1
|
Li R, He S, Wang F, Liu S, Xu K, Luo M. Morin induces autophagy-dependent ferroptosis in colorectal cancer cells by inhibiting the AURKB-UCHL3 interactions. Cell Signal 2025:111875. [PMID: 40389047 DOI: 10.1016/j.cellsig.2025.111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/25/2025] [Accepted: 05/14/2025] [Indexed: 05/21/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) poses a significant threat to human health, and its underlying mechanisms require further exploration. Morin, a natural flavonoid, exhibits anti-CRC activity, but its molecular mechanisms remain unclear. This study aimed to evaluate its anti-CRC effects and elucidate its molecular mechanisms to provide new insights for CRC treatment. METHODS Molecular docking predicted potential binding between morin and AURKB. Experimental validation included qPCR, Western blotting, co-immunoprecipitation, and immunofluorescence. Autophagy-dependent ferroptosis was assessed by measuring mitochondrial superoxide, MDA, GSH, and ROS levels, as well as NCOA4 and FTH1 expression. RESULTS AURKB is highly expressed in CRC, and stabilized via interaction with the deubiquitinase UCHL3, which activated the PI3K/Akt/mTOR pathway and suppressed autophagy-dependent ferroptosis. This suppression was characterized by reduced mitochondrial superoxide, decreased MDA and ROS levels, elevated GSH, and upregulated FTH1. Morin disrupted the AURKB-UCHL3 interaction, promoted AURKB degradation, reversed ferroptosis inhibition, and suppressed CRC cell proliferation and migration. CONCLUSION This study is the first to demonstrate that morin inhibits CRC progression by targeting the AURKB-UCHL3 axis to regulate autophagy-dependent ferroptosis, providing experimental evidence for its therapeutic potential in CRC treatment.
Collapse
Affiliation(s)
- Rui Li
- Department of Rehabilitation, Beijing Jishuitan Hospital Guizhou Hospital, Si Xian Street NO.206, Guiyang 550014, Guizhou, China
| | - Sha He
- Department of Rehabilitation, Beijing Jishuitan Hospital Guizhou Hospital, Si Xian Street NO.206, Guiyang 550014, Guizhou, China
| | - Fengxia Wang
- Department of Rehabilitation, Beijing Jishuitan Hospital Guizhou Hospital, Si Xian Street NO.206, Guiyang 550014, Guizhou, China
| | - Shan Liu
- The Second Clinical School of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, Guizhou, China
| | - Kunyao Xu
- Department of Geriatrics, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, Guizhou, China
| | - Meng Luo
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, No.28 Guiyi Street, Yunyan District, Guiyang 550001, Guizhou Province, China.
| |
Collapse
|
2
|
Khademi R, Mirzaei A, Mirzaei A, Edjlali FR, Askari VR, Baradaran Rahimi V. Morin, as a natural flavonoid, provides promising influences against cardiovascular diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03783-4. [PMID: 39808314 DOI: 10.1007/s00210-024-03783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
The present investigation evaluated the potential impacts of morin, a natural flavonoid, against cardiovascular disorders. Since inception until September 2024, PubMed, Scopus, and Web of Science have been searched extensively. The process involved eliminating duplicate entries and conducting a systematic review of the remaining studies post-full-text screening. The search was conducted with meticulousness and in adherence to established protocols. Morin has shown various cardioprotective effects in experimental models. It reduces oxidative stress, inflammation, and tissue damage in conditions like myocardial ischemia, injury, and infarction. It also mitigates the harmful effects of toxins and improves hemodynamic parameters, antioxidant levels, and cardiac function. Moreover, it can address conditions like chronic iron overload and metabolic syndrome. Its mechanisms of action involve regulating signaling pathways, promoting autophagy, and reducing oxidative stress and inflammation. Morin hydrate is promising as a therapeutic agent for cardiovascular and related disorders. Morin Hydrate exhibits promising cardioprotective properties, effectively reducing oxidative stress and inflammation in myocardial conditions while also countering the effects of toxins and improving heart function. Additionally, it holds the potential for addressing chronic iron overload and metabolic syndrome. Its multifaceted mechanisms, including signaling pathway regulation and promotion of autophagy, highlight its therapeutic potential for various cardiovascular and related disorders.
Collapse
Affiliation(s)
- Reza Khademi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farid Reza Edjlali
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Huang M, Xie X, Yuan R, Xin Q, Ma S, Guo H, Miao Y, Hu C, Zhu Y, Cong W. The multifaceted anti-atherosclerotic properties of herbal flavonoids: A comprehensive review. Pharmacol Res 2025; 211:107551. [PMID: 39701504 DOI: 10.1016/j.phrs.2024.107551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Atherosclerosis (AS) is a major etiological factor underpinning a spectrum of cardiovascular diseases, leading to cerebral infarction, coronary artery disease, and peripheral vascular disease. The chronic progression of AS, spanning from initial plaque formation to the occurrence of acute cardiovascular events, underscores the complexity of AS and the challenges it presents in terms of treatment. Currently, the clinical management of AS relies predominantly on statins and proprotein convertase subtilisin/kexin type 9 inhibitors, which primarily aim to reduce low-density lipoprotein levels and have demonstrated some therapeutic efficacy. Nevertheless, due to their potential side effects, there is a pressing need to actively investigate alternative treatment approaches. Researches on natural compounds derived from herbal medicines, such as flavonoids, hold significant promise in combating AS by regulating lipid metabolism, reducing oxidative stress and inflammation, inhibiting the proliferation of vascular smooth muscle cells, modulating autophagy and additional pathways. Various targets participate in these physiological processes, encompassing acyl-CoA: cholesterol acyltransferase (ACAT), ATP citrate lyase (ACLY), nuclear factor erythroid 2-related factor 2 (Nrf2), krüppel-like factor 2 (KLF2), NOD-like receptor protein 3 (NLRP3), transcription factor EB (TFEB) and so on. This comprehensive review endeavors to synthesize and analyse the most recent findings on herbal flavonoids, shedding light on their anti-atherosclerotic potential and the underlying protective mechanisms and related-targets, which might pave the way for the development of novel drug candidates or the optimization of flavonoid-based therapies.
Collapse
Affiliation(s)
- Meiwen Huang
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China; Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xuena Xie
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China; Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Shudong Ma
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Hongai Guo
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Chunyu Hu
- Department of Teaching Quality Construction, Graduate School, China Academy of Chinese Medical Sciences, 100700, China
| | - Yizhun Zhu
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Weihong Cong
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China; Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
4
|
Zhang L, Wang H, Wang Z, Xu J, Wang M, Wang W, He Q, Yu Y, Yuan D, Bu G, Qiu R, Long J. Resveratrol promotes cholesterol efflux from dendritic cells and controls costimulation and T-cell activation in high-fat and lipopolysaccharide-driven atherosclerotic mice. Front Cardiovasc Med 2024; 11:1450898. [PMID: 39759494 PMCID: PMC11695297 DOI: 10.3389/fcvm.2024.1450898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/22/2024] [Indexed: 01/07/2025] Open
Abstract
Cholesterol aggregation in dendritic cells (DCs) triggers an inflammatory response and accelerates the development of atherosclerosis (AS). Resveratrol (RES), a natural compound with anti-inflammatory and cholesterol metabolism regulatory properties, has been shown to influence the maturation and inflammatory functions of DCs. However, its relationship with cholesterol metabolism remains unclear. This study aimed to explore the roles of RES in cholesterol metabolism and inflammatory behaviors of DCs in the context of AS. We analyzed the effect of RES on cholesterol efflux from ApoE-/- bone marrow-derived dendritic cells (BMDCs) using qRT-PCR, Western blot, and cholesterol efflux assays; identified the inflammatory status of RES-treated BMDCs and co-cultured T cells using flow cytometry and ELISA; confirmed the effect of RES on blood lipids, atherosclerotic lesions, cholesterol metabolism, and inflammatory response in high-fat diet and lipopolysaccharide-treated ApoE-/- mice; and explored the potential targets of RES in regulating inflammatory behavior via molecular docking. The results revealed that RES promotes cholesterol efflux, increases the expression of efflux transporter ABCA1, and decreases liver X receptor alpha (LXRα) expression in response to a decrease in intracellular cholesterol in ApoE-/- BMDCs. RES also reduced MHC-II+ cells and downregulated costimulatory molecule CD80 in BMDCs with decreased IL-6 and increased IL-2 production, and suppressed T-cell activation and modulates IL-22 and IL-10 secretion via BMDCs. Furthermore, we confirmed that RES relieves arterial lesions and regulates blood lipids in ApoE-/- mice. RES demonstrated ABCA1 upregulation and LXRα downregulation effects in the aorta and regulated costimulation molecules and Th17/Treg cytokines in the spleen. Furthermore, RES showed multiple hydrogen bonding and low binding energy with ABCA1, suggesting that ABCA1 is a potential target of RES to modulate the inflammatory properties of BMDCs. Our study demonstrated that RES regulates cholesterol efflux and inflammatory behavior in BMDCs, contributing to the control of AS progression and offering new insights for managing inflammatory diseases.
