1
|
Liu Y, Chen ZJ, Fei Y, Yu X, Chen G. Investigating the therapeutic potential of epigallocatechin gallate (EGCG) for chronic pain management: mechanisms, applications, and future perspectives. Fitoterapia 2025; 184:106646. [PMID: 40446933 DOI: 10.1016/j.fitote.2025.106646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 05/12/2025] [Accepted: 05/27/2025] [Indexed: 06/02/2025]
Abstract
Chronic pain, a widespread condition impacting a large segment of the global population, involves persistent and diverse pain types including nociceptive, neuropathic, and the more recently defined nociplastic pain. This review explores the potential of Epigallocatechin gallate (EGCG), a key bioactive compound in green tea, known for its extensive biological activities that aid in pain management. Highlighting its anti-inflammatory, antioxidant, and neuroprotective effects, EGCG is posited as a promising alternative to conventional pain medications, which are often associated with significant side effects and dependency risks. Despite its therapeutic promise, EGCG's clinical application is hampered by poor bioavailability and stability. By outlining the current state of research and identifying gaps for future investigation, this review underscores the importance of integrating EGCG into a broader pain management paradigm. It advocates for extensive clinical trials to confirm EGCG's efficacy and safety in humans, aiming to establish it as a part of an integrative strategy for treating chronic pain, thus potentially reducing the reliance on conventional pharmacotherapy.
Collapse
Affiliation(s)
- Yue Liu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Zheng-Jie Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Yue Fei
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Xin Yu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China; Provincial Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China.
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
2
|
Xiao Y, Xu Y, Han W, Wang B, Yu F. Subminimum inhibitory concentrations of rifampicin attenuate methicillin-resistant staphylococcus aureus virulence by suppressing SaeRS two-component system and arginine metabolism-related pathways. Int J Antimicrob Agents 2025; 65:107459. [PMID: 39909365 DOI: 10.1016/j.ijantimicag.2025.107459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
OBJECTIVES Methicillin-resistant Staphylococcus aureus (MRSA) poses a significant threat to global public health, prompting the exploration of alternative strategies to mitigate its virulence. This study investigates the impact of subminimum inhibitory concentrations (sub-MICs) of rifampicin on MRSA virulence, aiming to provide insights for optimizing antibiotic treatment strategies. METHODS Enzyme-linked immunosorbent assay and western blot analysis were used to assess α-hemolysin expression. Transcriptomic sequencing and RT-qPCR analyzed gene expression changes in MRSA treated with sub-MICs of rifampicin. Mutant strains (ΔsaeR and ΔargGH) were constructed to validate the roles of the SaeRS system and arginine metabolism. Thermal shift assays evaluated the interaction between L-arginine and SaeR protein. In vivo murine models and Galleria mellonella infection models were used to assess the anti-virulence effects of rifampicin. RESULTS Our findings reveal that sub-MICs of rifampicin significantly reduce the expression of MRSA α-hemolysin. Transcriptomic sequencing and RT-qPCR analysis suggest a dual-pathway mechanism, wherein rifampicin suppresses virulence by indirectly inhibiting the SaeRS two-component system and disrupting arginine metabolism-related pathways. The construction of a saeR knockout mutant (ΔsaeR) and an arginine biosynthesis deficient mutant (ΔargGH) further supports this mechanism. Notably, exogenous l-arginine supplementation reverses rifampicin's inhibitory effect on α-hemolysin expression, underscoring the pivotal role of l-arginine metabolism in MRSA virulence regulation. Thermal shift assays demonstrate a direct interaction between l-arginine and SaeR protein, elucidating the intricate interplay between metabolic pathways and virulence regulation. In vivo studies confirm that sub-MICs of rifampicin attenuate the severity of skin abscesses in a murine model, improve survival rates in bloodstream infection models, and mitigate inflammation in both skin and lung tissues. CONCLUSION This study highlights the potential of rifampicin as an anti-virulence agent and pave the way for the development of innovative therapeutic strategies targeting MRSA infections.
Collapse
Affiliation(s)
- Yanghua Xiao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanlei Xu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weihua Han
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingjie Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
3
|
Yu Y, Ma S, Han Y, Zhang S, Yang M, Du Z, Yu Z, Liu C. A novel antioxidant peptide from soybean meal alleviates H 2O 2-induced oxidative damage via the Keap1-Nrf2-HO-1 pathway. Food Res Int 2025; 206:116084. [PMID: 40058928 DOI: 10.1016/j.foodres.2025.116084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/27/2025] [Accepted: 02/22/2025] [Indexed: 05/13/2025]
Abstract
As the main processing by-product of soybeans, the soybean meal has received increasing attention for its abundant proteins and nutritional values. However, most soybean meal is currently restricted to coarse livestock feed and lacks attention to its potential functional activities. This study aimed to explore the antioxidant activity and cytoprotective mechanism of bioactive peptides from soybean meal using a combined in vitro and in silico approach. Herein, a novel antioxidant peptide (Lys-Phe-Gly-Trp, KFGW) was identified from soybean meal hydrolysate (< 1 kDa) by HPLC-ESI-MS/MS. Besides, KFGW exhibited superior antioxidant activity as reflected by the excellent in vitro radicals scavenging capacity and cytoprotective profiles against H2O2-induced oxidative damage in HEK-293 cells. Meanwhile, KFGW could significantly improve the activity of the antioxidant enzyme SOD and inhibit the excessive generation of intracellular ROS and NO, thereby alleviating oxidative stress-induced cell apoptosis via Bcl-2/Bax/Caspase signaling. More importantly, KFGW could effectively activate the Keap1-Nrf2-HO-1 pathway by occupying the Nrf2 binding site on Keap1, which was mainly attributed to the hydrogen bonding and van der Waals interactions. Overall, these findings would facilitate the integrated application of bioactive peptides derived from soybean meal as functional ingredients in food processing and health-promoting areas.
