1
|
Zhou CH, Zhang T, Yu J, Yu G, Cheng S, Wu H, Xu BX, Luo H, Tian XB. MMP13 as an effective target of an active trifluoromethyl quinazoline compound against osteosarcoma. Toxicol Appl Pharmacol 2025; 495:117204. [PMID: 39674349 DOI: 10.1016/j.taap.2024.117204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 12/01/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Osteosarcoma (OS) is a highly fatal malignant tumor with a high metastatic rate and poor prognosis. Matrix metalloproteinase-13 (MMP13) is involved in OS metastasis. Its increased expression is closely related to distant metastasis and poor prognosis. The trifluoromethyl quinazoline compound KZL-201 was designed and synthesized, and its inhibitory effect on the progression of OS cells was investigated. The aim of this study was to investigate the underlying mechanism of action of KZL-201 in OS using a combination of bioinformatics analysis, molecular biology, cytology, and zoology. The in vitro experiments showed that KZL-201 inhibited OS cell proliferation, invasion, and migration; KZL-201 induced apoptosis and arrested the cell cycle at the G2/M phase. The results of molecular docking, the cellular thermal shift assay, and gene silencing experiments showed that KZL-201 had a strong affinity for MMP13. KZL-201 inhibited the progression of 143B cells by regulating the TGF-β1/Smad2/3 pathway. Thus, MMP13 is an important target gene of KZL-201 in inhibiting 143B cell progression. The in vivo experiments showed that KZL-201 inhibited the growth of OS tissues and the expression of MMP13 in OS tissues. In summary, KZL-201 targeted MMP13 and inhibited its expression, consequently suppressing the progression of OS by regulating the TGF-β1/Smad2/3 pathway.
Collapse
Affiliation(s)
- Chang-Hua Zhou
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Clinical College of Guizhou Medical University, Guiyang 550004, China
| | - Ting Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Clinical College of Guizhou Medical University, Guiyang 550004, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Natural Products Research Center, Guiyang 550014, China
| | - Gang Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Natural Products Research Center, Guiyang 550014, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Natural Products Research Center, Guiyang 550014, China
| | - Hui Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Natural Products Research Center, Guiyang 550014, China
| | - Bi-Xue Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Natural Products Research Center, Guiyang 550014, China.
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Natural Products Research Center, Guiyang 550014, China.
| | - Xiao-Bin Tian
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Clinical College of Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
2
|
Ma L, Zhao X, Lu X, Shen J, Huang J. KLF4 activates LATS2 to promote cisplatin sensitivity in ovarian cancer through DNA damage. Anticancer Drugs 2025; 36:49-61. [PMID: 39365847 DOI: 10.1097/cad.0000000000001662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
We aimed to investigate the role of large tumor suppressor kinase 2 (LATS2) in cisplatin (DDP) sensitivity in ovarian cancer. Bioinformatic analysis explored LATS2 expression, pathways, and regulators. Quantitative reverse transcription-PCR measured LATS2 and KLF4 mRNA levels. Dual-luciferase and chromatin immunoprecipitation assays confirmed their binding relationship. Cell viability, half maximal inhibitory concentration (IC 50 ) values, cell cycle, and DNA damage were assessed using CCK-8, flow cytometry, and comet assays. Western blot analyzed protein expression. The effect of LATS2 on the sensitivity of ovarian cancer to DDP was verified in vivo . LATS2 and KLF4 were downregulated in ovarian cancer, with LATS2 enriched in cell cycle, DNA replication, and mismatch repair pathways. KLF4, an upstream regulator of LATS2, bound to its promoter. Overexpressing LATS2 increased G1-phase cells, reduced cell viability and IC 50 values, and induced DNA damage. Silencing KLF4 alone showed the opposite effect on LATS2 overexpression. Knocking out LATS2 reversed the effects of KLF4 overexpression on cell viability, cell cycle, IC 50 values, and DNA damage in ovarian cancer cells. Inhibiting LATS2 inactivated the Hippo-YAP signaling pathway. In vivo experiments showed that overexpression of LATS2 enhanced the sensitivity of ovarian cancer to DDP. KLF4 activates LATS2 via DNA damage to enhance DDP sensitivity in ovarian cancer, providing a potential target for improving treatment outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Jiankang Huang
- Department of Thyroid and Breast Surgery, Anhui No. 2 Provincial People's Hospital, Hefei, China
| |
Collapse
|
3
|
Sun T, Bai B, Wu H, Xing H, Li J. Esculin Alleviates Osteoarthritis Progression Through the Sirt1/NF-κB Pathway. Phytother Res 2024; 38:5793-5805. [PMID: 39351827 DOI: 10.1002/ptr.8349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 12/13/2024]
Abstract
Osteoarthritis (OA), a joint disease associated with inflammatory processes, contributes to joint destruction. Esculin (ESC) extracted from the stem bark of Fraxinus rhynchophylla Hance has been shown to possess anti-inflammatory properties. In this study, we investigated the effect of ESC on chondrocytes treated with IL-1β and its molecular mechanism. The importance and potential mechanism of ESC in the progression of OA were evaluated. The viability of chondrocytes after exposure to ESC was examined through the CCK-8 assays. The cells were then subjected to quantitative polymerase chain reaction (qPCR), western blot, and enzyme-linked immunosorbent assay (ELISA) techniques to analyze the degradation of the extracellular matrix (ECM) and occurrence of inflammation. The NF-κB mechanism was evaluated by western blot analysis, immunofluorescence (IF), and luciferase reporter assay. Molecular docking was performed to allow for predictions on proteins that interact with ESC. Moreover, the significance of Sirt1 was explored through a knockdown experiment based on siRNA. Micro-computed tomography (CT), H&E, Safranin O-Fast Green (S-O), and immunohistochemical analyses were carried out to assess the treatment efficacy of ESC on OA in destabilization of medial meniscus (DMM) models. ESC treatment effectively inhibited ECM degradation, modulated the levels of pro-inflammatory factors, and regulated the NF-κB signaling in chondrocytes exposed to IL-1β. Mechanistically, we found that ESCs bound to Sirt1 to inhibit the activity of the NF-κB mechanism. Furthermore, ESC treatment suppressed OA progression in the DMM models. Our findings reveal that ESC ameliorates OA progression via modulating the Sirt1/NF-κB axis. This demonstrates that ESC has the potential to be applied in the treatment of OA.
