1
|
Gamus D, Shoenfeld Y. Acupuncture therapy in autoimmune diseases: A narrative review. Autoimmun Rev 2025; 24:103709. [PMID: 39586390 DOI: 10.1016/j.autrev.2024.103709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
We provide a narrative review of experimental and clinical evidence for the effect of acupuncture in autoimmune diseases, based on randomized controlled studies, systematic review and meta-analyses, published between the years 2000-2023. Acupuncture in experimental models of rheumatoid arthritis (RA), multiple sclerosis, psoriasis, ulcerative colitis (UC) downregulated inflammatory cytokine expression, increased IL-10 expression, improved Treg cell differentiation, and also modulated macrophage polarization in RA and UC models. The anti-inflammatory effect of acupuncture in autoimmune disorders has been demonstrated to involve vagal-adrenal and cholinergic anti-inflammatory pathways. The analgesic effect of acupuncture involves both peripheral and central anti-nociceptive mechanisms. Randomized controlled studies support the use of acupuncture in rheumatoid arthritis, fibromyalgia, Crohn's disease and in Sjogren's syndrome. Some evidence indicates that acupuncture may be beneficial as a symptomatic treatment for multiple sclerosis, myasthenia gravis, psoriasis and ankylosing spondylitis.
Collapse
Affiliation(s)
- Dorit Gamus
- Complementary and Integrative Medicine Service, Sheba Medical Center, Tel-Hashomer 5265601, Israel.
| | - Yehuda Shoenfeld
- Reichman University, Herzelia, Israel; Zabludowicz Center for Autoimmune Diseases (Founder), Sheba Medical Center, Tel-Hashomer 5265601, Israel.
| |
Collapse
|
2
|
Liu X, Yang L, Su Z, Ma X, Liu Y, Ma L, Ma X, Ma M, Liu X, Zhang K, Chen X. Acupoint catgut embedding alleviates experimental autoimmune encephalomyelitis by modulating neuroinflammation and potentially inhibiting glia activation through JNK and ERK pathways. Front Neurosci 2025; 18:1520092. [PMID: 39850625 PMCID: PMC11755674 DOI: 10.3389/fnins.2024.1520092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/06/2024] [Indexed: 01/25/2025] Open
Abstract
Background Acupoint catgut embedding (ACE) is a traditional Chinese medicine technique commonly used for managing various disorders, including chronic inflammatory pain and allergic asthma. Despite its growing use, the neuroimmunological mechanisms underlying ACE treatment effects remain unclear. Methods This study investigated the roles and potential mechanisms of the effects of ACE in treating experimental autoimmune encephalomyelitis (EAE), a frequently used animal model of autoimmune neuroinflammation. The effects of ACE treatment were evaluated by monitoring body weight and EAE severity scores. Behavioral tests, histopathological analysis, ELISA, and flow cytometry were conducted to assess the therapeutic efficacy of ACE. RNA sequencing was performed to uncover ACE-associated transcriptional signatures in the spinal cords of EAE mice. Results The results were validated through western blotting, qRT-PCR, and immunofluorescence (IF) staining. In ACE-treated mice, EAE disease severity was significantly ameliorated, along with improvements in anxiety-like behaviors and reduced inflammation and demyelination. The ACE treatment restored immune imbalance in the EAE mice by decreasing Th17 and Th1 cells, while increasing Treg cells in peripheral immune organs and reducing serum inflammatory cytokine levels. RNA sequencing revealed significant suppression of the genes and pathways associated with reactive microglial and astrocytic activation, corroborated by IF studies. Additionally, ACE treatment could suppress the ERK and JNK signaling pathways at both RNA and protein levels. Conclusion These findings confirm the protective role of ACE in mitigating EAE symptoms by modulating microglial and astrocytic activity and regulating inflammatory cytokines.
