1
|
Pan Y, Chen M, Pan L, Tong Q, Cheng Z, Lin S, Pan R, Chen M, Zhi Y. Shisandra Decoction Alleviates Parkinson's Disease Symptoms in a Mouse Model Through PI3K/AKT/mTOR Signalling Pathway. Neuropsychiatr Dis Treat 2024; 20:2011-2027. [PMID: 39464379 PMCID: PMC11512783 DOI: 10.2147/ndt.s476969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/28/2024] [Indexed: 10/29/2024] Open
Abstract
Purpose The present study aimed to characterize neuroprotective effects of Schisandra Decoction (Sch D) treatment in a mouse model of Parkinson's disease (PD), and to explore underlying mechanisms focused on the mammalian target of rapamycin (mTOR) signaling pathway. Materials and Methods 50 male C57 BL/6 mice were randomly assigned to either control (n = 10) or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model (n = 40) groups. PD mice were further divided into four groups of ten mice each: MPTP group, LY294002 group, Sch D group, and LY2940002 + Sch D group. Mice from each group were assessed in pole climbing, rotary rod and open field tests. Brain Tyrosine hydroxylase (TH) protein was observed using immunohistochemistry. mRNA levels of PTEN, PI3K and LC3 in brain tissue were measured using RT-PCR. Protein levels of PTEN, PI3K, Akt, p-Akt, mTOR, p-mTOR, p70s6K, p62, LC3II / I, α-synuclein (α-syn), TH in brain tissue were assessed by Western blotting (WB). Results In behavioral tests, PD mice treated with Sch D showed reduced pole climbing time, longer rotarod duration, and greater distance traveled. In terms of neuroprotection, PD mice in the Sch D group exhibited higher levels of TH protein and enhanced α-syn clearance. Regarding autophagy, compared to the control group, mice in the MPTP group had elevated PTEN protein expression, which inhibited PI3K, p-AKT/AKT, and p-mTOR/mTOR protein levels, decreased LC3II/I protein expression, and increased P62 protein expression. Treatment with Sch D reversed these effects. Conclusion Sch D reduces α-syn aggregation in the brains of MPTP-induced PD model mice, exerts neuroprotective effects, and improves motor function. Additionally, Sch D inhibits autophagy through the PI3K/AKT/mTOR pathway. The neuroprotective effect of Sch D may involve the suppression of abnormal autophagy and its antioxidant properties, which indirectly reduces α-syn accumulation. Future studies should assess the impact of Sch D on oxidative stress markers to evaluate its antioxidant effects.
Collapse
Affiliation(s)
- Yawen Pan
- Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, 325000, People’s Republic of China
| | - Mojinzi Chen
- Physician,Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, 325000, People’s Republic of China
| | - Lulu Pan
- Department of Rehabilitation Medicine, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, 325000, People’s Republic of China
| | - Qiuling Tong
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Zhiqing Cheng
- Department of Rehabilitation Medicine, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, 325000, People’s Republic of China
| | - Sujin Lin
- Department of Rehabilitation Medicine, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, 325000, People’s Republic of China
| | - Rongrong Pan
- Department of Rehabilitation Medicine, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, 325000, People’s Republic of China
| | - Mengyuan Chen
- Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, 325000, People’s Republic of China
| | - Yinghao Zhi
- Department of Rehabilitation Medicine, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, 325000, People’s Republic of China
| |
Collapse
|
2
|
Gibbings SL, Haist KC, Redente EF, Henson PM, Bratton DL. TNFα: TNFR1 signaling inhibits maturation and maintains the pro-inflammatory programming of monocyte-derived macrophages in murine chronic granulomatous disease. Front Immunol 2024; 15:1354836. [PMID: 38404573 PMCID: PMC10884288 DOI: 10.3389/fimmu.2024.1354836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Loss of NADPH oxidase activity results in proinflammatory macrophages that contribute to hyperinflammation in Chronic Granulomatous Disease (CGD). Previously, it was shown in a zymosan-induced peritonitis model that gp91phox-/- (CGD) monocyte-derived macrophages (MoMacs) fail