Collapse
Affiliation(s)
- Tao Sun
- Department of Orthopedics, Lishui Central Hospital, Lishui, Zhejiang, China
- Department of Orthopedics, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Bingli Bai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haohao Wu
- Department of Orthopedics, Lishui Central Hospital, Lishui, Zhejiang, China
- Department of Orthopedics, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Hailin Xing
- Department of Orthopedics, Lishui Central Hospital, Lishui, Zhejiang, China
- Department of Orthopedics, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Jian Li
- Department of Orthopedics, Lishui Central Hospital, Lishui, Zhejiang, China
- Department of Orthopedics, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| |
Collapse
|
4
|
Liang Y, Zhao J, Dai T, Li X, Chen L, He Z, Guo M, Zhao J, Xu L. A review of KLF4 and inflammatory disease: Current status and future perspective. Pharmacol Res 2024; 207:107345. [PMID: 39134187 DOI: 10.1016/j.phrs.2024.107345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Inflammation is the response of the human body to injury, infection, or other abnormal states, which is involved in the development of many diseases. As a member of the Krüppel-like transcription factors (KLFs) family, KLF4 plays a crucial regulatory role in physiological and pathological processes due to its unique dual domain of transcriptional activation and inhibition. A growing body of evidence has demonstrated that KLF4 plays a pivotal role in the pathogenesis of various inflammatory disorders, including inflammatory bowel disease, osteoarthritis, renal inflammation, pneumonia, neuroinflammation, and so on. Consequently, KLF4 has emerged as a promising new therapeutic target for inflammatory diseases. This review systematically generalizes the molecular regulatory network, specific functions, and mechanisms of KLF4 to elucidate its complex roles in inflammatory diseases. An in-depth study on the biological function of KLF4 is anticipated to offer a novel research perspective and potential intervention strategies for inflammatory diseases.
Collapse
Affiliation(s)
- Yidan Liang
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jiamin Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Tengkun Dai
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xin Li
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Longqin Chen
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Lin Xu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
5
|
Cao ZM, Fu S, Dong C, Yang TY, Liu XK, Zhang CL, Li DZ. DSCR1-1 attenuates osteoarthritis-associated chondrocyte injury by regulating the CREB1/ALDH2/Wnt/β-catenin axis: An in vitro and in vivo study. Cell Signal 2024; 121:111287. [PMID: 38969191 DOI: 10.1016/j.cellsig.2024.111287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/27/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The progression of osteoarthritis (OA) includes the initial inflammation, subsequent degradation of the extracellular matrix (ECM), and chondrocyte apoptosis. Down syndrome candidate region 1 (DSCR1) is a stress-responsive gene and expresses in varied types of cells, including chondrocytes. Bioinformatics analysis of GSE103416 and GSE104739 datasets showed higher DSCR1 expression in the inflamed cartilage tissues and chondrocytes of OA. DSCR1 had two major isoforms, isoform 1 (DSCR1-1) and isoform 4 (DSCR1-4). We found that DSCR1-1 had a faster (in vitro) and higher expression (in vivo) response to OA compared to DSCR1-4. IL-1β-induced apoptosis, inflammation, and ECM degradation in chondrocytes were attenuated by DSCR1-1 overexpression. DSCR1-1 triggered the phosphorylation of cAMP response element-binding 1 (CREB1) at 133 serine sites by decreasing calcineurin activity. Moreover, activated CREB1 moved into the cell nucleus and combined in the promoter regions of aldehyde dehydrogenase 2 (ALDH2), thus enhancing its gene transcription. ALDH2 could recover Wnt/β-catenin signaling transduction by enhancing phosphorylation of β-catenin at 33/37 serine sites and inhibiting the migration of β-catenin protein from the cellular matrix to the nucleus. In vivo, adenoviruses (1 × 108 PFU) overexpressing DSCR1-1 were injected into the articular cavity of C57BL/6 mice with medial meniscus surgery-induced OA, and it showed that DSCR1-1 overexpression ameliorated cartilage injury. Collectively, our study demonstrates that DSCR1-1 may be a potential therapeutic target of OA.
Collapse
Affiliation(s)
- Zheng-Ming Cao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China.
| | - Su Fu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Chao Dong
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Teng-Yue Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Xiao-Kang Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Chun-Lin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Dong-Zhe Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China.
| |
Collapse
|
6
|
Xiong C, Shang J, Yu Z, Zhang J, Miao K, Yu C, Huang Y, Weng Y, Zhou X. Britanin alleviates chondrocyte ferroptosis in osteoarthritis by regulating the Nrf2-GPX4 axis. ARAB J CHEM 2024; 17:105918. [DOI: 10.1016/j.arabjc.2024.105918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025] Open
|
7
|
He S, Wang S, Liu R, Chen H, Wang Q, Jia D, Chen L, Dai J, Li X. Conditioned Medium of Infrapatellar Fat Stem Cells Alleviates Degradation of Chondrocyte Extracellular Matrix and Delays Development of Osteoarthritis. Gerontology 2024; 70:1171-1187. [PMID: 39159625 DOI: 10.1159/000540505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/20/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is a prevalent clinical chronic degenerative condition characterized by the degeneration of articular cartilage. Currently, drug treatments for OA come with varying degrees of side effects, making the development of new therapeutic approaches for OA imperative. Mesenchymal stem cells (MSCs) are known to mitigate the progression of OA primarily through paracrine effects. The conditioned medium (CM) derived from MSCs encapsulates a variety of paracrine factors secreted by these cells. METHODS In this study, we investigated the effect of the CM of infrapatellar fat pad-derived MSCs (IPFSCs) on OA in vitro and in vivo, as well as and the potential underlying mechanisms. We established three experimental groups: the normal group, the OA group, and the CM intervention group. In vitro experiments, we used methods such as qPCR, Western blot, immunofluorescence, and flow cytometry to detect the impact of CM on OA chondrocytes. In vivo experiments, we evaluated the changes in the knee joints of OA rats after intra-articular injection of CM treatment. RESULTS The results showed that injection of CM into the knee joint inhibited OA development in a rat model induced by destabilization of the medial meniscus and anterior cruciate ligament transection. The CM increased the deposition of extracellular matrix-related components (type II collagen and Proteoglycan). The activation of PI3K/AKT/NF-κB signaling pathway was induced by IL-1β in chondrocytes, which was finally inhibited by CM-IPFSCs treatment. CONCLUSION In summary, IPFSCs-CM may have therapeutic potential for OA.