Collapse
Affiliation(s)
- Linhui Zhang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Haixia Wang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zishan Wang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jianyi Xu
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mengyuan Wang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wenxin Wang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qiongshan He
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yun Yu
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Dongping Yuan
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Guirong Bu
- Department of Pharmacy, Wuxi Huishan Traditional Chinese Medicine Hospital, Wuxi, Jiangsu, China
| | - Runze Qiu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Long
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Zhu J, Wang Z, Liu C, Shi M, Guo Z, Li Y, Yu R, Wei J. Study on the Anti-Atherosclerotic Mechanisms of Xin-Tong-Tai Granule Through Network Pharmacology, Molecular Docking, and Experimental Validation. J Inflamm Res 2024; 17:8147-8164. [PMID: 39525320 PMCID: PMC11545721 DOI: 10.2147/jir.s490815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background Xin-Tong-Tai Granule (XTTG), a Chinese medicine (CM) formula, has demonstrated significant therapeutic effects on atherosclerosis (AS) in both clinical and experimental settings. Nonetheless, the mechanisms underlying XTTG's efficacy remain largely unexplored. This study aimed to elucidate the mechanisms through which XTTG acts against AS, employing network pharmacology, molecular docking, and experimental validation techniques. Methods Initially, target identification for the main chemical components of XTTG was conducted using database, followed by determining the intersection targets between these compounds and disease. Protein-protein interaction (PPI) network analysis, Gene Ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were subsequently utilized to investigate the potential pathways through which XTTG exerts its effects on AS. Molecular docking was done to confirm the binding efficacy of XTTG's active components. Additionally, the effects of XTTG were evaluated in vitro using oxidized low-density lipoprotein (ox-LDL) induced human aortic vascular smooth muscle cells (HAVSMCs) and in vivo in apolipoprotein E gene knockout (ApoE-/-) mice fed a high-fat diet (HFD). Results 229 therapeutic targets were screened for PPI network and enrichment analysis. Notably, the nuclear factor kappa-B (NF-κB) signaling pathway, along with processes related to inflammation and autophagy, were significantly enriched, highlighting their importance. In vitro studies showed that XTTG repressed cell proliferation and lipid droplet aggregation in ox-LDL-induced HAVSMCs. It also decreased the ratio of phosphorylated NF-κB p65/ NF-κB p65, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels, and elevated microtubule-associated protein light chain 3 (LC3) and decreased p62 protein expression. In vivo, XTTG ameliorated blood lipid profiles and aortic pathology in HFD-fed ApoE-/- mice, reduced NF-κB p65 expression and serum levels of TNF-α and IL-6, increased the ratio of LC3II/LC3I while decreasing p62 protein expression. Conclusion XTTG mitigates AS primarily through anti-inflammatory and autophagy-modulating mechanisms, particularly via inhibition of NF-κB p65 expression. These findings underscore the potential of CM in treating AS and support its further clinical exploration.
Collapse
Affiliation(s)
- Junping Zhu
- School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Ziyan Wang
- First Hospital and First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Chengxin Liu
- First Hospital and First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Min Shi
- School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Zhihua Guo
- School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- First Hospital and First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Ya Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Rong Yu
- School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Jiaming Wei
- School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Changsha, 410208, People’s Republic of China
| |
Collapse
|
6
|
Aroca-Esteban J, Souza-Neto FV, Aguilar-Latorre C, Tribaldo-Torralbo A, González-López P, Ruiz-Simón R, Álvarez-Villareal M, Ballesteros S, de Ceniga MV, Landete P, González-Rodríguez Á, Martín-Ventura JL, de Las Heras N, Escribano Ó, Gómez-Hernández A. Potential protective role of let-7d-5p in atherosclerosis progression reducing the inflammatory pathway regulated by NF-κB and vascular smooth muscle cells proliferation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167327. [PMID: 38945455 DOI: 10.1016/j.bbadis.2024.167327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
The prevalence of cardiovascular diseases (CVDs) is increasing in the last decades, even is the main cause of death in first world countries being atherosclerosis one of the principal triggers. Therefore, there is an urgent need to decipher the underlying mechanisms involved in atherosclerosis progression. In this respect, microRNAs dysregulation is frequently involved in the progression of multiple diseases including CVDs. Our aim was to demonstrate that let-7d-5p unbalance could contribute to the pathophysiology of atherosclerosis and serve as a potential diagnostic biomarker. We evaluated let-7d-5p levels in vascular biopsies and exosome-enriched extracellular vesicles (EVs) from patients with carotid atherosclerosis and healthy donors. Moreover, we overexpressed let-7d-5p in vitro in vascular smooth muscle cells (VSMCs) to decipher the targets and the underlying mechanisms regulated by let-7d-5p in atherosclerosis. Our results demonstrate that let-7d-5p was significantly upregulated in carotid plaques from overweight patients with carotid atherosclerosis. Moreover, in EVs isolated from plasma, we found that let-7d-5p levels were increased in carotid atherosclerosis patients compared to control subjects specially in overweight patients. Receiver Operating Characteristic (ROC) analyses confirmed its utility as a diagnostic biomarker for atherosclerosis. In VSMCs, we demonstrated that increased let-7d-5p levels impairs cell proliferation and could serve as a protective mechanism against inflammation by impairing NF-κB pathway without affecting insulin resistance. In summary, our results highlight the role of let-7d-5p as a potential therapeutic target for atherosclerosis since its overexpression induce a decrease in inflammation and VSMCs proliferation, and also, as a novel non-invasive diagnostic biomarker for atherosclerosis in overweight patients.