Collapse
Affiliation(s)
- Yiding Yu
- School of Food Science and Engineering, Hainan University, Haikou, 570228, PR China
| | - Sitong Ma
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Yuxi Han
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Shuo Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Meng Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou, 570228, PR China
| | - Chunmei Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China.
| |
Collapse
|
4
|
Vithalkar MP, Pradhan S, Sandra KS, Bharath HB, Nayak Y. Modulating NLRP3 Inflammasomes in Idiopathic Pulmonary Fibrosis: A Comprehensive Review on Flavonoid-Based Interventions. Cell Biochem Biophys 2025:10.1007/s12013-025-01696-4. [PMID: 39966334 DOI: 10.1007/s12013-025-01696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a severe, rapidly advancing disease that drastically diminishes life expectancy. Without treatment, it can progress to lung cancer. The precise etiology of IPF remains unknown, but inflammation and damage to the alveolar epithelium are widely thought to be pivotal in its development. Research has indicated that activating the NLRP3 inflammasome is a crucial mechanism in IPF pathogenesis, as it triggers the release of pro-inflammatory cytokines such as IL-1β, IL-18, and TGF-β. These cytokines contribute to the myofibroblast differentiation and extracellular matrix (ECM) accumulation. Currently, treatment options for IPF are limited. Only two FDA-approved medications, pirfenidone and nintedanib, are available. While these drugs can decelerate disease progression, they come with a range of side effects and do not cure the disease. Additional treatment strategies primarily involve supportive care and therapy. Emerging research has highlighted that numerous flavonoids derived from traditional medicines can inhibit the critical regulators responsible for activating the NLRP3 inflammasome. These flavonoids show promise as potential therapeutic agents for managing IPF, offering a new avenue for treatment that targets the core inflammatory processes of this debilitating condition.
Collapse
Affiliation(s)
- Megh Pravin Vithalkar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - Shreya Pradhan
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - K S Sandra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - H B Bharath
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India.
| |
Collapse
|
5
|
Nehme R, Chervet A, Decombat C, Habanjar O, Longechamp L, Rousset A, Chalard P, Gainche M, Senejoux F, Fraisse D, Filaire E, Berthon JY, Diab-Assaf M, Delort L, Caldefie-Chezet F. Selected Plant Extracts Regulating the Inflammatory Immune Response and Oxidative Stress: Focus on Quercus robur. Nutrients 2025; 17:510. [PMID: 39940368 PMCID: PMC11820342 DOI: 10.3390/nu17030510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Inflammation is a vital response of the immune system, frequently linked to the development and progression of numerous chronic and autoimmune diseases. Targeting inflammation represents an attractive strategy to prevent and treat these pathologies. In this context, many pathways, including pro-inflammatory cytokines secretion, NFκB activation, reactive oxygen species (ROS) production, inflammasome activation and arachidonic acid metabolism could be highlighted and addressed. Several plant materials have traditionally been used as effective and non-harmful anti-inflammatory agents. However, well-established scientific evidence is lacking, and their mechanisms of action remain unclear. The current article compares the effects of seven plant extracts, including Quercus robur L. (Oak), Plantago lanceolata L. (narrowleaf plantain), Plantago major L. (broadleaf plantain), Helichrysum stoechas L. (immortelle or helichrysum), Leontopodium nivale alpinum Cass. (edelweiss), Medicago sativa L. (alfafa) and Capsella bursa-pastoris Moench (shepherd's purse) on different inflammatory pathways. Results: All of the plant extracts significantly affected ROS production, but their action on cytokine production was more variable. As the Quercus robur extract showed the highest efficacy in our models, it was subsequently assessed on several inflammatory signaling pathways. Quercus robur significantly decreased the secretion of IFNγ, IL-17a, IL-12, IL-2, IL-1β and IL-23 in stimulated human leucocytes, and the expression of TNFα, IL-6, IL-8, IL-1β and CXCL10 in M1-like macrophages. Additionally, a significant reduction in PGE2 secretion, COX2, NLRP3, caspase1 and STAT3 expression and NFκB p65 phosphorylation was observed. Conclusions: Our results clearly indicate that Quercus robur has a potent anti-inflammatory effect, making it a promising candidate for both the treatment and prevention of inflammation and related diseases, thereby promoting overall well-being.