to phenotypically mature into pro-resolving MoMacs characteristic of wild type (WT) but retain the ability to do so when placed in the WT milieu. Accordingly, it was hypothesized that soluble factor(s) in the CGD milieu thwart appropriate programming. Methods We sought to identify key constituents using ex vivo culture of peritoneal inflammatory leukocytes and their conditioned media. MoMac phenotyping was performed via flow cytometry, measurement of efferocytic capacity and multiplex analysis of secreted cytokines. Addition of exogenous TNFα, TNFα neutralizing antibody and TNFR1-/- MoMacs were used to study the role of TNFα: TNFR1 signaling in MoMac maturation. Results More extensive phenotyping defined normal MoMac maturation and demonstrated failure of maturation of CGD MoMacs both ex vivo and in vivo. Protein components, and specifically TNFα, produced and released by CGD neutrophils and MoMacs into conditioned media was identified as critical to preventing maturation. Exogenous addition of TNFα inhibited WT MoMac maturation, and its neutralization allowed maturation of cultured CGD MoMacs. TNFα neutralization also reduced production of IL-1β, IL-6 and CXCL1 by CGD cells though these cytokines played no role in MoMac programming. MoMacs lacking TNFR1 matured more normally in the CGD milieu both ex vivo and following adoptive transfer in vivo. Discussion These data lend mechanistic insights into the utility of TNFα blockade in CGD and to other diseases where such therapy has been shown to be beneficial.
Collapse
Affiliation(s)
- Sophie L. Gibbings
- Department of Pediatrics, National Jewish Health, Denver, CO, United States
| | - Kelsey C. Haist
- Department of Pediatrics, National Jewish Health, Denver, CO, United States
| | - Elizabeth F. Redente
- Department of Pediatrics, National Jewish Health, Denver, CO, United States
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Peter M. Henson
- Department of Pediatrics, National Jewish Health, Denver, CO, United States
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO, United States
| | - Donna L. Bratton
- Department of Pediatrics, National Jewish Health, Denver, CO, United States
- Department of Pediatrics, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
3
|
Raus de Baviera D, Ruiz-Canales A, Barrajón-Catalán E. Cistus albidus L.-Review of a Traditional Mediterranean Medicinal Plant with Pharmacological Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:2988. [PMID: 37631199 PMCID: PMC10458491 DOI: 10.3390/plants12162988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
Cistus albidus L. (Cistaceae) is a medicinal plant that has been used therapeutically since ancient times in the Mediterranean basin for its important pharmacological properties. The ability of C. albidus to produce large quantities of a wide range of natural metabolites makes it an attractive source of raw material. The main constituents with bioactive functions that exert pharmacological effects are terpenes and polyphenols, with more than 200 identified compounds. The purpose of this review is to offer a detailed account of the botanical, ethnological, phytochemical, and pharmacological characteristics of C. albidus with the aim of encouraging additional pharmaceutical investigations into the potential therapeutic benefits of this medicinal plant. This review was carried out using organized searches of the available literature up to July 2023. A detailed analysis of C. albidus confirms its traditional use as a medicinal plant. The outcome of several studies suggests a deeper involvement of certain polyphenols and terpenes in multiple mechanisms such as inflammation and pain, with a potential application focus on neurodegenerative diseases and disorders. Other diseases such as prostate cancer and leukemia have already been researched with promising results for this plant, for which no intoxication has been reported in humans.
Collapse
Affiliation(s)
- Daniel Raus de Baviera
- Department of Engineering, Area of Agroforestry, Miguel Hernández University, 03312 Orihuela, Spain; (D.R.d.B.); (A.R.-C.)
| | - Antonio Ruiz-Canales
- Department of Engineering, Area of Agroforestry, Miguel Hernández University, 03312 Orihuela, Spain; (D.R.d.B.); (A.R.-C.)