Collapse
Affiliation(s)
- Javier Aroca-Esteban
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Francisco V Souza-Neto
- Physiology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Carlota Aguilar-Latorre
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Alba Tribaldo-Torralbo
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Paula González-López
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Rubén Ruiz-Simón
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Marta Álvarez-Villareal
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Sandra Ballesteros
- Physiology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Melina Vega de Ceniga
- Department of Angiology and Vascular Surgery, Hospital of Galdakao-Usansolo, Galdakao, Bizkaia, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Pedro Landete
- Departmento de Neumología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain; Faculty of Medicine, Autonoma University of Madrid, Madrid, Spain
| | - Águeda González-Rodríguez
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - José L Martín-Ventura
- IIS-Fundation Jimenez-Diaz, Autonoma University of Madrid and CIBERCV, Madrid, Spain
| | - Natalia de Las Heras
- Physiology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Óscar Escribano
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| | - Almudena Gómez-Hernández
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
7
|
Zhao HR, Xian QC, Zhang XM, Ma XY, Wang FQ, Wang RS, Liu ZJ, Zhang ZG. Jianpi Huayu Prescription Prevents Atherosclerosis by Improving Inflammation and Reshaping the Intestinal Microbiota in ApoE -/- Mice. Cell Biochem Biophys 2024; 82:2297-2319. [PMID: 39174865 PMCID: PMC11445337 DOI: 10.1007/s12013-024-01341-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 08/24/2024]
Abstract
This study established an LPS-induced RAW264.7 macrophage inflammatory injury model and an AS mouse vulnerable plaque model to observe the effect of JPHYP on macrophage inflammation, plaque formation, blood lipids, inflammation levels, intestinal flora and the influence of TLR4/MyD88/MAPK pathway, and explore the anti-AS effect and molecular mechanism of JPHYP, and detected 16S rRNA of mice intestinal microbes. The difference of intestinal flora in different groups of mice was compared to further explore the intervention effect of JPHYP and clarify the molecular biological mechanism of JPHYP in preventing and treating AS by regulating TLR4/MyD88/MAPK inflammatory signaling pathway and improving intestinal flora.
Collapse
Affiliation(s)
- Hao-Ran Zhao
- First Affiliated Hospital of Shihezi University, Shihezi, 832000, China
- College of pharmacy, Shihezi University, Shihezi, 832000, China
| | - Qin-Chi Xian
- First Affiliated Hospital of Shihezi University, Shihezi, 832000, China
- College of pharmacy, Shihezi University, Shihezi, 832000, China
| | - Xuan-Ming Zhang
- First Affiliated Hospital of Shihezi University, Shihezi, 832000, China.
- College of pharmacy, Shihezi University, Shihezi, 832000, China.
| | - Xiao-Yu Ma
- First Affiliated Hospital of Shihezi University, Shihezi, 832000, China
- College of pharmacy, Shihezi University, Shihezi, 832000, China
| | - Fu-Qiao Wang
- First Affiliated Hospital of Shihezi University, Shihezi, 832000, China
- College of pharmacy, Shihezi University, Shihezi, 832000, China
| | - Rui-Si Wang
- First Affiliated Hospital of Shihezi University, Shihezi, 832000, China
- College of pharmacy, Shihezi University, Shihezi, 832000, China
| | - Zhi-Jie Liu
- First Affiliated Hospital of Shihezi University, Shihezi, 832000, China
- College of pharmacy, Shihezi University, Shihezi, 832000, China
| | - Zhi-Gang Zhang
- First Affiliated Hospital of Shihezi University, Shihezi, 832000, China.
| |
Collapse
|
8
|
Chen Y, Jiang B, Qu C, Jiang C, Zhang C, Wang Y, Chen F, Sun X, Su L, Luo Y. Bioactive components in prunella vulgaris for treating Hashimoto's disease via regulation of innate immune response in human thyrocytes. Heliyon 2024; 10:e36103. [PMID: 39253271 PMCID: PMC11382315 DOI: 10.1016/j.heliyon.2024.e36103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
Background Hashimoto's thyroiditis (HT) is a thyroid autoimmune disease characterized by lymphocytic infiltration and thyroid destruction. Prunella vulgaris (PV) is a traditional Chinese herbal medicine with documented clinical efficacy in treating HT. We previously reported an immunoregulatory effect of PV in thyrocytes; however, the bioactive components of PV remained unclear. This study aimed to elucidate key components of PV for treating HT and their acting mechanisms. Methods Network pharmacology was used to predict key PV components for HT. The predicted components were tested to determine whether they could exert an immunoregulatory effect of PV in human thyrocytes. Limited proteolysis-mass spectrometry (Lip-MS) was used to explore interacting proteins with PV components in human thyrocytes. Microscale thermophoresis binding assay was used to evaluate the affinity of PV components with the target protein. Results Eleven PV components with 192 component targets and 3415 HT-related genes were gathered from public databases. With network pharmacology, a 'component-target-disease' network was established wherein four flavonoids including quercetin, luteolin, kaempferol, morin, and a phytosterol, β-sitosterol were predicted as key components in PV for HT. In stimulated primary human thyrocytes or Nthy-ori-31 cells, key components inhibited gene expressions of inflammatory cytokines including tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), and interferon-β (IFN-β), cellular apoptosis, and activation of nuclear factor κB (NF-κB) and interferon regulatory factor 3 (IRF-3). Heat shock protein 90 alpha, class A, member 1 (HSP90AA1), was identified to interact with flavonoids in PV by Lip-MS. Morin had the highest affinity with HSP90AA1 (KD = 122.74 μM), followed by kaempferol (KD = 168.53 μM), luteolin (KD = 293.94 μM), and quercetin (KD = 356.86 μM). Conclusion Quercetin, luteolin, kaempferol, morin, and β-sitosterol reproduced an anti-inflammatory and anti-apoptosis effect of PV in stimulated human thyrocytes, which potentially contributed to the treatment efficacy of PV in HT.
Collapse
Affiliation(s)
- Yongzhao Chen
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, Zhongshan Road 321, Nanjing, 210008, China
| | - Bo Jiang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Cheng Qu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Chaoyu Jiang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Chen Zhang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Yanxue Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Fei Chen
- General Surgery Center, Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, China
| | - Xitai Sun
- Division of Pancreas and Metabolism Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China, Zhongshan Road 321, Nanjing, 210008, China
| | - Lei Su
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Yuqian Luo
- Clinical Medicine Research Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China, Zhongshan Road 321, Nanjing, 210008, China
| |
Collapse
|
9
|
Guo C, Ruan J, Li Z, Fu H, Li K, Gong X, Gu X, Gu J, Shi H. Cadmium promoted LPS-induced inflammation through TLR4/IκBα/NFκ-B signaling by increasing ROS-mediated incomplete autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116405. [PMID: 38696874 DOI: 10.1016/j.ecoenv.2024.116405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/04/2024]
Abstract
Cadmium (Cd) exposure is considered as non-infectious stressor to human and animal health. Recent studies suggest that the immunotoxicity of low dose Cd is not directly apparent, but disrupts the immune responses when infected with some bacteria or virus. But how Cd alters the adaptive immunity organ and cells remains unclear. In this study, we applied lipopolysaccharide (LPS, infectious stressor) to induced inflammation in spleen tissues and T cells, and investigated the effects after Cd exposure and the underlying mechanism. Cd exposure promoted LPS-induced the expressions of the inflammatory factors, induced abnormal initiation of autophagy, but blocked autophagic flux. The effects Cd exposure under LPS activation were reversed by the autophagy promoter Rapamycin. Under LPS activation conditions, Cd also induced oxidative stress by increasing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and reducing total antioxidant capacity (T-AOC) activity. The increased superoxide dismutase (SOD) activity after Cd exposure might be a negative feedback or passive adaptive regulation of oxidative stress. Cd-increased autophagic flux inhibition and TNF-α expression were reversed by ROS scavenger α-tocopherol (TCP). Furthermore, under LPS activation condition, Cd promoted activation of toll-like receptor 4 (TLR4)/IκBα/NFκ-B signaling pathway and increased TLR4 protein stability, which were abolished by the pretreatment of Rapamycin. The present study confirmed that, by increasing ROS-mediated inhibiting autophagic degradation of TLR4, Cd promoted LPS-induced inflammation in spleen T cells. This study identified the mechanism of autophagy in Cd-aggravated immunotoxicity under infectious stress, which could arouse public attention to synergistic toxicity of Cd and bacterial or virus infection.