Collapse
Affiliation(s)
- Rawan Nehme
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (R.N.); (A.C.); (C.D.); (O.H.); (L.L.); (F.S.); (D.F.); (E.F.); (L.D.)
| | - Arthur Chervet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (R.N.); (A.C.); (C.D.); (O.H.); (L.L.); (F.S.); (D.F.); (E.F.); (L.D.)
| | - Caroline Decombat
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (R.N.); (A.C.); (C.D.); (O.H.); (L.L.); (F.S.); (D.F.); (E.F.); (L.D.)
| | - Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (R.N.); (A.C.); (C.D.); (O.H.); (L.L.); (F.S.); (D.F.); (E.F.); (L.D.)
| | - Lucie Longechamp
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (R.N.); (A.C.); (C.D.); (O.H.); (L.L.); (F.S.); (D.F.); (E.F.); (L.D.)
| | - Amandine Rousset
- Greentech, Biopôle Clermont-Limagne, 63360 Saint-Beauzire, France; (A.R.); (J.-Y.B.)
| | - Pierre Chalard
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, Clermont Auvergne INP, CNRS, 63000 Clermont-Ferrand, France; (P.C.); (M.G.)
| | - Mael Gainche
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, Clermont Auvergne INP, CNRS, 63000 Clermont-Ferrand, France; (P.C.); (M.G.)
| | - Francois Senejoux
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (R.N.); (A.C.); (C.D.); (O.H.); (L.L.); (F.S.); (D.F.); (E.F.); (L.D.)
| | - Didier Fraisse
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (R.N.); (A.C.); (C.D.); (O.H.); (L.L.); (F.S.); (D.F.); (E.F.); (L.D.)
| | - Edith Filaire
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (R.N.); (A.C.); (C.D.); (O.H.); (L.L.); (F.S.); (D.F.); (E.F.); (L.D.)
| | - Jean-Yves Berthon
- Greentech, Biopôle Clermont-Limagne, 63360 Saint-Beauzire, France; (A.R.); (J.-Y.B.)
| | - Mona Diab-Assaf
- Faculty of Sciences II, Lebanese University Fanar, Beirut 1500, Lebanon;
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (R.N.); (A.C.); (C.D.); (O.H.); (L.L.); (F.S.); (D.F.); (E.F.); (L.D.)
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (R.N.); (A.C.); (C.D.); (O.H.); (L.L.); (F.S.); (D.F.); (E.F.); (L.D.)
| |
Collapse
|
6
|
Grosso R, Nguyen V, Ahmed SK, Wong-Beringer A. Novel Epigallocatechin Gallate (EGCG) Analogs with Improved Biochemical Properties for Targeting Extracellular and Intracellular Staphylococcus aureus. Appl Microbiol 2024; 4:1568-1581. [DOI: 10.3390/applmicrobiol4040107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Staphylococcus aureus is a leading cause of bloodstream infection (SAB), with up to 30% mortality. Despite treatment with standard antibiotics, one in three patients develops a persistent infection, which portends a five-fold increase in the risk of death. Persistent SAB has been attributed in part to the inability of antistaphylococcal antibiotics to eradicate intracellular S. aureus surviving inside macrophages. (-)- Epigallocatechin gallate (EGCG) is a catechin found in green tea that has been widely studied for its broad biological activities, ranging from anticancer to antibacterial activity. However, EGCG is greatly limited by its poor drug-like properties in terms of stability, membrane permeability, and bioavailability. In this study, we established through a series of in vitro experiments that structural modifications of EGCG enhanced drug-like properties while maintaining or improving its antistaphylococcal activity. Our lead EGCG analogs (MCC-1 and MCC-2) showed improved biochemical properties along with increased potency against extracellular S. aureus and restored susceptibility of β-lactam agents to methicillin-resistant S. aureus (MRSA). Importantly, the lead analogs but not EGCG potentiated macrophage- and antibiotic-mediated clearance of intracellular bacteria. Overall, EGCG analogs showed promise for further development as adjunctive therapy candidates for the treatment of SAB.
Collapse
Affiliation(s)
- Riley Grosso
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern Los Angeles, Los Angeles, CA 90033, USA
| | - Vy Nguyen
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern Los Angeles, Los Angeles, CA 90033, USA
| | - Syed Kaleem Ahmed
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern Los Angeles, Los Angeles, CA 90033, USA
| | - Annie Wong-Beringer
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern Los Angeles, Los Angeles, CA 90033, USA
| |
Collapse
|
7
|
Lei Y, Li M, Liu X, Zhang L, Zhang R, Cai F. Nerolidol rescues hippocampal injury of diabetic rats through inhibiting NLRP3 inflammasome and regulation of MAPK/AKT pathway. Biofactors 2024; 50:1076-1100. [PMID: 38624190 DOI: 10.1002/biof.2058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/24/2024] [Indexed: 04/17/2024]
Abstract
Despite the observation of diabetes-induced brain tissue damage and impaired learning and memory, the underlying mechanism of damage remains elusive, and effective, targeted therapeutics are lacking. Notably, the NLRP3 inflammasome is highly expressed in the hippocampus of diabetic individuals. Nerolidol, a naturally occurring compound with anti-inflammatory and antioxidant properties, has been identified as a potential therapeutic option for metabolic disorders. However, the ameliorative capacity of nerolidol on diabetic hippocampal injury and its underlying mechanism remain unclear. Network pharmacology and molecular docking was used to predict the signaling pathways and therapeutic targets of nerolidol for the treatment of diabetes. Then established a diabetic rat model using streptozotocin (STZ) combined with a high-fat diet and nerolidol was administered. Morris water maze to assess spatial learning memory capacity. Hematoxylin and eosin and Nissl staining was used to detect neuronal damage in the diabetic hippocampus. Transmission electron microscopy was used to detect the extent of damage to mitochondria, endoplasmic reticulum (ER) and synapses. Immunofluorescence was used to detect GFAP, IBA1, and NLRP3 expression in the hippocampus. Western blot was used to detect apoptosis (Bcl-2, BAX, and Cleaved-Caspase-3); synapses (postsynaptic densifying protein 95, SYN1, and Synaptophysin); mitochondria (DRP1, OPA1, MFN1, and MFN2); ER (GRP78, ATF6, CHOP, and caspase-12); NLRP3 inflammasome (NLRP3, ASC, and caspase-1); inflammatory cytokines (IL-18, IL-1β, and TNF-α); AKT (P-AKT); and mitogen-activated protein kinase (MAPK) pathway (P-ERK, P-p38, and P-JNK) related protein expression. Network pharmacology showed that nerolidol's possible mechanisms for treating diabetes are the MAPK/AKT pathway and anti-inflammatory effects. Animal experiments demonstrated that nerolidol could improve blood glucose, blood lipids, and hippocampal neuronal damage in diabetic rats. Furthermore, nerolidol could improve synaptic, mitochondrial, and ER damage in the hippocampal ultrastructure of diabetic rats by potentially affecting synaptic, mitochondrial, and ER-related proteins. Further studies revealed that nerolidol decreased neuroinflammation, NLRP3 and inflammatory factor expression in hippocampal tissue while also decreasing MAPK pathway expression and enhancing AKT pathway expression. However, nerolidol improves hippocampal damage in diabetic rats cannot be shown to improve cognitive function. In conclusion, our study reveals for the first time that nerolidol can ameliorate hippocampal damage, neuroinflammation, synaptic, ER, and mitochondrial damage in diabetic rats. Furthermore, we suggest that nerolidol may inhibit NLRP3 inflammasome and affected the expression of MAPK and AKT. These findings provide a new experimental basis for the use of nerolidol to ameliorate diabetes-induced brain tissue damage and the associated disease.
