirus vector or control vector one week before establishing the mouse model of cecal ligation and puncture (CLP). Pulmonary microvascular endothelial cells (PMVECs) were transfected with oe-H19 or oe-NC plasmids and then stimulated by lipopolysaccharide (LPS). Lung injury was assessed via hematoxylin-eosin staining, measurement of wet-to-dry (W/D) ratio, and TUNEL staining. Levels of H19, miR-107, and TGFBR3 were determined by RT-qPCR. Apoptosis of PMVECs was evaluated by flow cytometry. Levels of Bax and Bcl-2 in lung tissues and PMVECs were measured using Western blot. Total protein concentration and the number of total cells, neutrophils, and macrophages in bronchoalveolar lavage fluid (BALF) were quantified. Levels of TNF-α, IL-1β, IL-6, and IL-10 in BALF, lung tissues, and PMVECs were measured by ELISA. Cross-linking relationships among H19, miR-107 and TGFBR3 were verified by dual-luciferase and RIP assays. RESULTS H19 was poorly-expressed in CLP-operated mice. H19 overexpression attenuated sepsis-induced ALI, which was manifested with complete alveolar structure, decreased lung injury score and lung W/D ratio, and inhibited apoptosis in CLP-operated mice, which was manifested with decreased number of TUNEL-positive cells and Bax level and increased Bcl-2 level. CLP-operated mice had increased concentration of total protein and number of total cells, neutrophils, and macrophages in BALF, which was nullified by H19 overexpression. H19 overexpression declined levels of TNF-α, IL-1β, and IL-6 and elevated IL-10 levels. H19 inhibited LPS-induced PMVEC apoptosis and pro-inflammatory cytokine production. H19 targeted TGFBR3 as the ceRNA of miR-107. miR-107 overexpression or silencing TGFBR3 partially averted the inhibition of H19 overexpression on LPS-induced PMVEC apoptosis and pro-inflammatory cytokine production. CONCLUSION LncRNA H19 inhibited LPS-induced PMVEC apoptosis and pro-inflammatory cytokine production and attenuated sepsis-induced ALI by targeting TGFBR3 as the ceRNA of miR-107.
Collapse
Affiliation(s)
- Xiuling Hao
- Department of Respiratory Medicine, East Hospital, The Second Hospital of Hebei Medical University, No. 80, Huanghe Avenue, East Development Zone, Shijiazhuang City, 050000, Hebei Province, People's Republic of China
| | - Huiqiang Wei
- Department of Respiratory Medicine, East Hospital, The Second Hospital of Hebei Medical University, No. 80, Huanghe Avenue, East Development Zone, Shijiazhuang City, 050000, Hebei Province, People's Republic of China.
| |
Collapse
|
16
|
Chen X, Li W, Chen T, Ren X, Zhu J, Hu F, Luo J, Xing L, Zhou H, Sun J, Jiang Q, Zhang Y, Xi Q. miR-146a-5p promotes epithelium regeneration against LPS-induced inflammatory injury via targeting TAB1/TAK1/NF-κB signaling pathway. Int J Biol Macromol 2022; 221:1031-1040. [PMID: 36096257 DOI: 10.1016/j.ijbiomac.2022.09.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/13/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022]
Abstract
Intestinal inflammation often restricts the health and production of animals. MiR-146a has been proved to be an anti-inflammatory molecule in inflammatory disorders, but its role in the intestinal injury and regeneration remains unclear. The study aimed to explore the inflammatory response of intestinal epithelial cells (IECs) in intestinal tissue-specific miR-146a-5p knockout mouse models. We identified the role of miR-146a-5p in inhibiting inflammatory response and promoting proliferation under lipopolysaccharide (LPS) stimulation in vitro and vivo. LPS stimulation significantly increased the expression of TNF-α, IL6 and inhibited IPEC-J2 cell proliferation. Overexpression of miR-146a-5p can reverse the effect of LPS stimulation, and promote the proliferation of intestinal epithelial cells. In the LPS challenge experiment in intestine-specific miR-146a knock-out mice (CKO) and Floxp+/+ mice (CON), CKO mice were more sensitive to LPS stimulation, with more weight loss and more severe intestinal morphological damage than CON mice. Also, miR-146a-5p regulated LPS-induced intestinal injury, inflammation by targeting TAB1. Taken together, miR-146a may function as an anti-inflammatory factor in IECs by targeting TAB1/TAK1-IKK-NF-κB signaling pathway. miR-146a-5p may represent a promising biomarker for inflammatory disorders, and may provide an effective therapeutic method to alleviate weaning stress in piglets and some experimental basis to improve the intestinal health of livestock.