Collapse
Affiliation(s)
- Chuanzhi Guo
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jiacheng Ruan
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Zehua Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Huilin Fu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Kongdong Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xun Gong
- Department of Rheumatology & Immunology, the Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China
| | - Xin Gu
- King's Own Institute, Sydney 2000, Australia; The University of Newcastle, Callaghan 2308, Australia
| | - Jie Gu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
10
|
Igarashi S, Hioki S, Sakamaru N, Suzuki A, Kurokawa M, Kato E. Flavan-3-ols, flavonoids, anthocyanidins and triterpenoids induces TIE2 phosphorylation -a candidate target for the vascular protective effects. Nat Prod Res 2024:1-5. [PMID: 38608255 DOI: 10.1080/14786419.2024.2340049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/31/2024] [Indexed: 04/14/2024]
Abstract
Vascular system is essential for the body to maintain health. Dysregulated vascular system leads to cardiovascular diseases and are observed in ischaemic stroke, Alzheimer's disease, amyotrophic lateral sclerosis, and diabetes. TIE2 is a tyrosine kinase receptor expressed on vascular endothelial cells and contributes to the maintenance of a vascular system. In this paper, we screened for natural products with an activity to induce phosphorylation of TIE2, which will be beneficial for protection of a vascular system. Employing HeLa cells expressing TIE2, flavan-3-ols, flavonoids, anthocyanidins and triterpenoids were identified as active compounds that induce TIE2 phosphorylation. Several of the identified compounds are previously reported to protect endothelial cells from inflammation. Thus, the result provided TIE2 as the candidate receptor protein of those compounds for the protective effect of endothelial cells and the identified compounds will be a good candidate for maintenance of a vascular system.
Collapse
Affiliation(s)
- Saki Igarashi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Sayaka Hioki
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | | - Eisuke Kato
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
11
|
Liu Y, Gong J, Wang Q, Wei N, Zhao L, Wu Z. Activation of the Nrf2/HO-1 axis by glutaredoxin 2 overexpression antagonizes vascular endothelial cell oxidative injury and inflammation under LPS exposure. Cytotechnology 2024; 76:167-178. [PMID: 38495299 PMCID: PMC10940561 DOI: 10.1007/s10616-023-00606-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/03/2023] [Indexed: 03/19/2024] Open
Abstract
Atherosclerosis constitutes a proverbial pathogenic mechanism for cardio-cerebrovascular disease that accounts for the most common cause of disability and morbidity for human health worldwide. Endothelial dysfunction and inflammation are the key contributors to the progression of atherosclerosis. Glutaredoxin 2 (GLRX2) is abundantly existed in various tissues and possesses a range of pleiotropic efficacy including anti-oxidative and anti-inflammatory responses. However, its role in atherosclerosis is still undefined. Here, down-regulation of GLRX2 was validated in lipopolysaccha (LPS)-induced vascular endothelial cells (HUVECs). Moreover, elevation of GLRX2 reversed the inhibition of cell viability in LPS-treated HUVECs and decreased LPS-induced increases in cell apoptosis and caspase-3 activity. Additionally, enhancement of GLRX2 expression antagonized oxidative stress in HUVECs under LPS exposure by inhibiting ROS, lactate dehydrogenase and malondialdehyde production and increased activity of anti-oxidative stress superoxide dismutase. Notably, GLRX2 abrogated LPS-evoked transcripts and releases of pro-inflammatory cytokine (TNF-α, IL-6, and IL-1β), chemokine MCP-1 and adhesion molecule ICAM-1 expression. Furthermore, the activation of Nrf2/HO-1 signaling was demonstrated in LPS-stimulated HUVECs. Importantly, blockage of the Nrf2 pathway counteracted the protective roles of GLRX2 in LPS-triggered endothelial cell injury, oxidative stress and inflammatory response. Thus, these data reveal that GLRX2 may alleviate the progression of atherosclerosis by regulating vascular endothelial dysfunction and inflammation via the activation of the Nrf2 signaling, supporting a promising therapeutic approach for atherosclerosis and its complications. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-023-00606-x.
Collapse
Affiliation(s)
- Yuna Liu
- Department of Clinical Laboratory, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, No. 3 Yongding Road East Street, Beijing, 100039 People’s Republic of China
| | - Jinlin Gong
- Department of Medical Technology Support, Jingxi Medical District, Chinese PLA General Hospital, Beijing, 100097 People’s Republic of China
| | - Qing Wang
- Department of Clinical Laboratory, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, No. 3 Yongding Road East Street, Beijing, 100039 People’s Republic of China
| | - Na Wei
- Department of Clinical Laboratory, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, No. 3 Yongding Road East Street, Beijing, 100039 People’s Republic of China
| | - Lei Zhao
- Department of Clinical Laboratory, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, No. 3 Yongding Road East Street, Beijing, 100039 People’s Republic of China
| | - Zhenan Wu
- Department of Clinical Laboratory, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, No. 3 Yongding Road East Street, Beijing, 100039 People’s Republic of China
| |
Collapse
|
12
|
Jiang L, Hu X, Feng Y, Wang Z, Tang H, Lin Q, Shen Y, Zhu Y, Xu Q, Li X. Reduction of renal interstitial fibrosis by targeting Tie2 in vascular endothelial cells. Pediatr Res 2024; 95:959-965. [PMID: 38012310 PMCID: PMC10920200 DOI: 10.1038/s41390-023-02893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 10/08/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Tie2, a functional angiopoietin receptor, is expressed in vascular endothelial cells and plays an important role in angiogenesis and vascular stability. This study aimed to evaluate the effects of an agonistic Tie2 signal on renal interstitial fibrosis (RIF) and elucidate the underlying mechanisms. METHODS We established an in vivo mouse model of folic acid-induced nephropathy (FAN) and an in vitro model of lipopolysaccharide-stimulated endothelial cell injury, then an agonistic Tie2 monoclonal antibody (Tie2 mAb) was used to intervent these processes. The degree of tubulointerstitial lesions and related molecular mechanisms were determined by histological assessment, immunohistochemistry, western blotting, and qPCR. RESULTS Tie2 mAb attenuated RIF and reduced the level of fibroblast-specific protein 1 (FSP1). Further, it suppressed vascular cell adhesion molecule-1 (VCAM-1) and increased CD31 density in FAN. In the in vitro model, Tie2 mAb was found to decrease the expression of VCAM-1, Bax, and α-smooth muscle actin (α-SMA). CONCLUSIONS The present findings indicate that the agonistic Tie2 mAb exerted vascular protective effects and ameliorated RIF via inhibition of vascular inflammation, apoptosis, and fibrosis. Therefore, Tie2 may be a potential target for the treatment of this disease. IMPACT This is the first report to confirm that an agonistic Tie2 monoclonal antibody can reduce renal interstitial fibrosis in folic acid-induced nephropathy in mice. This mechanism possibly involves vascular protective effects brought about by inhibition of vascular inflammation, apoptosis and fibrosis. Our data show that Tie2 signal may be a novel, endothelium-specific target for the treatment of tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Xiaohan Hu
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yajun Feng
- Department of Pediatrics, Jiangyin People's Hospital, Jiangyin, 214400, China
| | - Zhen Wang
- Department of Pediatrics, Zibo Maternal and Child Health Care Hospital, Zibo, 255000, China
| | - Hanyun Tang
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Qiang Lin
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yunyan Shen
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yun Zhu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Qinying Xu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Xiaozhong Li
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, 215003, China.