Collapse
Affiliation(s)
- Yining Lei
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, China
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Manqin Li
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, China
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Xinran Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Lu Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Ruyi Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Fei Cai
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
8
|
Luo Q, Luo L, Zhao J, Wang Y, Luo H. Biological potential and mechanisms of Tea's bioactive compounds: An Updated review. J Adv Res 2024; 65:345-363. [PMID: 38056775 PMCID: PMC11519742 DOI: 10.1016/j.jare.2023.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Tea (Camellia sinensis) has a rich history and is widely consumed across many countries, and is categorized into green tea, white tea, oolong tea, yellow tea, black tea, and dark tea based on the level of fermentation. Based on a review of previous literature, the commonly recognized bioactive substances in tea include tea polyphenols, amino acids, polysaccharides, alkaloids, terpenoids, macro minerals, trace elements, and vitamins, which have been known to have various potential health benefits, such as anticancer, antioxidant, anti-inflammatory, anti-diabetes, and anti-obesity properties, cardiovascular protection, immune regulation, and control of the intestinal microbiota. Most studies have only pointed out the characteristics of tea's bioactivities, so a comprehensive summary of the pharmacological characteristics and mechanisms of tea's bioactivities and their use risks are vital. AIM OF REVIEW This paper aims to summarize tea's bioactive substances of tea and their pharmacological characteristics and mechanisms, providing a scientific basis for the application of bioactive substances in tea and outlining future research directions for the study of bioactive substances in tea. KEY SCIENTIFIC CONCEPTS OF REVIEW This review summarizes the main biologically active substances, pharmacological effects, and mechanisms and discusses the potential risks. It may help researchers grasp more comprehensive progress in the study of tea bioactive substances to further promote the application of tea as a natural bioactive substance in the medical field.
Collapse
Affiliation(s)
- Qiaoxian Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Longbiao Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Jinmin Zhao
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China.
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China; College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China.
| |
Collapse
|
9
|
Hashem AE, Elmasry IH, Lebda MA, El-Karim DRSG, Hagar M, Ebied SKM, Alotaibi BS, Rizk NI, Ghamry HI, Shukry M, Edres HA. Characterization and antioxidant activity of nano-formulated berberine and cyperus rotundus extracts with anti-inflammatory effects in mastitis-induced rats. Sci Rep 2024; 14:18462. [PMID: 39122736 PMCID: PMC11315693 DOI: 10.1038/s41598-024-66801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/04/2024] [Indexed: 08/12/2024] Open
Abstract
Bovine mastitis caused by infectious pathogens, mainly Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), constitutes a major destructive challenge for the dairy industry and public health. Berberine chloride (BER) and Cyperus rotundus possess a broad spectrum of anti-inflammatory, antioxidant, antibacterial, and antiproliferative activities; however, their bioavailability is low. This research aimed first to prepare an ethanolic extract of Cyperus rotundus rhizomes (CRE) followed by screening its phytochemical contents, then synthesis of BER and CRE loaded chitosan nanoparticles (NPs) (BER/CH-NPs and CRE/CH-NPs), afterward, the analysis of their loading efficiency in addition to the morphological and physicochemical characterization of the formulated NPs employing Scanning Electron Microscopy (SEM), Zeta Potential (ZP), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and X-Ray Diffraction (XRD) assessments compared to their crude forms to evaluate the enhancement of bioavailability and stability. Isolation of bacterial strains from the milk of mastitic cows, used for induction of mammary gland (MG) inflammation in female albino rats, and a preliminary investigation of the prophylactic oral doses of the prepared NPs against S. aureus-induced mastitis in female rats. The minimal inhibitory concentration (MIC) of BER/CH-NPs and CRE/CH-NPs is 1 mg/kg b.w. BER/CH-NPs and CRE/CH-NPs alone or in combination show significant (P ≤ 0.05) DPPH radical scavenging activity (69.2, 88.5, and 98.2%, respectively) in vitro. Oral administration of BER/CH-NPs and CRE/CH-NPs to mastitis rats significantly (P ≤ 0.05) attenuated TNF-α (22.1, 28.6 pg/ml), IL-6 (33.4, 42.9 pg/ml), IL-18 (21.7, 34.7 pg/ml), IL-4 (432.9, 421.6 pg/ml), and MPO (87.1, 89.3 pg/ml) compared to mastitis group alongside the improvement of MG histopathological findings without any side effect on renal and hepatic functions. Despite promising results with BER and CRE nanoparticles, the study is limited by small-scale trials, a focus on acute administration, and partially explored nanoparticle-biological interactions, with no economic or scalability assessments. Future research should address these limitations by expanding trial scopes, exploring interactions further, extending study durations, and assessing economic and practical scalability. Field trials and regulatory compliance are also necessary to ensure practical application and safety in the dairy industry. In conclusion, the in vitro and in vivo results proved the antioxidant and anti-inflammatory efficacy of BER/CH-NPs and CRE/CH-NPs in low doses with minimal damage to the liver and kidney functions, supposing their promising uses in mastitis treatment.