Collapse
Affiliation(s)
- Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Weite Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Xiaohui Ren
- Ocean College of Hebei Agricultural University, Qinhuangdao 066003, China
| | - Jiahao Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Fangxin Hu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Lipeng Xing
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Hao Zhou
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China.
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China.
| |
Collapse
|
17
|
Küçük M, Aksoy U, Özer Şehirli A. Possible protective effects of the Bmal1 gene and melatonin on the prognosis of apical periodontitis. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Gu J, Xu H, Chen Y, Li N, Hou X. MiR-223 as a Regulator and Therapeutic Target in Liver Diseases. Front Immunol 2022; 13:860661. [PMID: 35371024 PMCID: PMC8965842 DOI: 10.3389/fimmu.2022.860661] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/23/2022] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding single-stranded small molecule RNAs consisting of 20–24 nucleotides that are highly conserved in species evolution. Expression of miRNAs is strictly tissue-specific, and it is chronological in fungi and plants, as well as in animals. MiR-223 has been shown to play a key role in innate immunity, and dysregulation of its expression contributes to the pathogenesis of multiple inflammatory diseases, and cancers. In this article the biosynthesis and functions of miR-223 in innate immunity are reviewed, and the role of miR-223 in liver physiopathology and therapeutic prospects are highlighted.
Collapse
Affiliation(s)
- Jiarong Gu
- School of Medicine, Ningbo University, Ningbo, China
| | - Hao Xu
- School of Medicine, Ningbo University, Ningbo, China
| | - Yandong Chen
- School of Medicine, Ningbo University, Ningbo, China
| | - Na Li
- School of Medicine, Ningbo University, Ningbo, China
| | - Xin Hou
- School of Medicine, Ningbo University, Ningbo, China.,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| |
Collapse
|
19
|
Entezari M, Sadrkhanloo M, Rashidi M, Asnaf SE, Taheriazam A, Hashemi M, Ashrafizadeh M, Zarrabi A, Rabiee N, Hushmandi K, Mirzaei S, Sethi G. Non-coding RNAs and macrophage interaction in tumor progression. Crit Rev Oncol Hematol 2022; 173:103680. [PMID: 35405273 DOI: 10.1016/j.critrevonc.2022.103680] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The macrophages are abundantly found in TME and their M2 polarization is in favor of tumor malignancy. On the other hand, non-coding RNAs (ncRNAs) can modulate macrophage polarization in TME to affect cancer progression. The miRNAs can dually induce/suppress M2 polarization of macrophages and by affecting various molecular pathways, they modulate tumor progression and therapy response. The lncRNAs can affect miRNAs via sponging and other molecular pathways to modulate macrophage polarization. A few experiments have also examined role of circRNAs in targeting signaling networks and affecting macrophages. The therapeutic targeting of these ncRNAs can mediate TME remodeling and affect macrophage polarization. Furthermore, exosomal ncRNAs derived from tumor cells or macrophages can modulate polarization and TME remodeling. Suppressing biogenesis and secretion of exosomes can inhibit ncRNA-mediated M2 polarization of macrophages and prevent tumor progression. The ncRNAs, especially exosomal ncRNAs can be considered as non-invasive biomarkers for tumor diagnosis.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sholeh Etehad Asnaf
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
20
|
Yuan S, Wu Q, Wang Z, Che Y, Zheng S, Chen Y, Zhong X, Shi F. miR-223: An Immune Regulator in Infectious Disorders. Front Immunol 2021; 12:781815. [PMID: 34956210 PMCID: PMC8702553 DOI: 10.3389/fimmu.2021.781815] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are diminutive noncoding RNAs that can influence disease development and progression by post-transcriptionally regulating gene expression. The anti-inflammatory miRNA, miR-223, was first identified as a regulator of myelopoietic differentiation in 2003. This miR-223 exhibits multiple regulatory functions in the immune response, and abnormal expression of miR-223 is shown to be associated with multiple infectious diseases, including viral hepatitis, human immunodeficiency virus type 1 (HIV-1), and tuberculosis (TB) by influencing neutrophil infiltration, macrophage function, dendritic cell (DC) maturation and inflammasome activation. This review summarizes the current understanding of miR-223 physiopathology and highlights the molecular mechanism by which miR-223 regulates immune responses to infectious diseases and how it may be targeted for diagnosis and treatment.
Collapse
Affiliation(s)
- Shun Yuan
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qi Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanjia Che
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sihao Zheng
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuanyang Chen
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaohan Zhong
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Shi
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|