| | - Enrique Barrajón-Catalán
- Institute for Research, Development and Innovation in Health Biotechnology, Miguel Hernández University, 03202 Elche, Spain
- Department of Pharmacy, Elche University Hospital-FISABIO, 03203 Elche, Spain
| |
Collapse
|
4
|
Yan Q, Liu S, Sun Y, Chen C, Yang S, Lin M, Long J, Yao J, Lin Y, Yi F, Meng L, Tan Y, Ai Q, Chen N, Yang Y. Targeting oxidative stress as a preventive and therapeutic approach for cardiovascular disease. J Transl Med 2023; 21:519. [PMID: 37533007 PMCID: PMC10394930 DOI: 10.1186/s12967-023-04361-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023] Open
Abstract
Cardiovascular diseases (CVDs) continue to exert a significant impact on global mortality rates, encompassing conditions like pulmonary arterial hypertension (PAH), atherosclerosis (AS), and myocardial infarction (MI). Oxidative stress (OS) plays a crucial role in the pathogenesis and advancement of CVDs, highlighting its significance as a contributing factor. Maintaining an equilibrium between reactive oxygen species (ROS) and antioxidant systems not only aids in mitigating oxidative stress but also confers protective benefits on cardiac health. Herbal monomers can inhibit OS in CVDs by activating multiple signaling pathways, such as increasing the activity of endogenous antioxidant systems and decreasing the level of ROS expression. Given the actions of herbal monomers to significantly protect the normal function of the heart and reduce the damage caused by OS to the organism. Hence, it is imperative to recognize the significance of herbal monomers as prospective therapeutic interventions for mitigating oxidative damage in CVDs. This paper aims to comprehensively review the origins and mechanisms underlying OS, elucidate the intricate association between CVDs and OS, and explore the therapeutic potential of antioxidant treatment utilizing herbal monomers. Furthermore, particular emphasis will be placed on examining the cardioprotective effects of herbal monomers by evaluating their impact on cardiac signaling pathways subsequent to treatment.
Collapse
Affiliation(s)
- Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal&Child Health Care, Changsha, People's Republic of China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jiao Yao
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Lei Meng
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yong Tan
- Department of Nephrology, Xiangtan Central Hospital, Xiangtan, 411100, China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
5
|
Jia M, Zhou L, Lou Y, Yang X, Zhao H, Ouyang X, Huang Y. An analysis of the nutritional effects of Schisandra chinensis components based on mass spectrometry technology. Front Nutr 2023; 10:1227027. [PMID: 37560060 PMCID: PMC10408133 DOI: 10.3389/fnut.2023.1227027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023] Open
Abstract
OBJECTIVE Schisandra chinensis (Turcz.) Baill. (S. chinensis) is a Traditional Chinese medicinal herb that can be used both for medicinal purposes and as a food ingredient due to its beneficial properties, and it is enriched with a wide of natural plant nutrients, including flavonoids, phenolic acids, anthocyanins, lignans, triterpenes, organic acids, and sugars. At present, there is lack of comprehensive study or systemic characterization of nutritional and active ingredients of S. chinensis using innovative mass spectrometry techniques. METHODS The comprehensive review was conducted by searching the PubMed databases for relevant literature of various mass spectrometry techniques employed in the analysis of nutritional components in S. chinensis, as well as their main nutritional effects. The literature search covered the past 5 years until March 15, 2023. RESULTS The potential nutritional effects of S. chinensis are discussed, including its ability to enhance immunity, function as an antioxidant, anti-allergen, antidepressant, and anti-anxiety agent, as well as its ability to act as a sedative-hypnotic and improve memory, cognitive function, and metabolic imbalances. Meanwhile, the use of advanced mass spectrometry detection technologies have the potential to enable the discovery of new nutritional components of S. chinensis, and to verify the effects of different extraction methods on these components. The contents of anthocyanins, lignans, organic acids, and polysaccharides, the main nutritional components in S. chinensis, are also closely associated to its quality. CONCLUSION This review will provide guidelines for an in-depth study on the nutritional value of S. chinensis and for the development of healthy food products with effective components.
Collapse
Affiliation(s)
- Mengzhen Jia
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Li Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuanyuan Lou
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaoqing Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| | - Hangyu Zhao
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinshou Ouyang
- Department of Internal Medicine, Digestive Disease Section, Yale University, New Haven, CT, United States
| | - Yanjie Huang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Department of Pediatrics, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| |
Collapse
|