Collapse
Affiliation(s)
- Xiaofang Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Liansheng Yang
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhumin Su
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xueying Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yingying Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lili Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaomeng Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Mingxia Ma
- Department of Cardiology, Shanxi Province Cardiovascular Hospital, Taiyuan, China
| | - Xiaoyun Liu
- Department of General Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kun Zhang
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Allergy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
3
|
Fan X, Liu Y, Li S, Yang Y, Zhao Y, Li W, Hao J, Xu Z, Zhang B, Liu W, Zhang S. Comprehensive landscape-style investigation of the molecular mechanism of acupuncture at ST36 single acupoint on different systemic diseases. Heliyon 2024; 10:e26270. [PMID: 38375243 PMCID: PMC10875596 DOI: 10.1016/j.heliyon.2024.e26270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/21/2024] Open
Abstract
The principle of acupoint stimulation efficacy is based on traditional meridian theory. However, the molecular mechanisms underlying the therapeutic effects of acupoints in treating diseases remain unclear in modern scientific understanding. In this study, we selected the ST36 acupoint for investigation and summarized all relevant literature from the PubMed database over the past 10 years. The results indicate that stimulation of ST36 single acupoints has therapeutic effects mainly in models of respiratory, neurological, digestive, endocrine and immune system diseases. And it can affect the inflammatory state, oxidative stress, respiratory mucus secretion, intestinal flora, immune cell function, neurotransmitter transmission, hormone secretion, the network of Interstitial Cells of Cajal (ICC) and glucose metabolism of the organism in these pathological states. Among them, acupuncture at the ST36 single point has the most prominent function in regulating the inflammatory state, which can mainly affect the activation of MAPK signaling pathway and drive the "molecular-cellular" mode involving macrophages, T-lymphocytes, mast cells (MCs) and neuroglial cells as the core to trigger the molecular level changes of the acupuncture point locally or in the target organ tissues, thereby establishing a multi-system, multi-target, multi-level molecular regulating mechanism. This article provides a comprehensive summary and discussion of the molecular mechanisms and effects of acupuncture at the ST36 acupoint, laying the groundwork for future in-depth research on acupuncture point theory.
Collapse
Affiliation(s)
- Xiaojing Fan
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, China
| | - Yunlong Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Shanshan Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Chinese Medicine, Tianjin, 301617, China
| | - Yongrui Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yinghui Zhao
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Wenxi Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jiaxin Hao
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Chinese Medicine, Tianjin, 301617, China
| | - Bo Zhang
- Department of Automation, Tsinghua University, Institute for TCM-X, Beijing, 100084, China
| | - Wei Liu
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Hebei Province Hospital of Chinese Medicine, Hebei Shijiazhuang, 050011, China
| | - Suzhao Zhang
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Hebei Province Hospital of Chinese Medicine, Hebei Shijiazhuang, 050011, China
| |
Collapse
|
4
|
Wang J, Yao X, Xiong X, Liu Y, Zhao W, Zhang X, Li X, Wang J, Lei C, Jiang W, Zhang K, Li X, Weng Y, Li J, Zhang R, Zhang Z, Li H, Kong Q, Tian S, Lv Y, Mu L. Effect of ST36 electroacupuncture on the switch of skeletal muscle fibres in mice with sciatic nerve dissociation. Eur J Neurosci 2024; 59:192-207. [PMID: 38145884 DOI: 10.1111/ejn.16228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 12/27/2023]
Abstract
Skeletal muscle is striated muscle that moves autonomously and is innervated by peripheral nerves. Peripheral nerve injury is very common in clinical treatment. However, the commonly used treatment methods often focus on the regeneration of the injured nerve but overlook the pathological changes in the injured skeletal muscle. Acupuncture, as the main treatment for denervated skeletal muscle atrophy, is used extensively in clinical practice. In the present study, a mouse model of lower limb sciatic nerve detachment was constructed and treated with electroacupuncture Stomach 36 to observe the atrophy of lower limb skeletal muscle and changes in skeletal muscle fibre types before and after electroacupuncture Stomach 36 treatment. Mice with skeletal muscle denervation showed a decrease in the proportion of IIa muscle fibres and an increase in the proportion of IIb muscle fibres, after electroacupuncture Stomach 36. The changes were reversed by specific activators of p38 MAPK, which increased IIa myofibre ratio. The results suggest that electroacupuncture Stomach 36 can reverse the change of muscle fibre type from IIb to IIa after denervation of skeletal muscle by inhibiting p38 MAPK. The results provide an important theoretical basis for the treatment of clinical peripheral nerve injury diseases with electroacupuncture, in addition to novel insights that could facilitate the study of pathological changes of denervated skeletal muscle.