| |
Collapse
|
13
|
Pisoschi AM, Iordache F, Stanca L, Cimpeanu C, Furnaris F, Geicu OI, Bilteanu L, Serban AI. Comprehensive and critical view on the anti-inflammatory and immunomodulatory role of natural phenolic antioxidants. Eur J Med Chem 2024; 265:116075. [PMID: 38150963 DOI: 10.1016/j.ejmech.2023.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
The immune response encompasses innate and adaptive immunity, each with distinct and specific activities. The innate immune system is constituted by phagocytic cells, macrophages, monocytes and neutrophils, the cascade system, and different classes of receptors such as toll-like receptors that are exploited by the innate immune cells. The adaptive immune system is antigen-specific, encompassing memory lymphocytes and the corresponding specific receptors. Inflammation is understood as an activation of different signaling pathways such as toll-like receptors or nuclear factor kappa-light-chain-enhancer of activated B cells, with an increase in nitric oxide, inflammatory cytokines and chemokines. Increased oxidative stress has been identified as main source of chronic inflammation. Phenolic antioxidants modulate the activities of lymphocytes and macrophages by impacting cytokines and nitric oxide release, exerting anti-inflammatory effect. The nuclear-factor kappa-light-chain-enhancer of activated B cells signaling pathway and the mitogen-activated protein kinase pathway are targeted, alongside an increase in nuclear factor erythroid 2-related factor mediated antioxidant response, triggering the activity of antioxidant enzymes. The inhibitive potential on phospholipase A2, cyclooxygenase and lipoxygenase in the arachidonic acid pathway, and the subsequent reduction in prostaglandin and leukotriene generation, reveals the potential of phenolics as inflammation antagonists. The immunomodulative potential encompasses the capacity to interfere with proinflammatory cytokine synthesis and with the expression of the corresponding genes. A diet rich in antioxidants can result in prevention of inflammation-related pathologies. More investigations are necessary to establish the role of these antioxidants in therapy. The appropriate delivery system and the prooxidant effects exhibited at large doses, or in the presence of heavy metal cations should be regarded.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Carmen Cimpeanu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Land Reclamation and Environmental Engineering, 59 Marasti Blvd, 011464, Bucharest, Romania
| | - Florin Furnaris
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Ovidiu Ionut Geicu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Liviu Bilteanu
- Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
14
|
Jiang RY, Yao LW, Lv YH, Guo ZT, Wang FF, Cui HH, Cheng YY, Wang F. Stytontriterpenes A-C, three unusual oleanane-derived triterpenoids from the resin of Styrax tonkinensis as potential immunosuppressive agents in atherosclerosis. PHYTOCHEMISTRY 2024; 217:113905. [PMID: 37913836 DOI: 10.1016/j.phytochem.2023.113905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Three unusual oleanane-derived triterpenoids, stytontriterpenes A-C (1-3), were isolated from the resin of Styrax tonkinensis together with an oleanane-lactone (stytontriterpene D, 4). Their structures and absolute configurations were characterised using a combination of spectroscopic analysis, electronic circular dichroism, and theoretical calculations. 1 and 2 belong to nor-oleanane with rare spiro D/E rings and 3 contains one infrequent C32 scaffold. 1 considerably suppressed the number of adhered leukemic monocytes (THP-1) to human umbilical vein endothelial cells and attenuated the upregulations of mRNA and protein levels of intracellular adhesion molecule-1 and vascular cell adhesion molecule-1 at 5 μM, suggesting that 1 might be a promising anti-vascular inflammatory chemical for atherosclerosis therapy. Plausible biosynthetic pathways for 1-4 are also proposed.
Collapse
Affiliation(s)
- Rui-Yan Jiang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ling-Wen Yao
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Yin-Hong Lv
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhong-Tian Guo
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Fei-Fei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hong-Hua Cui
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yuan-Yuan Cheng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, And International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Feng Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Shen HR, Wang ZY, Shen Z, Liu TT, Guo YD, Gao TL, Guo HH, Han YX, Jiang JD. Bacterial butyrate mediates the anti-atherosclerotic effect of silybin. Biomed Pharmacother 2023; 169:115916. [PMID: 38000354 DOI: 10.1016/j.biopha.2023.115916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
Silybin (SIL) is a versatile bioactive compound used for improving liver damage and lipid disorders and is also thought to be beneficial for atherosclerosis (AS). The goal of this study was to investigate the efficacy of SIL in the treatment of AS in ApoE-/-mice fed a high-fat diet and explore the mechanism underlying treatment outcomes. We found that SIL significantly alleviated AS-related parameters, including the extent of aortic plaque formation, hyperlipidemia, and adhesion molecule secretion in the vascular endothelium. 16 S rRNA gene sequencing analysis, together with the application of antibiotics, showed that intestinal butyrate-producing bacteria mediated the ameliorative effect of SIL on AS. Further analysis revealed that SIL facilitated butyrate production by increasing the level of butyryl-CoA: acetate CoA-transferase (BUT). The increased expression of monocarboxylic acid transporter-1 (MCT1) induced by butyrate and MCT4 induced by SIL in the apical and basolateral membranes of colonocytes, respectively, resulted in enhanced absorption of intestinal butyrate into the circulation, leading to the alleviation of arterial endothelium dysfunction. Moreover, the SIL-mediated increase in intestinal butyrate levels restored gut integrity by upregulating the expression of tight junction proteins and promoting gut immunity, thus inhibiting the AS-induced inflammatory response. This is the first study to show that SIL can alleviate AS by modulating the production of bacterial butyrate and its subsequent absorption.
Collapse
Affiliation(s)
- Hao-Ran Shen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhi-Yu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhen Shen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tong-Tong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yun-Dan Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tian-Le Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hui-Hui Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yan-Xing Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
16
|
Liao G, Liu W, Dai Y, Shi X, Liu Y, Li D, Xu T. Beneficial effects of flavonoids on animal models of atherosclerosis: A systematic review and meta-analysis. iScience 2023; 26:108337. [PMID: 38026172 PMCID: PMC10665821 DOI: 10.1016/j.isci.2023.108337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/07/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis is the main cause of cardiovascular diseases that seriously endanger human health. The existing treatment drugs are effective, but they have some side effects. Accumulating evidence suggests that flavonoids have attracted wide attention due to their multiple cardioprotective effects and fewer side effects. PubMed, Web of Science database, Embase, and Cochrane Library were searched for studies evaluating the effects of flavonoids against atherosclerosis. 119 studies published from August 1954 to April 2023 were included. Random-effects models were performed for synthesis. Compared with the control group, flavonoids significantly reduced longitudinal and cross-sectional plaque area. The findings indicated that flavonoids significantly reduced the concentrations of serum TC, TG, and LDL-C and increased serum HDL-C concentrations. Besides, flavonoids reduced the levels of circulating pro-inflammatory factors, including TNF-α, IL-1β, and IL-6, and increased the serum IL-10 level. This study provides evidence for the potential cardiovascular benefits of flavonoids.
Collapse
Affiliation(s)
- Gege Liao
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Wanlu Liu
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Yiming Dai
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Xiangxiang Shi
- Department of Cardiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yang Liu
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Tongda Xu
- Department of Cardiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
17
|
Bu LL, Yuan HH, Xie LL, Guo MH, Liao DF, Zheng XL. New Dawn for Atherosclerosis: Vascular Endothelial Cell Senescence and Death. Int J Mol Sci 2023; 24:15160. [PMID: 37894840 PMCID: PMC10606899 DOI: 10.3390/ijms242015160] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Endothelial cells (ECs) form the inner linings of blood vessels, and are directly exposed to endogenous hazard signals and metabolites in the circulatory system. The senescence and death of ECs are not only adverse outcomes, but also causal contributors to endothelial dysfunction, an early risk marker of atherosclerosis. The pathophysiological process of EC senescence involves both structural and functional changes and has been linked to various factors, including oxidative stress, dysregulated cell cycle, hyperuricemia, vascular inflammation, and aberrant metabolite sensing and signaling. Multiple forms of EC death have been documented in atherosclerosis, including autophagic cell death, apoptosis, pyroptosis, NETosis, necroptosis, and ferroptosis. Despite this, the molecular mechanisms underlying EC senescence or death in atherogenesis are not fully understood. To provide a comprehensive update on the subject, this review examines the historic and latest findings on the molecular mechanisms and functional alterations associated with EC senescence and death in different stages of atherosclerosis.