Collapse
Affiliation(s)
- Aml E Hashem
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Ingi H Elmasry
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed A Lebda
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Dina R S Gad El-Karim
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed Hagar
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
- Faculty of Advanced Basic Sciences, Alamein International University, Alamein City, Matrouh Governorate, Egypt
| | - Sawsan Kh M Ebied
- Bacteriology Unit, Animal Health Research Institute, Alexandria Province, Egypt
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Nermin I Rizk
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Heba I Ghamry
- Nutrition and Food Science, Department of Biology, College of Science, King Khalid University, P.O. Box 960, Abha, 61421, Saudi Arabia
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Hanan A Edres
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Jin R, Hu W, Zhou M, Lin F, Xu A. Caffeic acid derivative WSY6 protects melanocytes from oxidative stress by reducing ROS production and MAPK activation. Heliyon 2024; 10:e24843. [PMID: 38304822 PMCID: PMC10831733 DOI: 10.1016/j.heliyon.2024.e24843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Purpose Vitiligo is a chronic depigmentation disease caused by a loss of functioning melanocytes and melanin from the epidermis. Oxidative stress-induced damage to melanocytes is key in the pathogenesis of vitiligo. WSY6 is a caffeic acid derivative synthesized from epigallocatechin-3-gallate (EGCG). This study is to investigate whether the new chemical WSY6 protected melanocytes from H2O2-induced cell damage and to elucidate the underlying molecular mechanism. Patients and methods The present study compared the antioxidative potential of WSY6 with EGCG in hydrogen peroxide (H2O2)-treated PIG1 cells. Western blotting was used to study the protein expression of cyto-c, cleaved-caspase3, cleaved-caspase9, and the activation of MAPK family members, including p38, ERK1/2, JNK and their phosphorylation in melanocytes. ROS assay kit to detect intracellular reactive oxygen species production; CCK8 and lactate dehydrogenase leak assay to detect cytotoxicity. Results EGCG and WSY6 ameliorated H2O2-induced oxidative stress damage in PIG1 cells in a does-dependent manner, while WSY6 was much more effective. WSY6 reduced cellular ROS production, cytochrome c release, downregulated caspase-3 and caspase-9 activation. MAPK pathway signaling including phosphorylated p38, ERK and JNK were observed under oxidative stress and can be much protected by pre-treatment of WSY6. Conclusion These results indicated that WSY6 could be a more powerful antioxidant than EGCG and protect melanocytes against oxidative cytotoxicity.
Collapse
Affiliation(s)
| | | | - Miaoni Zhou
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, PR China
| | - Fuquan Lin
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, PR China
| | - Aie Xu
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, PR China
| |
Collapse
|
11
|
Liu C, Liu J, Wang W, Yang M, Chi K, Xu Y, Guo N. Epigallocatechin Gallate Alleviates Staphylococcal Enterotoxin A-Induced Intestinal Barrier Damage by Regulating Gut Microbiota and Inhibiting the TLR4-NF-κB/MAPKs-NLRP3 Inflammatory Cascade. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16286-16302. [PMID: 37851930 DOI: 10.1021/acs.jafc.3c04526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Natural phytochemicals have attracted increasing attention because of their promising ability to tackle bacteriotoxin-induced public safety concerns. However, it is unclear how natural phytochemicals regulate the intestinal barrier dysfunction caused by bacteriotoxin, such as staphylococcal enterotoxin A (SEA). This study aims to illustrate the in vitro and in vivo protective mechanism of epigallocatechin gallate (EGCG) on SEA-triggered intestinal barrier damage and inflammation. Results show that EGCG alleviates intestinal barrier damage by effectively inhibiting SEA-induced intestinal permeability increase, tight junction protein and mucin loss, and intestinal cell apoptosis. EGCG also reduces intestinal inflammation by suppressing the TLR4-NF-κB/MAPKs-NLRP3 pathway. Importantly, EGCG reverses gut microbiota dysbiosis and short-chain fatty acid (SCFA) content decrease induced by SEA. It is worth noting that this study also detects the direct interaction between the phytochemical and virulence factors and finds that EGCG effectively not only inhibits the secretion of SEA but also binds with the secreted SEA to attenuate its toxicity. Taken together, EGCG mitigates SEA-induced intestinal barrier dysfunction via gut microbiota SCFA-mediated TLR4-NF-κB/MAPKs-NLRP3 inflammatory cascade inhibition. Overall, this research provides enlightening insight into the application of bacteriotoxin-targeting natural compounds in the field of food safety and human wellness.