Collapse
Affiliation(s)
- Jinghua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, China
| | - Xiuhua Yao
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Xiaoyue Xiong
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, China
| | - Yumei Liu
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, China
| | - Wei Zhao
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, China
| | - Xiaoyu Zhang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, China
| | - Xinrong Li
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, China
| | - Jiaqi Wang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, China
| | - Cheng Lei
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, China
| | - Wei Jiang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, China
| | - Kefan Zhang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, China
| | - Xiangyang Li
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, China
| | - Yuting Weng
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, China
| | - Jie Li
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, China
| | - Ran Zhang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, China
| | - Zhaonan Zhang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, China
| | - Hulun Li
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, China
| | - Qingfei Kong
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, China
| | - Sijia Tian
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, China
| | - Yanhua Lv
- Department of Neurology, 962 Hospital of the Joint Logistic Support Force of the People's Liberation Army of China, Harbin, China
| | - Lili Mu
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Chen X, Wang Y, Ji J, Li C, Zhuang W, Luo J, Shi Y, Lin Q, Wu J, Li A, Wang J, Meng Y, Zhang S, Lang X, Liu X, Sun B, Li H, Liu Y. Electroacupuncture at ST36 acupoint regulates stem cells during experimental autoimmune encephalomyelitis. Int Immunopharmacol 2023; 124:110856. [PMID: 37647680 DOI: 10.1016/j.intimp.2023.110856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Electroacupuncture (EA) is given to assist in the treatment of MS, which is an effective therapeutic method. However, the therapy mechanism of EA related to stem cells in the treatment of MS is not yet known. In this study, we used a classic animal model of multiple sclerosis: experimental autoimmune encephalomyelitis (EAE) to evaluate the therapeutic effect of EA at Zusanli (ST36) acupoint in EAE and shed light on its potential roles in the effects of stem cells in vivo. METHODS The EAE animal models were established. From the first day after immunization, EAE model mice received EA at ST36 acupoint, named the EA group. The weight and clinical score of the three groups were recorded for 28 days. The demyelination, inflammatory cell infiltration, and markers of neural stem cells (NSCs), hematopoietic stem cells (HSCs), and mesenchymal stem cells (MSCs) were compared. RESULTS We showed that EAE mice treated with EA at ST36 acupoint, were suppressed in demyelination and inflammatory cell infiltration, and thus decreased clinical score and weight loss and mitigated the development of EAE when compared with the EAE group. Moreover, our data revealed that the proportions of NSCs, HSCs, and MSCs increased in the EA group compared with the EAE group. CONCLUSIONS Our study suggested that EA at ST36 acupoint was an effective nonpharmacological therapeutic protocol that not only reduced the CNS demyelination and inflammatory cell infiltration in EAE disease but also increased the proportions of various stem cells. Further study is necessary to better understand how EA at the ST36 acupoint affects EAE.
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Yanping Wang
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Jiayu Ji
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Changyu Li
- Department of Neurosurgery, Hainan Cancer Hospital, Haikou, China
| | - Wei Zhuang
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Jingyu Luo
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Yu Shi
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Qian Lin
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Junfeng Wu
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Anqi Li
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Jing Wang
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Yanting Meng
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Sifan Zhang
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Xiujuan Lang
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Xijun Liu
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Bo Sun
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Hulun Li
- Department of Neurobiology, Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Harbin, China
| | - Yumei Liu
- Department of Neurobiology, Harbin Medical University, Harbin, China.