Collapse
Affiliation(s)
- Shiping He
- Panzhihua Central Hospital, Panzhihua, China
| | - Shihan Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Ruizhou Liu
- Medical College of Zhejiang University, Hangzhou, China,
| | - Hui Chen
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Qiang Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Dazhou Jia
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Longchi Chen
- Yangzhou Clinical School of Xuzhou Medical University, Yangzhou, China
| | - Jihang Dai
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Xiaolei Li
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Huang J, Bu Z, Liu W, Zhou Z, Hu J, Yu J, Wang H, Xu S, Wu P. Cartilage decellularized matrix hydrogel loaded with protocatechualdehyde for targeted epiphycan treatment of osteoarthritis. Mater Today Bio 2024; 27:101124. [PMID: 38994469 PMCID: PMC11237976 DOI: 10.1016/j.mtbio.2024.101124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/16/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent chronic disease, characterized by chronic inflammation and cartilage degradation. This study aims to deepen the understanding of OA's pathophysiology and to develop novel therapeutic strategies. Our study underscores the pivotal role of Epiphycan (EPYC) and the IL-17 signaling pathway in OA. EPYC, an essential extracellular matrix constituent, has been found to exhibit a positive correlation with the severity of OA. We have discovered that EPYC modulates the activation of the IL-17 signaling pathway within chondrocytes by regulating the interaction between IL-17A and its receptor, IL-17RA. This regulatory mechanism underscores the intricate interplay between the extracellular matrix and immune signaling in the pathogenesis of OA Another finding of our study is the therapeutic effectiveness of protocatechualdehyde (PAH) in OA. PAH significantly reduces chondrocyte hypertrophy and supports cartilage tissue recovery.by targets EPYC. To reduce the side effects of orally administered PAH and maintain its effective drug concentration, we have developed a decellularized matrix hydrogel loaded with PAH for intra-articular injection. This novel drug delivery system is advantageous in minimizing drug-related side effects and ensuring sustained release PAH within the joint cavity.
Collapse
Affiliation(s)
- Junchao Huang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Ziheng Bu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Wei Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Zheng Zhou
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jianhai Hu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jianing Yu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Huajun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Jinan University, Guangzhou 510630, China
| | - Sudan Xu
- Department of Geriatric, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Peng Wu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
9
|
Yang T, Cao T, Yang X, Wang G, Li Y. Elucidation of the key therapeutic targets and potential mechanisms of Andrographolide multi-targets against osteoarthritis via network pharmacological analysis and experimental validation. Gene 2024; 911:148351. [PMID: 38462021 DOI: 10.1016/j.gene.2024.148351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE Our purpose is to unveil Andrographolide's potential multi-target and multi-mechanism therapeutic effects in treating OA via systematic network pharmacological analysis and cell experimental validation. MATERIALS AND METHODS Initially, we gathered data from Andrographolide and OA-related databases to obtain information on Andrographolide's biological properties and the targets linked with OA. We developed a bioinformatic network about Andrographolide and OA, whereby we analyzed the network to identify potential therapeutic targets and mechanisms of action of Andrographolide. Subsequently, we used molecular docking to analyze the binding sites of Andrographolide to the target proteins. At the same time, SDF-1 was used to construct an OA cell model to verify the therapeutic effect of Andrographolide on OA and its effect on target proteins. RESULTS Our experimental results show that Andrographolide has excellent pharmaceutical properties, by Lipinski's rules for drugs, suggesting that this compound can be considered to have a high therapeutic potential in drug development. 233 targets were preliminarily investigated, the mechanisms through which Andrographolide targets OA primarily involve the TNF signaling pathway, PI3K-AKT signaling pathway, IL-17 signaling pathway, and TLR signaling pathway. These mechanisms target OA by influencing immune and inflammatory responses in the joints, regulating apoptosis to prevent chondrocyte death. Finally, TNF-α, STAT3, TP53, IL-6, JUN, IL-1β, HIF-1α, TGF-β1, and AKT1 were identified as 9 key targets of Andrographolide anti-OA. In addition, our molecular docking analyzes with cell experimental validation further confirm the network pharmacology results. According to our molecular docking results, Andrographolide can bind to all the hub target proteins and has a good binding ability (binding energy < -5 kcal/mol), with the strongest binding affinity to AKT1 of -9.2 kcal/ mol. The results of cell experiments showed that Andrographolide treatment significantly increased the cell viability and the expression of COL2A1 and ACAN proteins. Moreover, 30 μM Andrographolide significantly reversed SDF-1-induced increases in the protein expression of TNF-α, STAT3, TP53, IL-6, JUN, IL-1β, HIF-1α, and TGF-β1, and decreases in the protein expression of AKT1. CONCLUSION This study provides a comprehensive understanding of the potential therapeutic targets and mechanisms of action of Andrographolide in OA treatment. Our findings suggest that Andrographolide is a promising candidate for drug development in the management of OA.
Collapse
Affiliation(s)
- Tengyun Yang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Tingting Cao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology of Natural Products, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xianguang Yang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Guoliang Wang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Yanlin Li
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, Yunnan, China.
| |
Collapse
|
10
|
He Q, Lin Y, Chen B, Chen C, Zeng J, Dou X, Cai D, Zhou C, Wang H. Vitamin K2 ameliorates osteoarthritis by suppressing ferroptosis and extracellular matrix degradation through activation GPX4's dual functions. Biomed Pharmacother 2024; 175:116697. [PMID: 38759289 DOI: 10.1016/j.biopha.2024.116697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024] Open
Abstract
Vitamin K2 (VK2) is an effective compound for anti-ferroptosis and anti-osteoporosis, and Semen sojae praeparatum (Dandouchi in Chinese) is the main source of VK2. Chondrocyte ferroptosis and extracellular matrix (ECM) degradation playing a role in the pathogenesis of osteoarthritis (OA). Glutathione peroxidase 4 (GPX4) is the intersection of two mechanisms in regulating OA progression. But no studies have elucidated the therapeutic effects and mechanisms of VK2 on OA. This study utilized an in vivo rat OA model created via anterior cruciate ligament transection (ACLT) and an in vitro chondrocyte oxidative damage model induced by TBHP to investigate the protective effects and mechanisms of action of VK2 in OA. Knee joint pain in mice was evaluated using the Von Frey test. Micro-CT and Safranin O-Fast Green staining were employed to observe the extent of damage to the tibial cartilage and subchondral bone, while immunohistochemistry and PCR were used to examine GPX4 levels in joint cartilage. The effects of VK2 on rat chondrocyte viability were assessed using CCK-8 and flow cytometry assays, and chondrocyte morphology was observed with toluidine blue and alcian blue staining. The impact of VK2 on intracellular ferroptosis-related markers was observed using fluorescent staining and flow cytometry. Protein expression changes were detected by immunofluorescence and Western blot analysis. Furthermore, specific protein inhibitors were applied to confirm the dual-regulatory effects of VK2 on GPX4. VK2 can increase bone mass and cartilage thickness in the subchondral bone of the tibia, and reduce pain and the OARSI score induced by OA. Immunohistochemistry results indicate that VK2 exerts its anti-OA effects by regulating GPX4 to delay ECM degradation. VK2 can inhibit the activation of the MAPK/NFκB signaling pathway caused by reduced expression of intracellular GPX4, thereby decreasing ECM degradation. Additionally, VK2 can reverse the inhibitory effect of RSL3 on GPX4, increase intracellular GSH content and the GSH/GSSG ratio, reduce MDA content, and rescue chondrocyte ferroptosis. The protective mechanism of VK2 may involve its dual-target regulation of GPX4, reducing chondrocyte ferroptosis and inhibiting the MAPK/NFκB signaling pathway to decelerate the degradation of the chondrocyte extracellular matrix.