Collapse
Affiliation(s)
- Lan-Lan Bu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Huan-Huan Yuan
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Ling-Li Xie
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Min-Hua Guo
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Duan-Fang Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Xi-Long Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
18
|
Lv M, Jiang S, Deng S, Zhao Z, Yang Z, Liu L, Ke T. Discovery and Characterization of Moracin C as an Anti-Gouty Arthritis/Hyperuricemia Candidate by Docking-Based Virtual Screening and Pharmacological Evaluation. JOURNAL OF NATURAL PRODUCTS 2023; 86:2091-2101. [PMID: 37625387 DOI: 10.1021/acs.jnatprod.3c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
In the present study, a natural product database of compounds associated with herbs traditionally verified to treat gout/hyperuricemia/arthritis was constructed. 3D-shape and docking-based virtual screening was conducted. To identify potential xanthine oxidase (XOD) inhibitors in the database, eight compounds with commercial availability were identified as high 3D-shape similarity with febuxostat (1), a known XOD inhibitor. Docking was used to further predict the possible interactions between XOD and these compounds. Moracin C (2), moracin D (3), and isoformononetin (8) exhibited higher docking scores and binding energies than other compounds. In vitro, 2 inhibited XOD with an IC50 value of 0.25 ± 0.14 μM, which is similar to that of 1 (0.16 ± 0.08 μM). In a hyperuricemic mouse model, 5-20 mg/kg 2 exhibited satisfying urate-lowering and XOD inhibitory effects. Compound 2 also exhibited antiarthritis activities. In RAW264.7 cells, 2 at 1-10 μM inhibited the expression of IL-1β and TNF-α induced by MSU. In an acute gouty arthritis model in SD rats, 5-20 mg/kg 2 significantly alleviated the toe swelling, inflammatory response, and dysfunction disorder caused by monosodium urate (MSU). Compound 2 inhibited serum IL-1β and TNF-α cytokines as well as reduced the expression of the NLRP3/ASC/caspase-1 inflammasome in joints. In summary, 2 was an effective compound for the treatment of hyperuricemia/gouty arthritis.
Collapse
Affiliation(s)
- Minyi Lv
- Department of Pharmacy, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, No. 2004 Hongli Road, Shenzhen, 518028, China
| | - Shaoyan Jiang
- Department of Pharmacy, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, No. 2004 Hongli Road, Shenzhen, 518028, China
| | - Shaojie Deng
- Department of Pharmacy, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, No. 2004 Hongli Road, Shenzhen, 518028, China
| | - Zean Zhao
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zichao Yang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lu Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tao Ke
- Department of Pharmacy, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| |
Collapse
|
19
|
Ye H, Wang G, Wang X, Wang L, Ni W, Chen L, Zhu Y, Zhao L, Xiong Z, Wang Y, Dai C, Liu B. San-wei-tan-xiang capsule attenuates atherosclerosis by increasing lysosomal activity in adipose tissue macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116444. [PMID: 37061068 DOI: 10.1016/j.jep.2023.116444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dyslipidemia is the leading risk factor of atherosclerosis (AS). Adipose tissue macrophages (ATMs) can regulate postprandial cholesterol levels via uptake and hydrolyzation of lipids and regulation of macrophage cholesterol efflux (MCE). San-wei-tan-xiang (SWTX) capsule, a Traditional Chinese medicine, exerts clinical benefits in patients with atherosclerotic cardiovascular diseases. AIM OF THE STUDY This work is aimed to evaluate the chemical ingredients and mechanisms of SWTX in anti-AS. MATERIALS AND METHODS The chemical ingredients of SWTX identified by liquid chromatography coupled with tandem mass spectrometry were used for network pharmacological analysis. The atheroprotective function of SWTX was evaluated in ApoE-/- mice fed a cholesterol-enriched diet. RESULTS The chemical ingredients identified in SWTX were predicated to be important for lipid metabolism and AS. Animals studies suggested that SWTX effectively attenuated the atherosclerotic plaque growth, elevated postprandial HDL cholesterol levels, elevated the proportion of Tim4 and CD36-expressed ATMs, and upregulated the uptake of lipid and lysosomal activity in ATMs. SWTX-induced elevation of postprandial HDL cholesterol levels was dependent on increased lysosomal activity, since chloroquine, an inhibitor of lysosomal function, blocked the effect of SWTX. Lastly, some predicated bioactive compounds in SWTX can elevate lysosomal activity in vitro. CONCLUSION SWTX could attenuate atherosclerotic plaque formation by elevating lysosomal activity and enhancing MCE in ATMs.
Collapse
Affiliation(s)
- Heng Ye
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Gang Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Xuchao Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China; School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Lin Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Wei Ni
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Linjian Chen
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Yifan Zhu
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China.
| | - Cuilian Dai
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China.
| | - Binbin Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China.
| |
Collapse
|
20
|
Tan Q, Chen B, Wu C, Shao T. Exploring the potential nutritional role of bioflavonoids in exercise rehabilitation: a kinematic perspective. Front Nutr 2023; 10:1221800. [PMID: 37457973 PMCID: PMC10347382 DOI: 10.3389/fnut.2023.1221800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Affiliation(s)
- Qiaoyin Tan
- College of Education, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Bochao Chen
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Cuicui Wu
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Tianyi Shao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
21
|
Wang Z, Cui J, Li D, Ran S, Huang J, Chen G. Morin exhibits a neuroprotective effect in MPTP-induced Parkinson's disease model via TFEB/AMPK-mediated mitophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154866. [PMID: 37209604 DOI: 10.1016/j.phymed.2023.154866] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is one of the most common neurodegenerative diseases in the world. Mitophagy has been implicated in PD etiology for decades and its pharmacological activation is recognized as a promising treatment strategy for PD. For mitophagy initiation, low mitochondrial membrane potential (ΔΨm) is essential. We identified a natural compound morin that could induce mitophagy without affecting ΔΨm. Morin is a flavonoid that can be isolated from fruits like mulberry. PURPOSE To reveal the effect of morin on the PD mice model and their potential underlying molecular mechanism. METHODS Mitophagy process induced by morin in N2a cells meditation were measured using flow cytometry and immunofluorescence. JC-1 fluorescence dye used to detect the mitochondrial membrane potential (ΔΨm). The TFEB nuclear translocation were examined by immunofluorescence staining and western blot assay. The PD mice model was induced by MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) intraperitoneal administration. RESULTS We found that morin also promoted nuclear translocation of the mitophagy regulator TFEB and activated the AMPK-ULK1 pathway. In MPTP-induced PD in vivo models, morin protected DA neurons from MPTP neurotoxicity and ameliorated behavioral deficit. CONCLUSION Although morin was previously reported to be neuroprotective in PD, the detailed molecular mechanisms remain to be elucidated. For the first time, we report morin served as a novel and safe mitophagy enhancer underlying AMPK-ULK1 pathway and exhibited anti-Parkinsonian effects indicating its potential as a clinical drug for PD treatment.
Collapse
Affiliation(s)
- Ziying Wang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Jinshuai Cui
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Dongni Li
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Shuzhen Ran
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Junqing Huang
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
22
|
Al‐kuraishy HM, Hussien NR, Al‐Niemi MS, Fahad EH, Al‐Buhadily AK, Al‐Gareeb AI, Al‐Hamash SM, Tsagkaris C, Papadakis M, Alexiou A, Batiha GE. SARS-CoV-2 induced HDL dysfunction may affect the host's response to and recovery from COVID-19. Immun Inflamm Dis 2023; 11:e861. [PMID: 37249296 PMCID: PMC10187021 DOI: 10.1002/iid3.861] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
INTRODUCTION Covid-19 is linked with the development of cardio-metabolic disorders, including dyslipidemia, dysregulation of high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Furthermore, SARS-Co-2 infection is associated with noteworthy changes in lipid profile, which is suggested as a possible biomarker to support the diagnosis and management of Covid-19. METHODS This paper adopts the literature review method to obtain information about how Covid-19 affects high-risk group patients and may cause severe and critical effects due to the development of acute lung injury and acute respiratory distress syndrome. A narrative and comprehensive review is presented. RESULTS Reducing HDL in Covid-19 is connected to the disease severity and poor clinical outcomes, suggesting that high HDL serum levels could benefit Covid-19. SARS-CoV-2 binds HDL, and this complex is attached to the co-localized receptors, facilitating viral entry. Therefore, SARS-CoV-2 infection may induce the development of dysfunctional HDL through different mechanisms, including induction of inflammatory and oxidative stress with activation of inflammatory signaling pathways. In turn, the induction of dysfunctional HDL induces the activation of inflammatory signaling pathways and oxidative stress, increasing Covid-19 severity. CONCLUSIONS Covid-19 is linked with the development of cardio-metabolic disorders, including dyslipidemia in general and dysregulation of high-density lipoprotein and low-density lipoprotein. Therefore, the present study aimed to overview the causal relationship between dysfunctional high-density lipoprotein and Covid-19.