| |
Collapse
|
6
|
Wang J, Zhu F, Huang W, Yang C, Chen Z, Lei Y, Wang Y, Meng Y, Liu Y, Liu X, Sun B, Li H. Acupuncture at ST36 ameliorates experimental autoimmune encephalomyelitis via affecting the function of B cells. Int Immunopharmacol 2023; 123:110748. [PMID: 37531831 DOI: 10.1016/j.intimp.2023.110748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/15/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Acupuncture at ST36 can alleviate a variety of autoimmune diseases, including experimental autoimmune encephalomyelitis (EAE), while the specific mechanism for the treatment of EAE is not clear. In this study, we found that acupuncture at ST36 can significantly increase the excitability of splenic sympathetic nerve, and promote the differentiation of peripheral B and CD4+T cells in the anti-inflammatory direction. After blocking the splenic sympathetic nerve with 6-OHDA, this anti-inflammatory effect of acupuncture is partially reversed. In addition, the results of western blot and qPCR showed that acupuncture at ST36 simultaneously activated the β2-AR-cAMP signaling pathway in the splenic B and CD4+T cells, and this activation was more significant in B cells. In vitro, when CD4+T cells were cultured alone, norepinephrine (NE) had no significant effect on their differentiation. While in the presence of B cells, NE significantly promotes the anti-inflammatory differentiation of B and CD4+T cells. Therefore, the above results reveal that acupuncture can relieve EAE by stimulating the sympathetic nerves of spleen, mainly through acting on B cells to mediate anti-inflammatory effects, and indirectly affecting the function of CD4+T cells.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Fangyi Zhu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Wei Huang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Changxin Yang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Zhengyi Chen
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Yanting Lei
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Yanping Wang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Yanting Meng
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Yumei Liu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Xijun Liu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Bo Sun
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China.
| | - Hulun Li
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China.
| |
Collapse
|
7
|
Koduru TS, Gupta VN, Veeranna B, Seetharaman S. A Dual Therapy of Nanostructured Lipid Carrier Loaded with Teriflunomide-A Dihydro-Orotate Dehydrogenase Inhibitor and an miR-155-Antagomir in Cuprizone-Induced C57BL/6J Mouse. Pharmaceutics 2023; 15:pharmaceutics15041254. [PMID: 37111739 PMCID: PMC10143733 DOI: 10.3390/pharmaceutics15041254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/14/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The effective treatment of central nervous system (CNS) disorders such as multiple sclerosis (MS) has been challenging due to the limited ability of therapeutic agents to cross the blood-brain barrier (BBB). In this study, we investigated the potential of nanocarrier systems to deliver miR-155-antagomir-teriflunomide (TEF) dual therapy to the brain via intranasal (IN) administration to manage MS-associated neurodegeneration and demyelination. Our results showed that the combinatorial therapy of miR-155-antagomir and TEF loaded in nanostructured lipid carriers (NLCs) significantly increased brain concentration and improved targeting potential. The novelty of this study lies in the use of a combinatorial therapy approach of miR-155-antagomir and TEF loaded in NLCs. This is a significant finding, as the effective delivery of therapeutic molecules to the CNS has been a challenge in treating neurodegenerative disorders. Additionally, this study sheds light on the potential use of RNA-targeting therapies in personalized medicine, which could revolutionize the way CNS disorders are managed. Furthermore, our findings suggest that nanocarrier-loaded therapeutic agents have great potential for safe and economical delivery in treating CNS disorders. Our study provides novel insights into the effective delivery of therapeutic molecules via the IN route for managing neurodegenerative disorders. In particular, our results demonstrate the potential of delivering miRNA and TEF via the intranasal route using the NLC system. We also demonstrate that the long-term use of RNA-targeting therapies could be a promising tool in personalized medicine. Importantly, using a cuprizone-induced animal model, our study also investigated the effects of TEF-miR155-antagomir-loaded NLCs on demyelination and axonal damage. Following six weeks of treatment, the TEF-miR155-antagomir-loaded NLCs potentially lowered the demyelination and enhanced the bioavailability of the loaded therapeutic molecules. Our study is a paradigm shift in delivering miRNAs and TEF via the intranasal route and highlights the potential of this approach for managing neurodegenerative disorders. In conclusion, our study provides critical insights into the effective delivery of therapeutic molecules via the IN route for managing CNS disorders, and especially MS. Our findings have significant implications for the future development of nanocarrier-based therapies and personalized medicine. Our results provide a strong foundation for further studies and the potential to develop safe and economic therapeutics for CNS disorders.