Collapse
Affiliation(s)
- Qi He
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuewei Lin
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Baihao Chen
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Chuyi Chen
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Jiaxu Zeng
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Xiangyun Dou
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Dongling Cai
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, Guangzhou 510405, PR China.
| | - Chi Zhou
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun Area, Guangzhou 510405, PR China; Department of Orthopaedics, Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming 525000, PR China.
| | - Haibin Wang
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun Area, Guangzhou 510405, PR China.
| |
Collapse
|
11
|
Yang J, Zhou Z, Ding X, He R, Li A, Wei Y, Wang M, Peng Z, Jiang Z, Zhao D, Li X, Leng X, Dong H. Gubi Zhitong formula alleviates osteoarthritis in vitro and in vivo via regulating BNIP3L-mediated mitophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155279. [PMID: 38581801 DOI: 10.1016/j.phymed.2023.155279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 04/08/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is characterized by degeneration of articular cartilage, leading to joint pain and dysfunction. Gubi Zhitong formula (GBZTF), a traditional Chinese medicine formula, has been used in the clinical treatment of OA for decades, demonstrating definite efficacy. However, its mechanism of action remains unclear, hindering its further application. METHODS The ingredients of GBZTF were analyzed and performed with liquid chromatography-mass spectrometry (LC-MS). 6 weeks old SD rats were underwent running exercise (25 m/min, 80 min, 0°) to construct OA model with cartilage wear and tear. It was estimated by Micro-CT, Gait Analysis, Histological Stain. RNA-seq technology was performed with OA Rats' cartilage, and primary chondrocytes induced by IL-1β (mimics OA chondrocytes) were utilized to evaluated and investigated the mechanism of how GBZTF protected OA cartilage from being damaged with some functional experiments. RESULTS A total of 1006 compounds were identified under positive and negative ion modes by LC-MS. Then, we assessed the function of GBZTF through in vitro and vivo. It was found GBZTF could significantly up-regulate OA rats' limb coordination and weight-bearing capacity, and reduce the surface and sub-chondral bone erosions of OA joints, and protect cartilage from being destroyed by inflammatory factors (iNOS, IL-6, IL-1β, TNF- α, MMP13, ADAMTS5), and promote OA chondrocytes proliferation and increase the S phage of cell cycle. In terms of mechanism, RNA-seq analysis of cartilage tissues revealed 1,778 and 3,824 differentially expressed genes (DEGs) in model vs control group and GBZTF vs model group, respectively. The mitophagy pathway was most significantly enriched in these DEGs. Further results of subunits of OA chondrocytes confirmed that GBZTF could alleviate OA-associated inflammation and cartilage damage through modulation BCL2 interacting protein 3-like (BNIP3L)-mediated mitophagy. CONCLUSION The therapeutic effectiveness of GBZTF on OA were first time verified in vivo and vitro through functional experiments and RNA-seq, which provides convincing evidence to support the molecular mechanisms of GBZTF as a promising therapeutic decoction for OA.
Collapse
Affiliation(s)
- Jie Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Zhenwei Zhou
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Xiaolei Ding
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Rong He
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Ailin Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Yuchi Wei
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Mingyue Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Zeyu Peng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Zhanliang Jiang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Daqing Zhao
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Xiangyan Li
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Xiangyang Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China; Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China.
| | - Haisi Dong
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China.
| |
Collapse
|
12
|
Hu B, Du G. OSTF1 knockdown mitigates IL-1β-induced chondrocyte injury via inhibiting the NF-κB signaling pathway. Heliyon 2024; 10:e30110. [PMID: 38699012 PMCID: PMC11064439 DOI: 10.1016/j.heliyon.2024.e30110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Osteoarthritis (OA) is an age-related joint disease characterized by progressive heterogeneous changes in articular cartilage and subchondral bone. Osteoclast stimulating factor 1 (OSTF1) is a small intracellular protein involved in bone formation and bone resorption. However, to our best knowledge, its role in OA is still unclear. In this study, an OA rat model was established by anterior cruciate ligament transection (ALCT). OSTF1 was increased in the cartilage tissues of OA patients and OA rats. Next, the role of OSTF1 in interleukin-1β (IL-1β)-induced chondrocyte apoptosis, inflammation and extracellular matrix degradation was explored through loss of function assays. Strikingly, OSTF1 knockdown relieved IL-1β-induced chondrocyte apoptosis, with decreased cleaved caspase-3 and cleaved PARP levels. Besides, OSTF1 knockdown restrained IL-1β-induced inflammation and degradation of extracellular matrix of chondrocytes. Subsequently, the molecular mechanism of OSTF1 was explored. Transcriptomic analysis revealed the potential gene network map regulated by OSTF1 knockdown. Some differentially expressed genes (DEGs) were involved in regulating the NF-κB signaling pathway. Furthermore, our results demonstrated that OSTF1 knockdown inhibited IL-1β-activated the NF-κB signaling pathway. Ultimately, we analyzed the potential gene network map regulated by OSTF1 and its downstream NF-κB. Bioinformatics analysis showed that 18 DEGs in OSTF1-silenced chondrocytes overlapped with the NF-κB downstream targets. Collectively, our findings indicate that OSTF1 knockdown mitigates IL-1β-induced chondrocyte injury via inhibiting the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Bin Hu
- Department of Hand and Foot Surgery, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu, Anhui, China
| | - Gongwen Du
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| |
Collapse
|
13
|
Wang H, Han J, Dmitrii G, Ning K, Zhang X. KLF transcription factors in bone diseases. J Cell Mol Med 2024; 28:e18278. [PMID: 38546623 PMCID: PMC10977429 DOI: 10.1111/jcmm.18278] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2025] Open
Abstract
Krüppel-like factors (KLFs) are crucial in the development of bone disease. They are a family of zinc finger transcription factors that are unusual in containing three highly conserved zinc finger structural domains interacting with DNA. It has been discovered that it engages in various cell functions, including proliferation, apoptosis, autophagy, stemness, invasion and migration, and is crucial for the development of human tissues. In recent years, the role of KLFs in bone physiology and pathology has received adequate attention. In addition to regulating the normal growth and development of the musculoskeletal system, KLFs participate in the pathological process of the bones and joints and are intimately linked to several skeletal illnesses, such as osteoarthritis (OA), rheumatoid arthritis (RA), osteoporosis (OP) and osteosarcoma (OS). Consequently, targeting KLFs has emerged as a promising therapeutic approach for an array of bone disorders. In this review, we summarize the current literature on the importance of KLFs in the emergence and regulation of bone illnesses, with a particular emphasis on the pertinent mechanisms by which KLFs regulate skeletal diseases. We also discuss the need for KLFs-based medication-targeted treatment. These endeavours offer new perspectives on the use of KLFs in bone disorders and provide prognostic biomarkers, therapeutic targets and possible drug candidates for bone diseases.