Collapse
Affiliation(s)
- Hayder M. Al‐kuraishy
- Department of Pharmacology, ToxicologyMedicine College of Medicine Al‐Mustansiriyah UniversityBaghdadIraq
| | - Nawar R. Hussien
- Department of Clinical Pharmacy, College of PharmacyAl‐Farahidi UniversityBagdadIraq
| | - Marwa S. Al‐Niemi
- Department of Clinical Pharmacy, College of PharmacyAl‐Farahidi UniversityBagdadIraq
| | | | - Ali K. Al‐Buhadily
- Department of Clinical Pharmacology, Medicine and Therapeutic, Medical Faculty, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Pharmacology, ToxicologyMedicine College of Medicine Al‐Mustansiriyah UniversityBaghdadIraq
| | | | - Christos Tsagkaris
- Department of Health SciencesNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP Med AustriaWienAustria
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
23
|
Tang Y, Chen Y, Guo Q, Zhang L, Liu H, Wang S, Wu X, Shen X, Tao L. MiR-126-Loaded Immunoliposomes against Vascular Endothelial Inflammation In Vitro and Vivo Evaluation. Pharmaceutics 2023; 15:1379. [PMID: 37242620 PMCID: PMC10221669 DOI: 10.3390/pharmaceutics15051379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Due to the accompaniment of vascular endothelial inflammation during the occurrence and development of cardiovascular diseases (CVD), treatment modalities against vascular endothelial inflammation have been intensively investigated for CVD prevention and/or treatment. Vascular cell adhesion molecule-1 (VCAM-1) is a typical transmembrane inflammatory protein specifically expressed by inflammatory vascular endothelial. By inhibiting VCAM-1 expression through the miR-126 mediated pathway, vascular endothelial inflammation can be efficiently relieved. Inspired by this, we developed a miR-126-loaded immunoliposome with VCAM-1 monoclonal antibody (VCAMab) decorated at its surface. This immunoliposome can be directly targeted to VCAM-1 at the inflammatory vascular endothelial membrane surface and achieve highly efficient treatment against inflammation response. The cellular experiment results showed the immunoliposome had a higher uptake rate towards inflammatory human vein endothelial cells (HUVECs) and can significantly downregulate the VCAM-1 expression level of inflammatory HUVECs. In vivo investigation further demonstrated that this immunoliposome displayed a higher accumulation rate at vascular inflammatory dysfunction sites than its non-VCAMab-modified counterpart. These results suggest that this novel nanoplatform can effectively deliver miR-126 to vascular inflammatory endothelium, opening a new avenue for the safe and effective delivery of miRNA for potential clinical application.
Collapse
Affiliation(s)
- Yongyu Tang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
| | - Ying Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
| | - Qianqian Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
| | - Lidan Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
| | - Huanhuan Liu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
| | - Sibu Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
| | - Xingjie Wu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
- The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
| |
Collapse
|
24
|
Yang B, Yin S, Zhou Z, Huang L, Xi M. Inflammation Control and Tumor Growth Inhibition of Ovarian Cancer by Targeting Adhesion Molecules of E-Selectin. Cancers (Basel) 2023; 15:cancers15072136. [PMID: 37046797 PMCID: PMC10093113 DOI: 10.3390/cancers15072136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
Objective: The aim is to use E-selectin-binding peptide (ESBP) to actively recognize E-selectin, so allowing a drug delivery system to actively recognize the cells and inhibit the tumor growth of ovarian cancer by targeting adhesion molecules of E-selectin. An ovarian-cancer-directed drug delivery system was designed based on the high affinity of E-selectin-binding peptide (ESBP) to E-selectin. The effects and mechanisms of ESBP-bovine serum albumin (BSA) polymerized nanoparticles were investigated. Methods: BSA polymerized nanoparticles (BSANPs) and ESBP-BSANPs-paclitaxel (PTX) were prepared and their characteristics were measured. The in vitro targetability and cytotoxicity of ESBP-BSANPs-PTX were evaluated through in vitro drug uptake and MTT experiments. The mechanisms of ESBP-BSANPs-PTX were investigated via apoptosis, wound healing and immunohistochemistry assays. The in vivo targeting properties and drug effects were observed in a mouse tumor-bearing model. Results: In vitro experiments revealed an increase in the uptake of ESBP-BSANPs-FITC. The cytotoxicity of ESBP-BSANPs-PTX in A2780/CP70, HUVEC, RAW264.7 and ID8 cells was higher than that of PTX alone. ESBP-BSANPs-PTX increased cell apoptosis in a dose-dependent manner and exhibited a greater ability to inhibit cell migration than BSANPs-PTX. In vivo experiments demonstrated the targetability and good effects of ESBP-BSANPs. Conclusions: ESBP-BSANPs-PTX improve PTX targetability, provide tumor-specific and potent therapeutic activities, and show promise for the development of agents in preclinical epithelial ovarian cancer.
Collapse
Affiliation(s)
- Bowen Yang
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Shanmei Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zishuo Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Luyao Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Mingrong Xi
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| |
Collapse
|
25
|
Chen Y, Gan Y, Yu J, Ye X, Yu W. Key ingredients in Verbena officinalis and determination of their anti-atherosclerotic effect using a computer-aided drug design approach. FRONTIERS IN PLANT SCIENCE 2023; 14:1154266. [PMID: 37077636 PMCID: PMC10106644 DOI: 10.3389/fpls.2023.1154266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Lipid metabolism disorders may considerably contribute to the formation and development of atherosclerosis (AS). Traditional Chinese medicine has received considerable attention in recent years owing to its ability to treat lipid metabolism disorders using multiple components and targets. Verbena officinalis (VO), a Chinese herbal medicine, exhibits anti-inflammatory, analgesic, immunomodulatory, and neuroprotective effects. Evidence suggests that VO regulates lipid metabolism; however, its role in AS remains unclear. In the present study, an integrated network pharmacology approach, molecular docking, and molecular dynamics simulation (MDS) were applied to examine the mechanism of VO against AS. Analysis revealed 209 potential targets for the 11 main ingredients in VO. Further, 2698 mechanistic targets for AS were identified, including 147 intersection targets between VO and AS. Quercetin, luteolin, and kaempferol were considered key ingredients for the treatment of AS based on a potential ingredient target-AS target network. GO analysis revealed that biological processes were primarily associated with responses to xenobiotic stimuli, cellular responses to lipids, and responses to hormones. Cell components were predominantly focused on the membrane microdomain, membrane raft, and caveola nucleus. Molecular functions were mainly focused on DNA-binding transcription factor binding, RNA polymerase II-specific DNA-binding transcription factor binding, and transcription factor binding. KEGG pathway enrichment analysis identified pathways in cancer, fluid shear stress, and atherosclerosis, with lipid and atherosclerosis being the most significantly enriched pathways. Molecular docking revealed that three key ingredients in VO (i.e., quercetin, luteolin, and kaempferol) strongly interacted with three potential targets (i.e., AKT1, IL-6, and TNF-α). Further, MDS revealed that quercetin had a stronger binding affinity for AKT1. These findings suggest that VO has beneficial effects on AS via these potential targets that are closely related to the lipid and atherosclerosis pathways. Our study utilized a new computer-aided drug design to identify key ingredients, potential targets, various biological processes, and multiple pathways associated with the clinical roles of VO in AS, which provides a comprehensive and systemic pharmacological explanation for the anti-atherosclerotic activity of VO.