Collapse
Affiliation(s)
- Trideva Sastri Koduru
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Mysuru 570015, India
| | - Vishal N Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Mysuru 570015, India
| | - Balamuralidhara Veeranna
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Mysuru 570015, India
| | | |
Collapse
|
8
|
Trideva Sastri K, Vishal Gupta N, Kannan A, Balamuralidhara V, Ramkishan A. Potential nanocarrier-mediated miRNA-based therapy approaches for multiple sclerosis. Drug Discov Today 2022; 27:103357. [PMID: 36115632 DOI: 10.1016/j.drudis.2022.103357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune neuroinflammatory disorder attributed to neurodegeneration and demyelination, resulting in neurological impairment. miRNA has a significant role in biological processes in MS. In this review, we focus on the feasibility of delivering miRNAs through nanoformulations for managing MS. We provide a brief discussion of miRNA synthesis and evidence for miRNA dysregulation in MS. We also highlight formulation strategies and resulting technologies for the effective delivery of miRNAs through nanocarrier systems for achieving high therapeutic benefits.
Collapse
Affiliation(s)
- K Trideva Sastri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - Anbarasu Kannan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - V Balamuralidhara
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - A Ramkishan
- Deputy Drugs Controller (India), Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| |
Collapse
|
9
|
Role of miR-155 in inflammatory autoimmune diseases: a comprehensive review. Inflamm Res 2022; 71:1501-1517. [DOI: 10.1007/s00011-022-01643-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/05/2022] Open
|
10
|
Khodaie F, Abbasi N, Kazemi Motlagh AH, Zhao B, Naser Moghadasi A. Acupuncture for multiple sclerosis: A literature review. Mult Scler Relat Disord 2022; 60:103715. [DOI: 10.1016/j.msard.2022.103715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/06/2022] [Accepted: 02/24/2022] [Indexed: 12/09/2022]
|
11
|
Oh JE, Kim SN. Anti-Inflammatory Effects of Acupuncture at ST36 Point: A Literature Review in Animal Studies. Front Immunol 2022; 12:813748. [PMID: 35095910 PMCID: PMC8790576 DOI: 10.3389/fimmu.2021.813748] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
So far, a number of acupuncture studies have shown anti-inflammatory effects of acupuncture treatment, mostly known at specific point ST36. However, there is no literature that oversaw the inflammation-regulatory effects of acupuncture in each tissue. Therefore, we investigated how acupuncture at specific acupoint ST36 regulates inflammation and its underlying mechanisms. We searched literatures on PubMed until July 2021 using the keywords “animal, acupuncture, ST36, inflammation, immune,” and 292 literatures were searched. We ultimately selected 69 studies to determine the anti-inflammatory actions of acupuncture at ST36 and classified the changes of inflammatory mediators according to target regions. Forty-three studies were included in body fluids, 27 studies in the digestive system, 17 studies in the nervous system, and 30 studies in other tissues or organs. In this review, we found that acupuncture at ST36 has clinical benefits in relieving inflammation through several mechanisms such as vagus nerve activation, toll-like receptor 4 (TLR4)/NF-κB signaling, macrophage polarization, mitogen-activated protein kinase (MAPK) signaling pathway, and cholinergic anti-inflammatory pathway. We expect that these data will inform further studies related to ST36 acupuncture on inflammation.
Collapse
Affiliation(s)
- Ji-Eun Oh
- College of Korean Medicine, Dongguk University, Goyang, South Korea
| | - Seung-Nam Kim
- College of Korean Medicine, Dongguk University, Goyang, South Korea
| |
Collapse
|