Collapse
Affiliation(s)
- Haixia Wang
- College of Exercise and HealthShenyang Sport UniversityShenyangLiaoningChina
| | - Juanjuan Han
- College of Exercise and HealthShenyang Sport UniversityShenyangLiaoningChina
- Department of Sport RehabilitationShanghai University of SportShanghaiChina
| | - Gorbachev Dmitrii
- Head of General Hygiene DepartmentSamara State Medical UniversitySamaraRussia
| | - Ke Ning
- College of Exercise and HealthShenyang Sport UniversityShenyangLiaoningChina
| | - Xin‐an Zhang
- College of Exercise and HealthShenyang Sport UniversityShenyangLiaoningChina
| |
Collapse
|
14
|
Yao J, Huo Z, Xu J, Shang J, Weng Y, Xu D, Liu T, Huang Y, Zhou X. Enhanced Surface Immunomodification of Engineered Hydrogel Materials through Chondrocyte Modulation for the Treatment of Osteoarthritis. COATINGS 2024; 14:308. [DOI: 10.3390/coatings14030308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Osteoarthritis (OA) is characterized by cartilage degeneration and synovial inflammation, with chondrocytes playing a pivotal role in this disease. However, inflammatory mediators, mechanical stress, and oxidative stress can compromise functionality. The occurrence and progression of OA are intrinsically linked to the immune response. Current research on the treatment of OA mainly concentrates on the synergistic application of drugs and tissue engineering. The surface of engineered hydrogel materials can be immunomodified to affect the function of chondrocytes in drug therapy, gene therapy, and cell therapy. Prior studies have concentrated on the drug-loading function of hydrogels but overlooked the immunomodulatory role of chondrocytes. These modifications can inhibit the proliferation and differentiation of chondrocytes, reduce the inflammatory response, and promote cartilage regeneration. The surface immunomodification of engineered hydrogel materials can significantly enhance their efficacy in the treatment of OA. Thus, immunomodulatory tissue engineering has significant potential for treating osteoarthritis.
Collapse
Affiliation(s)
- Jiapei Yao
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Zhennan Huo
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Jie Xu
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Jingjing Shang
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
- Department of Pharmacy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Yiping Weng
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Dongmei Xu
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Ting Liu
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Yong Huang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Xindie Zhou
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
- Department of Orthopedics, Gonghe County Hospital of Traditional Chinese Medicine, Hainan Tibetan Autonomous Prefecture 811800, China
| |
Collapse
|
15
|
Han J, Zhan LN, Huang Y, Guo S, Zhou X, Kapilevich L, Wang Z, Ning K, Sun M, Zhang XA. Moderate mechanical stress suppresses chondrocyte ferroptosis in osteoarthritis by regulating NF-κB p65/GPX4 signaling pathway. Sci Rep 2024; 14:5078. [PMID: 38429394 PMCID: PMC10907644 DOI: 10.1038/s41598-024-55629-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
Ferroptosis is a recently identified form of programmed cell death that plays an important role in the pathophysiological process of osteoarthritis (OA). Herein, we investigated the protective effect of moderate mechanical stress on chondrocyte ferroptosis and further revealed the internal molecular mechanism. Intra-articular injection of sodium iodoacetate (MIA) was conducted to induce the rat model of OA in vivo, meanwhile, interleukin-1 beta (IL-1β) was treated to chondrocytes to induce the OA cell model in vitro. The OA phenotype was analyzed by histology and microcomputed tomography, the ferroptosis was analyzed by transmission electron microscope and immunofluorescence. The expression of ferroptosis and cartilage metabolism-related factors was analyzed by immunohistochemical and Western blot. Animal experiments revealed that moderate-intensity treadmill exercise could effectively reduce chondrocyte ferroptosis and cartilage matrix degradation in MIA-induced OA rats. Cell experiments showed that 4-h cyclic tensile strain intervention could activate Nrf2 and inhibit the NF-κB signaling pathway, increase the expression of Col2a1, GPX4, and SLC7A11, decrease the expression of MMP13 and P53, thereby restraining IL-1β-induced chondrocyte ferroptosis and degeneration. Inhibition of NF-κB signaling pathway relieved the chondrocyte ferroptosis and degeneration. Meanwhile, overexpression of NF-κB by recombinant lentivirus reversed the positive effect of CTS on chondrocytes. Moderate mechanical stress could activate the Nrf2 antioxidant system, inhibit the NF-κB p65 signaling pathway, and inhibit chondrocyte ferroptosis and cartilage matrix degradation by regulating P53, SLC7A11, and GPX4.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
| | - Li-Nan Zhan
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Yue Huang
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Shijia Guo
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Xiaoding Zhou
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Leonid Kapilevich
- Faculty of Physical Education, National Research Tomsk State University, Tomsk, Russia
| | - Zhuo Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Ke Ning
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China.