Collapse
Affiliation(s)
- Chunmei Liu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Jingbo Liu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Weilin Wang
- Changchun Customs Port Outpatient Department, Jilin International Travel Healthcare Centre, Changchun, Jilin 130022, People's Republic of China
| | - Meng Yang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Kunmei Chi
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Yanyang Xu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
12
|
Beam JE, Wagner NJ, Lu KY, Parsons JB, Fowler VG, Rowe SE, Conlon BP. Inflammasome-mediated glucose limitation induces antibiotic tolerance in Staphylococcus aureus. iScience 2023; 26:107942. [PMID: 37790275 PMCID: PMC10543182 DOI: 10.1016/j.isci.2023.107942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/27/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023] Open
Abstract
Staphylococcus aureus is a leading human pathogen that frequently causes relapsing infections. The failure of antibiotics to eradicate infection contributes to infection relapse. Host-pathogen interactions have a substantial impact on antibiotic susceptibility and the formation of antibiotic tolerant cells. In this study, we interrogate how a major S. aureus virulence factor, α-toxin, interacts with macrophages to alter the microenvironment of the pathogen, thereby influencing its susceptibility to antibiotics. We find α-toxin-mediated activation of the NLRP3 inflammasome induces antibiotic tolerance. Induction of tolerance is driven by increased glycolysis in the host cells, resulting in glucose limitation and ATP depletion in S. aureus. Additionally, inhibition of NLRP3 activation improves antibiotic efficacy in vitro and in vivo, suggesting that this strategy has potential as a host-directed therapeutic to improve outcomes. Our findings identify interactions between S. aureus and the host that result in metabolic crosstalk that can determine the outcome of antimicrobial therapy.
Collapse
Affiliation(s)
- Jenna E. Beam
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nikki J. Wagner
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kuan-Yi Lu
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua B. Parsons
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Vance G. Fowler
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Sarah E. Rowe
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian P. Conlon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Goc A, Sumera W, Rath M, Niedzwiecki A. Inhibition of α-hemolysin activity of Staphylococcus aureus by theaflavin 3,3'-digallate. PLoS One 2023; 18:e0290904. [PMID: 37651426 PMCID: PMC10470925 DOI: 10.1371/journal.pone.0290904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
The ongoing rise in antibiotic resistance, and a waning of the introduction of new antibiotics, has resulted in limited treatment options for bacterial infections, including these caused by methicillin-resistant Staphylococcus aureus, leaving the world in a post-antibiotic era. Here, we set out to examine mechanisms by which theaflavin 3,3'-digallate (TF3) might act as an anti-hemolytic compound. In the presented study, we found that TF3 has weak bacteriostatic and bactericidal effects on Staphylococcus aureus, and strong inhibitory effect towards the hemolytic activity of its α-hemolysin (Hla) including its production and secretion. A supportive SPR assay reinforced these results and further revealed binding of TF3 to Hla with KD = 4.57×10-5 M. Interestingly, TF3 was also able to protect human primary keratinocytes from Hla-induced cell death, being at the same time non-toxic for them. Further analysis of TF3 properties revealed that TF3 blocked Hla-prompting immune reaction by inhibiting production and secretion of IL1β, IL6, and TNFα in vitro and in vivo, through affecting NFκB activity. Additionally, we observed that TF3 also markedly attenuated S. aureus-induced barrier disruption, by inhibiting Hla-triggered E-cadherin and ZO-1 impairment. Overall, by blocking activity of Hla, TF3 subsequently subdued the inflammation and protected the epithelial barrier, which is considered as beneficial to relieving skin injury.