Collapse
Affiliation(s)
- Yuting Chen
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yuanyuan Gan
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Jingxuan Yu
- Clinical Medical College, Changsha Medical University, Changsha, Hunan, China
| | - Xiao Ye
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning, Hubei, China
- *Correspondence: Wei Yu,
| |
Collapse
|
26
|
Jia Z, Mei J, Zhang Y, Wang Y, Wang H, Wang A, Xu F, Zhou Q. Whole genome methylation combined with RNA-seq reveals the protective effects of Gualou-Xiebai herb pair in foam cells through DNA methylation mediated PI3K-AKT signaling pathway. Front Immunol 2023; 14:1054014. [PMID: 36911738 PMCID: PMC9992180 DOI: 10.3389/fimmu.2023.1054014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
DNA methylation, including aberrant hypomethylation and hypermethylation, plays a significant role in atherosclerosis (AS); therefore, targeting the unbalanced methylation in AS is a potential treatment strategy. Gualou-xiebai herb pair (GXHP), a classic herb combination, have been used for the treatment of atherosclerotic-associated diseases in traditional Chinese medicine. However, the effects and underlying mechanism of GXHP on AS remain nebulous. In this study, the CCK-8 method was applied to determine the non-toxic treatment concentrations for GXHP. The formation of foam cells played a critical role in AS, so the foam cells model was established after RAW264.7 cells were treated with ox-LDL. The contents of total cholesterol (TC) and free cholesterol (FC) were determined by Gas chromatography-mass spectrometry (GC-MS). Enzyme-linked immunosorbent assay (ELISA) was used to check the expressions of inflammatory factors including IL-1β, TNF-α, and VCAM-1. Methyl-capture sequencing (MC-seq) and RNA-seq were applied to observe the changes in genome-wide DNA methylation and gene expression, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to analyze differentially methylated genes (DMGs) and differentially expressed genes (DEGs). The targeted signaling pathway was selected and verified using western blotting (WB). The results showed that the lipids and inflammatory factors in foam cells significantly increased. GXHP significantly reduced the expression of TC, FC, and inflammatory factors. MC-seq and RNA-seq showed that GXHP not only corrected the aberrant DNA hypermethylation, but also DNA hypomethylation, thus restored the aberrant DEGs in foam cells induced by ox-LDL. GXHP treatment may target the PI3K-Akt signaling pathway. GXHP reduced the protein levels of phosphorylated(p)-PI3K and p-AKT in foam cells. Our data suggest that treatment with GXHP showed protective effects against AS through the inhibition of DNA methylation mediated PI3K-AKT signaling pathway, suggesting GXHP as a novel methylation-based agent.
Collapse
Affiliation(s)
- Zijun Jia
- Xiyuan Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.,Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Mei
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Zhang
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ya Wang
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongqin Wang
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Anlu Wang
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengqin Xu
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingbing Zhou
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
27
|
The Multiple Roles of CD147 in the Development and Progression of Oral Squamous Cell Carcinoma: An Overview. Int J Mol Sci 2022; 23:ijms23158336. [PMID: 35955471 PMCID: PMC9369056 DOI: 10.3390/ijms23158336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
Cluster of differentiation (CD)147, also termed extracellular matrix metalloprotease inducer or basigin, is a glycoprotein ubiquitously expressed throughout the human body, the oral cavity included. CD147 actively participates in physiological tissue development or growth and has important roles in reactive processes such as inflammation, immunity, and tissue repair. It is worth noting that deregulated expression and/or activity of CD147 is observed in chronic inflammatory or degenerative diseases, as well as in neoplasms. Among the latter, oral squamous cell carcinoma (OSCC) is characterized by an upregulation of CD147 in both the neoplastic and normal cells constituting the tumor mass. Most interestingly, the expression and/or activity of CD147 gradually increase as healthy oral mucosa becomes inflamed; hyperplastic/dysplastic lesions are then set on, and, eventually, OSCC develops. Based on these findings, here we summarize published studies which evaluate whether CD147 could be employed as a marker to monitor OSCC development and progression. Moreover, we describe CD147-promoted cellular and molecular events which are relevant to oral carcinogenesis, with the aim to provide useful information for assessing whether CD147 may be the target of novel therapeutic approaches directed against OSCC.
Collapse
|
28
|
Morin Inhibits Dox-Induced Vascular Inflammation By Regulating PTEN/AKT/NF-κB Pathway. Inflammation 2022; 45:2406-2418. [PMID: 35705830 DOI: 10.1007/s10753-022-01701-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/16/2022]
Abstract
The side effects of doxorubicin (Dox) may influence the long-term survival of patients with malignancies. Therefore, it is necessary to clarify the mechanisms generating these side effects induced by Dox and identify effective therapeutic strategies. Here, we found that interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-alpha (TNF-α) levels were significantly increased in vascular tissues of Dox-treated mice and Dox-treated vascular smooth muscle cells (VSMCs). Furthermore, we revealed that Dox downregulated the phosphatase and tension homology deleted on chromosome 10 (PTEN) level while upregulated p-AKT and p65 level in VSMCs in vitro. Overexpression of PTEN in VSMCs partly reversed Dox-induced inflammation. Importantly, we demonstrated that Morin could inhibit Dox-induced inflammation by facilitating an increase of PTEN, thus inhibiting the activation of protein kinase B (AKT)/nuclear factor kappa B (NF-κB)/pathway. Additionally, we showed that Morin could reduce the miR-188-5p level, which was increased in Dox-treated VSMCs. Inhibition of miR-188-5p suppressed Dox-induced vascular inflammation in vitro. In conclusion, Morin reduced the Dox-induced vascular inflammatory by moderating the miR-188-5p/PTEN/AKT/NF-κB pathway, indicating that Morin might be a therapeutic agent for overcoming the Dox-induced vascular inflammation.
Collapse
|
29
|
Lin L, Zhang MX, Zhang L, Zhang D, Li C, Li YL. Autophagy, Pyroptosis, and Ferroptosis: New Regulatory Mechanisms for Atherosclerosis. Front Cell Dev Biol 2022; 9:809955. [PMID: 35096837 PMCID: PMC8793783 DOI: 10.3389/fcell.2021.809955] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disorder characterized by the gradual buildup of plaques within the vessel wall of middle-sized and large arteries. The occurrence and development of atherosclerosis and the rupture of plaques are related to the injury of vascular cells, including endothelial cells, smooth muscle cells, and macrophages. Autophagy is a subcellular process that plays an important role in the degradation of proteins and damaged organelles, and the autophagy disorder of vascular cells is closely related to atherosclerosis. Pyroptosis is a proinflammatory form of regulated cell death, while ferroptosis is a form of regulated nonapoptotic cell death involving overwhelming iron-dependent lipid peroxidation. Both of them exhibit distinct features from apoptosis, necrosis, and autophagy in morphology, biochemistry, and genetics. However, a growing body of evidence suggests that pyroptosis and ferroptosis interact with autophagy and participate in the development of cancers, degenerative brain diseases and cardiovascular diseases. This review updated the current understanding of autophagy, pyroptosis, and ferroptosis, finding potential links and their effects on atherogenesis and plaque stability, thus providing ways to develop new pharmacological strategies to address atherosclerosis and stabilize vulnerable, ruptured plaques.
Collapse
Affiliation(s)
- Lin Lin
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mu-Xin Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dan Zhang
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Li
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yun-Lun Li
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|