| |
Collapse
|
16
|
Feng D, Li H, Ma X, Liu W, Zhu Y, Kang X. Downregulation of extracellular matrix protein 1 effectively ameliorates osteoarthritis progression in vivo. Int Immunopharmacol 2024; 126:111291. [PMID: 38039715 DOI: 10.1016/j.intimp.2023.111291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Osteoarthritis (OA) is the most common joint disease whose important pathological feature is degeneration of articular cartilage. Although extracellular matrix protein 1 (ECM1) serves as a central regulator of chondrocyte proliferation and hypertrophy, its role in OA remains largely unknown. This study aims to decipher the roles of ECM1 in OA development and therapy in animal models. In the present study, ECM1 expression was examined in clinical OA samples, experimental OA mice and OA cell models. Mice subjected to destabilised medial meniscus (DMM) surgery were intra-articularly injected with adeno-associated virus (AAV) expressing ECM1 (AAV-ECM1) or AAV containing shECM1 (AAV-shECM1). Histological analysis was performed to determine cartilage damage. mRNA sequencing was performed to explore the molecular mechanism. In addition, the downstream signaling was further confirmed by using specific inhibitors. Our data showed that ECM1 was upregulated in the cartilage of patients with OA, OA mice as well as OA cell models. Moreover, ECM1 over-expressing in knee joints by AAV-ECM1 accelerated OA progression, while knockdown of ECM1 by AAV-shECM1 alleviated OA development. Mechanistically, cartilage destruction increased ECM1 expression, which consequently exacerbated OA progression partly by decreasing PRG4 expression in the TGF-β/PKA/CREB-dependent manner. In conclusion, our study revealed the important role of ECM1 in OA progression. Targeted ECM1 inhibition is a potential strategy for OA therapy.
Collapse
Affiliation(s)
- Dongxu Feng
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China; Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710054, PR China
| | - Huixia Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Xiao Ma
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Wenjuan Liu
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Yangjun Zhu
- Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710054, PR China.
| | - Xiaomin Kang
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
17
|
Yang Z, Jiang W, Xiong C, Shang J, Huang Y, Zhou X, Zhang S. Calcipotriol suppresses GPX4-mediated ferroptosis in OA chondrocytes by blocking the TGF-β1 pathway. Cytokine 2023; 171:156382. [PMID: 37782985 DOI: 10.1016/j.cyto.2023.156382] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/02/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Globally, tens of millions of individuals experience osteoarthritis (OA), a degenerative joint condition for which a definitive cure is currently lacking. This condition is characterized by joint inflammation and the progressive deterioration of articular cartilage. In this study, western blotting, quantitative reverse-transcription polymerase chain reaction, and immunofluorescence analysis were performed to elucidate the molecular mechanisms by which calcipotriol alleviates chondrocyte ferroptosis. The effect of calcipotriol on reactive oxygen species and lipid peroxidation levels in chondrocytes was assessed using dihydroethidium staining and the fluorescent dye BODIPY. To replicate OA, the destabilized medial meniscus model was employed, followed by the injection of calcipotriol into the knee articular cavity. Morphological analysis was conducted through hematoxylin and eosin staining, safranin O-Fast green staining, and micro-computed tomography analysis. Immunohistochemical analysis was performed to validate the effect of calcipotriol in vivo. Our results demonstrate that the expression of SOX9, col2a1, and Aggrecan, as well as MMP13 and ADAMTS5 protein expression levels, decrease upon treatment with calcipotriol in interleukin-1β stimulated chondrocytes. Despite these promising outcomes, the exact mechanism underlying calcipotriol's therapeutic effect on OA remains uncertain. We discovered that calcipotriol inhibits chondrocyte GPX4-mediated ferroptosis by suppressing the expression of transforming growth factor-β1. Furthermore, our study established an in vivo model of OA using rats with medial meniscus instability. Our experiments on rats with OA revealed that intra-articular calcipotriol injection significantly reduces cartilage degradation caused by the disease. Our findings suggest that calcipotriol can mitigate OA by impeding GPX4-mediated ferroptosis of chondrocytes, achieved through the suppression of the TGF-β1 pathway.
Collapse
Affiliation(s)
- Zhicheng Yang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, China; Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China
| | - Wei Jiang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, Anhui 230022, China
| | - Chenwei Xiong
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, China; Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China; Department of Orthopedics, Zhangjiajie People's Hospital, Zhangjiajie 427000, China
| | - JingJing Shang
- Department of Pharmacy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yong Huang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, China; Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China
| | - Xindie Zhou
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, China; Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China; Department of Orthopedics, Gonghe County Hospital of Traditional Chinese Medicine, Hainan Tibetan Autonomous Prefecture, Qinghai Province 811800, China.
| | - Su Zhang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, China; Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
18
|
Yu Z, Jiang X, Yin J, Han L, Xiong C, Huo Z, Xu J, Shang J, Xi K, Nong L, Huang Y, Zhou X. CK1ε drives osteogenic differentiation of bone marrow mesenchymal stem cells via activating Wnt/β-catenin pathway. Aging (Albany NY) 2023; 15:10193-10212. [PMID: 37787983 PMCID: PMC10599756 DOI: 10.18632/aging.205067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/08/2023] [Indexed: 10/04/2023]
Abstract
The treatment of bone defects is a difficult problem in orthopedics. At present, the treatment mainly relies on autologous or allogeneic bone transplantation, which may lead to some complications such as foreign body rejection, local infection, pain, or numbness at the bone donor site. Local injection of conservative therapy to treat bone defects is one of the research hotspots at present. Bone marrow mesenchymal stem cells (BMSCs) can self-renew, significantly proliferate, and differentiate into various types of cells. Although it has been reported that CK1ε could mediate the Wnt/β-catenin pathway, leading to the development of the diseases, whether CK1ε plays a role in bone regeneration through the Wnt/β-catenin pathway has rarely been reported. The purpose of this study was to investigate whether CK1ε was involved in the osteogenic differentiation (OD) of BMSCs through the Wnt/β-catenin pathway and explore the mechanism. We used quantitative reverse transcription-polymerase chain reaction (qRT-qPCR), Western blots, immunofluorescence, alkaline phosphatase, and alizarin red staining to detect the effect of CK1ε on the OD of BMSCs and the Wnt/β-catenin signaling pathway. CK1ε was highly expressed in BMSCs with OD, and our study further demonstrated that CK1ε might promote the OD of BMSCs by activating DLV2 phosphorylation, initiating Wnt signaling downstream, and activating β-catenin nuclear transfer. In addition, by locally injecting a CK1ε-carrying adeno-associated virus (AAV5- CK1ε) into a femoral condyle defect rat model, the overexpression of CK1ε significantly promoted bone repair. Our data show that CK1ε was involved in the regulation of OD by mediating Wnt/β-catenin. This may provide a new strategy for the treatment of bone defects.