Collapse
Affiliation(s)
- Anna Goc
- Department of Infectious Diseases, Dr. Rath Research Institute, San Jose, California, United States of America
| | - Waldemar Sumera
- Department of Infectious Diseases, Dr. Rath Research Institute, San Jose, California, United States of America
| | - Matthias Rath
- Department of Infectious Diseases, Dr. Rath Research Institute, San Jose, California, United States of America
| | - Aleksandra Niedzwiecki
- Department of Infectious Diseases, Dr. Rath Research Institute, San Jose, California, United States of America
| |
Collapse
|
14
|
Wang T, Xu H, Wu S, Guo Y, Zhao G, Wang D. Mechanisms Underlying the Effects of the Green Tea Polyphenol EGCG in Sarcopenia Prevention and Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37316469 DOI: 10.1021/acs.jafc.3c02023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sarcopenia is prevalent among the older population and severely affects human health. Tea catechins may benefit for skeletal muscle performance and protect against secondary sarcopenia. However, the mechanisms underlying their antisarcopenic effect are still not fully understood. Despite initial successes in animal and early clinical trials regarding the safety and efficacy of (-)-epigallocatechin-3-gallate (EGCG), a major catechin of green tea, many challenges, problems, and unanswered questions remain. In this comprehensive review, we discuss the potential role and underlying mechanisms of EGCG in sarcopenia prevention and management. We thoroughly review the general biological activities and general effects of EGCG on skeletal muscle performance, EGCG's antisarcopenic mechanisms, and recent clinical evidence of the aforesaid effects and mechanisms. We also address safety issues and provide directions for future studies. The possible concerted actions of EGCG indicate the need for further studies on sarcopenia prevention and management in humans.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000 Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Shanshan Wu
- College of Agriculture & Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Guangshan Zhao
- College of Food Science & Technology, Henan Agricultural University, 450002 Zhengzhou, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| |
Collapse
|
15
|
Liu H, Guan H, He F, Song Y, Li F, Sun-Waterhouse D, Li D. Therapeutic actions of tea phenolic compounds against oxidative stress and inflammation as central mediators in the development and progression of health problems: A review focusing on microRNA regulation. Crit Rev Food Sci Nutr 2023; 64:8414-8444. [PMID: 37074177 DOI: 10.1080/10408398.2023.2202762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Many health problems including chronic diseases are closely associated with oxidative stress and inflammation. Tea has abundant phenolic compounds with various health benefits including antioxidant and anti-inflammatory properties. This review focuses on the present understanding of the impact of tea phenolic compounds on the expression of miRNAs, and elucidates the biochemical and molecular mechanisms underlying the transcriptional and post-transcriptional protective actions of tea phenolic compounds against oxidative stress- and/or inflammation-mediated diseases. Clinical studies showed that drinking tea or taking catechin supplement on a daily basis promoted the endogenous antioxidant defense system of the body while inhibiting inflammatory factors. The regulation of chronic diseases based on epigenetic mechanisms, and the epigenetic-based therapies involving different tea phenolic compounds, have been insufficiently studied. The molecular mechanisms and application strategies of miR-27 and miR-34 involved in oxidative stress response and miR-126 and miR-146 involved in inflammation process were preliminarily investigated. Some emerging evidence suggests that tea phenolic compounds may promote epigenetic changes, involving non-coding RNA regulation, DNA methylation, histone modification, ubiquitin and SUMO modifications. However, epigenetic mechanisms and epigenetic-based disease therapies involving phenolic compounds from different teas, and the potential cross-talks among the epigenetic events, remain understudied.
Collapse
Affiliation(s)
- Hui Liu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Hui Guan
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Fatao He
- All-China Federation of Supply & Marketing Co-operatives, Jinan Fruit Research Institute, Jinan, P.R. China
| | - Ye Song
- All-China Federation of Supply & Marketing Co-operatives, Jinan Fruit Research Institute, Jinan, P.R. China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| |
Collapse
|
16
|
Zhou Q, Cui J, Liu Y, Gu L, Teng X, Tang Y. EGCG alleviated Mn exposure-caused carp kidney damage via trpm2-NLRP3-TNF-α-JNK pathway: Oxidative stress, inflammation, and tight junction dysfunction. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108582. [PMID: 36754155 DOI: 10.1016/j.fsi.2023.108582] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 05/12/2023]
Abstract
Manganese (Mn), an essential trace metal element in organisms. However, with extensive use of Mn in industry and agriculture, Mn becomes a heavy metal pollutant in water. (-)-epigallocatechin gallate (EGCG), an tea polyphenols, can alleviate metal toxicity. Kidney is an important detoxifying organ, but toxic mechanism of Mn to kidneys is unclear, which needs further research. Carp is an Asian important economical species for fisheries and a biological model for studying environmental toxicology. Thus, we established excess Mn and EGCG-supplemented carp model to explore molecular mechanism of EGCG alleviating Mn-caused carp kidney damage. In this experiment, we set a control group (the Con group), a Mn treatment group (the Mn group, 90 mg/L Mn), a EGCG supplement group (the EG group, 75 mg/kg EGCG), and a combined group (the Mn + EG group, 90 mg/L Mn and 75 mg/kg EGCG). Transcriptome, qRT-PCR, kit, and morphology method results indicated that excess Mn caused oxidative stress, inflammatory damage, and tight junction dysfunction in carp kidneys. Excess Mn-triggered oxidative stress caused tight junction dysfunction via trpm2-NLRP3-TNF-α-JNK pathway and inflammation. EGCG reversed the harm of Mn to fish through the above mechanism. The findings of this study provided the evidence of EGCG-alleviated Mn poisoning and offered new ideas for reducing heavy metal environmental pollution risk.