Collapse
Affiliation(s)
- Zhentang Yu
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Department of Orthopedics, Yibin Integrated Traditional Chinese and Western Medicine Hospital, Yibin 644104, China
- Department of Graduate School, Dalian Medical University, Dalian 116000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Xijia Jiang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Jianjian Yin
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Lei Han
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Department of Graduate School, Dalian Medical University, Dalian 116000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Chengwei Xiong
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Department of Graduate School, Dalian Medical University, Dalian 116000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Zhennan Huo
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Department of Graduate School, Dalian Medical University, Dalian 116000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Jie Xu
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Jingjing Shang
- Department of Pharmacy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Kun Xi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou 215006, China
| | - Luming Nong
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Yong Huang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Xindie Zhou
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Department of Orthopedics, Gonghe County Hospital of Traditional Chinese Medicine, Hainan Tibetan Autonomous Prefecture, Qinghai 811800, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| |
Collapse
|
19
|
Yang H, Xiong C, Yu Z, Yang Z, Zhang Y, Zhang J, Huang Y, Xu N, Zhou X, Jiang M, Xu Z. A functional polymorphism at the miR-25-3p binding site in the 3′-untranslated region of the S1PR1 gene decreases the risk of osteoporosis in Chinese postmenopausal women. ARAB J CHEM 2023; 16:104888. [DOI: 10.1016/j.arabjc.2023.104888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025] Open
|
20
|
Ruan X, Gu J, Chen M, Zhao F, Aili M, Zhang D. Multiple roles of ALK3 in osteoarthritis. Bone Joint Res 2023; 12:397-411. [PMID: 37394235 PMCID: PMC10315222 DOI: 10.1302/2046-3758.127.bjr-2022-0310.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future.
Collapse
Affiliation(s)
- Xianchun Ruan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinning Gu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Mingyang Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fulin Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Munire Aili
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Li Z, Chen Z, Li S, Qian X, Zhang L, Long G, Xie J, Huang X, Zheng Z, Pan W, Li H, Zhang D. Circ_0020256 induces fibroblast activation to drive cholangiocarcinoma development via recruitment of EIF4A3 protein to stabilize KLF4 mRNA. Cell Death Discov 2023; 9:161. [PMID: 37179359 PMCID: PMC10183031 DOI: 10.1038/s41420-023-01439-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a kind of stromal cells in the cholangiocarcinoma (CCA) microenvironment, playing crucial roles in cancer development. However, the potential mechanisms of the interaction between CCA cells and CAFs remain obscure. This work investigated the role of circ_0020256 in CAFs activation. We proved circ_0020256 was up-regulated in CCA. High circ_0020256 expression facilitated TGF-β1 secretion from CCA cells, which activated CAFs via the phosphorylation of Smad2/3. Mechanistically, circ_0020256 recruited EIF4A3 protein to stabilize KLF4 mRNA and upregulate its expression, then KLF4 bound to TGF-β1 promoter and induced its transcription in CCA cells. KLF4 overexpression abrogated the inhibition of circ_0020256 silencing in TGF-β1/Smad2/3-induced CAFs activation. Furthermore, CCA cell growth, migration, and epithelial-mesenchymal transition were favored by CAFs-secreted IL-6 via autophagy inhibition. We also found circ_0020256 accelerated CCA tumor growth in vivo. In conclusion, circ_0020256 promoted fibroblast activation to facilitate CCA progression via EIF4A3/KLF4 pathway, providing a potential intervention for CCA progression.
Collapse
Affiliation(s)
- Zongyan Li
- Department of Pancreatic Hepatobiliary Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510650, Guangdong Province, P.R. China
| | - Zuxiao Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong Province, P.R. China
| | - Shiying Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, P.R. China
| | - Xiangjun Qian
- Department of Pancreatic Hepatobiliary Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510650, Guangdong Province, P.R. China
| | - Lei Zhang
- Department of Pancreatic Hepatobiliary Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510650, Guangdong Province, P.R. China
| | - Guojie Long
- Department of Pancreatic Hepatobiliary Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510650, Guangdong Province, P.R. China
| | - Jiancong Xie
- Department of Pancreatic Hepatobiliary Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510650, Guangdong Province, P.R. China
| | - Xiaoming Huang
- Department of Pancreatic Hepatobiliary Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510650, Guangdong Province, P.R. China
| | - Zheyu Zheng
- Department of Pancreatic Hepatobiliary Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510650, Guangdong Province, P.R. China
| | - Weidong Pan
- Department of Pancreatic Hepatobiliary Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510650, Guangdong Province, P.R. China
| | - Haiyan Li
- Department of Breast Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510650, Guangdong Province, P.R. China.
| | - Dawei Zhang
- Department of Pancreatic Hepatobiliary Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510650, Guangdong Province, P.R. China.
| |
Collapse
|
22
|
Jiang J, Li J, Xiong C, Zhou X, Liu T. Isorhynchophylline alleviates cartilage degeneration in osteoarthritis by activating autophagy of chondrocytes. J Orthop Surg Res 2023; 18:154. [PMID: 36864518 PMCID: PMC9979446 DOI: 10.1186/s13018-023-03645-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
CONTEXT Osteoarthritis is a common degenerative disease, the cause of it is still unknown, and the treatment mainly focuses on improving symptoms. Studies have found that Isorhynchophylline (Isorhy) has antioxidant, anti-inflammatory, antiproliferative and neuroprotective effects. OBJECTIVE This study investigates the role and mechanism of Isorhy in OA. METHODS The destabilized medial meniscus model was used to mimic OA. Fifteen male Sprague Dawley rats were partitioned into three portions: Normal group, OA group (surgery; normal saline treatment) and OA + Isorhy group (surgery; 50 μM Isorhy treatment) were performed on the first day of every week from the 5th to the 8th week after surgery. After 4 weeks of drug treatment, the rats have been processed without debridement of the knee specimens and fixed using 4% paraformaldehyde for two days. The morphological analysis was performed by H&E, Safranin O-Fast green staining and micro-CT analysis. The specimens were researched employing Micro-CT. In the part of the aggregate methods that were evaluated by qRT-PCR and western blot of the following proteins LC3II/LC3I, Beclin-1, ATG5, ATG7, MMP3 andMMP13. Akt/PI3K signaling related proteins (p-AKT, AKT, p-PI3K, PI3K, p-mTOR, mTOR) were detected by Western blot. BECLIN1 and MMP3 were detected by Immunofluorescence assay. RESULTS In this present research, it was proved that autophagy-related and cartilage matrix-related proteins in osteoarthritis could be regulated by Isorhynchophylline treatment. The transcriptome sequencing results suggested the regulation was closely associated with PI3K/AKT/mTOR pathway, thereby alleviating osteoarticular inflammation. In-depth study showed that Isorhy could also affect OA in rat OA models, that was indicated by H&E, Safranin O-Fast green staining, and also micro-CT analysis. CONCLUSION Our findings indicated that Isorhy could be regarded as a prospective candidate for OA treatment.
Collapse
Affiliation(s)
- Jieyun Jiang
- grid.411870.b0000 0001 0063 8301Medical Development Department, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000 China
| | - Jin Li
- grid.411870.b0000 0001 0063 8301Department of Orthopedic Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000 China
| | - Chenwei Xiong
- grid.89957.3a0000 0000 9255 8984Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, 213000 China ,grid.89957.3a0000 0000 9255 8984Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000 China
| | - Xindie Zhou
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China. .,Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China. .,Department of Orthopedics, Gonghe County Hospital of Traditional Chinese Medicine, Hainan Tibetan Autonomous Prefecture, 811800, Qinghai Province, China.
| | - Ting Liu
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China. .,Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
23
|
Kruppel-like Factors in Skeletal Physiology and Pathologies. Int J Mol Sci 2022; 23:ijms232315174. [PMID: 36499521 PMCID: PMC9741390 DOI: 10.3390/ijms232315174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Kruppel-like factors (KLFs) belong to a large group of zinc finger-containing transcription factors with amino acid sequences resembling the Drosophila gap gene Krüppel. Since the first report of molecular cloning of the KLF family gene, the number of KLFs has increased rapidly. Currently, 17 murine and human KLFs are known to play crucial roles in the regulation of transcription, cell proliferation, cellular differentiation, stem cell maintenance, and tissue and organ pathogenesis. Recent evidence has shown that many KLF family molecules affect skeletal cells and regulate their differentiation and function. This review summarizes the current understanding of the unique roles of each KLF in skeletal cells during normal development and skeletal pathologies.
Collapse
|
24
|
Yang Q, Jin L, Ding Q, Hu W, Zou H, Xiao M, Chen K, Yu Y, Shang J, Huang X, Zhu Y. Novel Therapeutic Mechanism of Adipose-Derived Mesenchymal Stem Cells in Osteoarthritis via Upregulation of BTG2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9252319. [PMID: 36299602 PMCID: PMC9590117 DOI: 10.1155/2022/9252319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Osteoarthritis (OA) is a debilitating and degenerative joint disease, which is characterized by progressive destruction of articular cartilage. Mesenchymal stem cells (MSCs) have been implicated in the treatment of OA. However, the function of adipose-derived MSCs (AD-MSCs) in OA and its underlying mechanism remain obscure. AIM We aimed to explore the function of AD-MSCs in OA and investigate its potential regulatory mechanism. METHODS A guinea pig model of OA was constructed. AD-MSCs injected into the articular cavity of OA guinea pigs were viewed by in vivo bioluminescence imaging. The effect of AD-MSCs on the gonarthritis of OA guinea pigs was evaluated through both macroscopic and microscopic detections. The detailed molecular mechanism was predicted by GEO databases and bioinformatics tools and then verified via mechanism experiments, including ChIP assay, DNA pulldown assay, and luciferase reporter assay. RESULTS AD-MSCs had a significant positive therapeutic effect on the gonarthritis of the OA model, and the overall effects of it was better than that of sodium hyaluronate (SH). B-cell translocation gene 2 (BTG2) was significantly downregulated in the articular cartilage of the OA guinea pigs. Furthermore, BTG2 was positively regulated by Krüppel-like factor 4 (KLF4) in AD-MSCs at the transcriptional level. AD-MSCs performed an effect on KLF4 expression at the transcriptional levels. CONCLUSION AD-MSCs suppresses OA progression through KLF4-induced transcriptional activation of BTG2. Our findings revealed an AD-MSCs-dominated therapeutic method for OA.
Collapse
Affiliation(s)
- Qinyan Yang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
- Department of Hepatabiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, China
| | - Li Jin
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Wei Hu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - HaiBo Zou
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
- Department of Hepatabiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, China
| | - Mingming Xiao
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Keyuan Chen
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Yue Yu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Jin Shang
- Department of Hepatabiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, China
| | - Xiaolun Huang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
- Department of Hepatabiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, China
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| |
Collapse
|
25
|
Li J, Jiang M, Yu Z, Xiong C, Pan J, Cai Z, Xu N, Zhou X, Huang Y, Yang Z. Artemisinin relieves osteoarthritis by activating mitochondrial autophagy through reducing TNFSF11 expression and inhibiting PI3K/AKT/mTOR signaling in cartilage. Cell Mol Biol Lett 2022; 27:62. [PMID: 35902802 PMCID: PMC9331798 DOI: 10.1186/s11658-022-00365-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
Osteoarthritis (OA) is a widespread chronic degenerative joint disease characterized by the degeneration of articular cartilage or inflamed joints. Our findings indicated that treatment with artemisinin (AT) downregulates the protein levels of MMP3, MMP13, and ADAMTS5, which are cartilage degradation-related proteins in OA, and inhibits the expression of inflammatory factors in interleukin-1β (IL-1β)-stimulated chondrocytes. However, the mechanism of the role of AT in OA remains unclear. Here, we performed gene sequencing and bioinformatics analysis in control, OA, and OA + AT groups to demonstrate that several mRNA candidates were enriched in the PI3K/AKT/mTOR signaling pathway, and TNFSF11 was significantly downregulated after AT treatment. TNFSF11 was downregulated in the OA + AT group, whereas it was upregulated in rat OA tissues and OA chondrocytes. Therefore, we confirmed that TNFSF11 was the target gene of AT. In addition, our study revealed that AT relieved cartilage degradation and defection by activating mitochondrial autophagy via inhibiting the PI3K/AKT/mTOR signaling pathway in IL-1β-induced chondrocytes. Furthermore, an OA model was established in rats with medial meniscus destabilization. Injecting AT into the knee joints of OA rat alleviated surgical resection-induced cartilage destruction. Thus, these findings revealed that AT relieves OA by activating mitochondrial autophagy by reducing TNFSF11 expression and inhibiting PI3K/AKT/mTOR signaling.
Collapse
Affiliation(s)
- Jin Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Mengqing Jiang
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Zhentang Yu
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Chenwei Xiong
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Jieen Pan
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Zhenhai Cai
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Nanwei Xu
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Xindie Zhou
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China.
| | - Yong Huang
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Zhicheng Yang
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|