Collapse
Affiliation(s)
- Qin Zhou
- College of Animal Science and Technology, Northeast Agricultural University, China
| | - Jiawen Cui
- College of Animal Science and Technology, Northeast Agricultural University, China
| | - Yuhang Liu
- College of Animal Science and Technology, Northeast Agricultural University, China
| | - Lepeng Gu
- College of Animal Science and Technology, Northeast Agricultural University, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, China.
| | - You Tang
- Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, China.
| |
Collapse
|
17
|
Wang T, Xu H, Dong R, Wu S, Guo Y, Wang D. Effectiveness of targeting the NLRP3 inflammasome by using natural polyphenols: A systematic review of implications on health effects. Food Res Int 2023; 165:112567. [PMID: 36869555 DOI: 10.1016/j.foodres.2023.112567] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/13/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Globally, inflammation and metabolic disorders pose serious public health problems and are major health concerns. It has been shown that natural polyphenols are effective in the treatment of metabolic diseases, including anti-inflammation, anti-diabetes, anti-obesity, neuron-protection, and cardio-protection. NLRP3 inflammasome, which are multiprotein complexes located within the cytosol, play an important role in the innate immune system. However, aberrant activation of the NLRP3 inflammasome were discovered as essential molecular mechanisms in triggering inflammatory processes as well as implicating it in several major metabolic diseases, such as type 2 diabetes mellitus, obesity, atherosclerosis or cardiovascular disease. Recent studies indicate that natural polyphenols can inhibit NLRP3 inflammasome activation. In this review, the progress of natural polyphenols preventing inflammation and metabolic disorders via targeting NLRP3 inflammasome is systemically summarized. From the viewpoint of interfering NLRP3 inflammasome activation, the health effects of natural polyphenols are explained. Recent advances in other beneficial effects, clinical trials, and nano-delivery systems for targeting NLRP3 inflammasome are also reviewed. NLRP3 inflammasome is targeted by natural polyphenols to exert multiple health effects, which broadens the understanding of polyphenol mechanisms and provides valuable guidance to new researchers in this field.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000 Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Ruixia Dong
- College of Horticulture, Jinling Institute of Technology, 211169 Nanjing, China
| | - Shanshan Wu
- College of Agriculture & Biotechnology, Zhejiang University, 310058 Hanzhou, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| |
Collapse
|
18
|
Hu Y, Liu Z, Tao X, Li J, Hou Z, Guo X, Zhou D, Wang M, Zhu B. Epigallocatechin-3-gallate alleviates trans, trans-2,4-decadienal-induced endothelial pyroptosis and dysfunction by inhibiting NLRP3 inflammasome activation. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
19
|
Gao J, Yang Z, Zhao C, Tang X, Jiang Q, Yin Y. A comprehensive review on natural phenolic compounds as alternatives to in-feed antibiotics. SCIENCE CHINA. LIFE SCIENCES 2022:10.1007/s11427-022-2246-4. [PMID: 36586071 DOI: 10.1007/s11427-022-2246-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/17/2022] [Indexed: 01/01/2023]
Abstract
Intensive livestock and poultry farming in China largely relied on the use of in-feed antibiotics until July 2020. The consequences of antibiotic overuse in animal feed include accumulation in animal products and the development of bacterial antibiotic resistance, both of which threaten food safety and human health. China has now completely banned the circulation of commercial feed containing growth-promoting drug additives (except Chinese herbal medicine). Therefore, alternatives to in-feed antibiotics in animal production are greatly needed. Natural phenolic compounds (NPCs) exist widely in plants and are non-toxic, non-polluting, highly reproducible, and leave little residue. Many natural flavonoids, phenolic acids, lignans, and stilbenes have polyphenol chemical structures and exhibit great potential as alternatives to antibiotics. In this review we delineate the characteristics of plant-derived NPCs and summarize their current applications as alternatives to in-feed antibiotics, aiming to provide new strategies for antibiotic-free feeding and promote the development of more sustainable animal husbandry practices.
Collapse
Affiliation(s)
- Jingxia Gao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhe Yang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Chongqi Zhao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Xiongzhuo Tang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Qian Jiang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China. .,Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Yulong Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China. .,Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
20
|
Therapeutic Effects of Green Tea Polyphenol (‒)-Epigallocatechin-3-Gallate (EGCG) in Relation to Molecular Pathways Controlling Inflammation, Oxidative Stress, and Apoptosis. Int J Mol Sci 2022; 24:ijms24010340. [PMID: 36613784 PMCID: PMC9820274 DOI: 10.3390/ijms24010340] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
(‒)-Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea. Thanks to multiple interactions with cell surface receptors, intracellular signaling pathways, and nuclear transcription factors, EGCG possesses a wide variety of anti-inflammatory, antioxidant, antifibrotic, anti-remodelation, and tissue-protective properties which may be useful in the treatment of various diseases, particularly in cancer, and neurological, cardiovascular, respiratory, and metabolic disorders. This article reviews current information on the biological effects of EGCG in the above-mentioned disorders in relation to molecular pathways controlling inflammation, oxidative stress, and cell apoptosis.
Collapse
|
21
|
Zapletal K, Machnik G, Okopień B. Polyphenols of Antibacterial Potential - May They Help in Resolving Some Present Hurdles in Medicine? Folia Biol (Praha) 2022; 68:87-96. [PMID: 36689315 DOI: 10.14712/fb2022068030087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The phenomenon of antibiotic resistance has been recognized as one of the greatest threats to humanity. Therefore, there is an enormous need to introduce new antibiotics to the medical practice that will effectively eradicate the resistant bacterial strains threatening human health and life. One solution currently being considered as an alternative to antibiotics involves secondary metabolites of plants that can be used in modern antibacterial therapy. Polyphenols represent a broad and diversified group of plant-derived aromatic compounds. Their antibacterial potential has been recognized via specific mechanisms of action, e.g., by inhibition of bacterial biofilm formation, through synergistic effects with the action of currently used antibiotics, and by inhibition of the activity of bacterial virulence factors.
Collapse
Affiliation(s)
- K Zapletal
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - G Machnik
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - B Okopień
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|