1
|
Huang C, Dan Zheng, Bai J, Wen J, Shen X. Neutrophil extracellular traps-mediated upregulation of HIF-1α promotes corneal neovascularization. Tissue Cell 2025; 95:102891. [PMID: 40187004 DOI: 10.1016/j.tice.2025.102891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/24/2025] [Accepted: 03/22/2025] [Indexed: 04/07/2025]
Abstract
OBJECTIVES The objective of this study is to examine the impact of neutrophil extracellular traps (NETs) on angiogenesis, both in vitro and in vivo contexts, as well as to elucidate the regulatory function of hypoxia-inducible factor (HIF-1α). METHODS The study focused on investigating the regulatory function of HIF-1α in the induction of NETs formation. In vivo, following NaOH stimulation, the formation of NETs was quantitatively assessed through immunofluorescence staining employing specific markers, namely SYTOX Green and PicoGreen. Furthermore, mice were administered with HIF-1α, and seven days post-alkali burn, the formation of NETs in the cornea was evaluated by immunofluorescence staining techniques. Protein immunoblotting analysis validated an increase inHIF-1α expression within human umbilical vein endothelial cells (HUVECs) that were induced to form by NETs. In vitro, human neutrophils were subjected to HIF-1α treatment. Subsequent to NaOH stimulation, the NETs mesh was isolated and co-cultured with HUVECs. The migratory capacity and angiogenic potential of HUVECs were then quantitatively evaluated. RESULTS Upon exposure to NaOH, a notable increase in SYTOX fluorescence was observed in neutrophils, indicative of the formation of a prominent network structure. Furthermore, a marked elevation in HIF-1α protein expression was detected in mouse corneal tissue that had undergone NETs formation, hinting at a potential role of NETs in mediating the up-regulation of HIF-1α. The outcomes of hematoxylin and eosin (H&E) staining, coupled with immunofluorescence staining, revealed an augmentation in neutrophils counts, with NETs exhibiting a marked potentiation of corneal neovascularization. In vitro assessments further demonstrated that HIF-1α played a stimulatory role in promoting the migration and tubular morphogenesis of HUVECs. CONCLUSION Exposure to sodium hydroxide serves as a trigger for the induction of NETs formation. NETs mediated an up-regulation of HIF-1α, which subsequently promotes angiogenesis and inflammatory activation in HUVECs. Consequently, this process leads to an enhancement of corneal neovascularization and inflammatory response.
Collapse
Affiliation(s)
- Chunlian Huang
- Department of Ophthalmology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, China
| | - Dan Zheng
- Physical Examination Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, China
| | - Jianhai Bai
- Department of Ophthalmology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, China
| | - Jing Wen
- Department of Ophthalmology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, China
| | - Xiao Shen
- Department of Ophthalmology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, China.
| |
Collapse
|
2
|
Rodrigues-Braz D, Bonnet C, Zhu L, Yesilirmak N, Gélizé E, Jonet L, Jaisser F, Bourges JL, Behar-Cohen F, Zhao M. Mineralocorticoid receptor antagonism improves corneal integrity in a rat model of limbal stem cell deficiency. Biomed Pharmacother 2025; 185:117979. [PMID: 40080998 DOI: 10.1016/j.biopha.2025.117979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025] Open
Abstract
Limbal stem cell deficiency (LSCD) is a sight-threatening condition caused by the loss and/or dysfunction of limbal stem cells (LSCs), which are essential for corneal epithelial regeneration and homeostasis and are critical for maintaining corneal transparency. We have previously shown that specific inactivation of the endothelial mineralocorticoid receptor (MR) inhibits corneal neovascularization (CN) and that MR antagonists (MRA) improve corneal epithelial wound healing. This study investigated the therapeutic potential of MRA in LSCD and their mechanisms of action. Using a rat model of LSCD, systemic administration of spironolactone (SPL) or a more specific MRA, eplerenone, similarly reduced CN and corneal oedema, demonstrating MR-specific effects. SPL further limited inflammation, enhanced the corneal epithelial barrier, reduced corneal conjunctivalization and promoted nerve regeneration, highlighting its potential to improve corneal integrity. Transcriptomic analysis revealed that SPL upregulated genes associated with LSC maintenance (Tp63, Wnt6), corneal epithelial differentiation (Vdr, Fermt1, Ehf) and nerve regeneration (Sprr1a, Anxa1), while downregulating genes associated with angiogenesis (Kdr, Scube2), inflammation (Ccl2, Cxcl1) and fibrosis (Fbln1, Snai1). Conversely, transgenic rats overexpressing human NR3C2 encoding MR showed corneal epithelial irregularities and dysregulation of genes related to extracellular matrix remodeling and fibrosis (Matn3, Serpine2, Fmod, Bgn, Ddr2), angiogenesis (Nrp2, Scube1) and limbal cell function (Ifitm3). These findings demonstrate that activation of the MR pathway disrupts limbal and corneal homeostasis and that SPL effectively modulates critical mechanisms in LSCD, offering promising therapeutic potential to reduce CN and improve corneal epithelial barrier integrity.
Collapse
Affiliation(s)
- Daniela Rodrigues-Braz
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France.
| | - Clémence Bonnet
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France; Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
| | - Linxin Zhu
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France.
| | - Nilufer Yesilirmak
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France; Department of Ophthalmology, Ankara Yildirim Beyazit University, Ankara, Turkey.
| | - Emmanuelle Gélizé
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France.
| | - Laurent Jonet
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France.
| | - Frédéric Jaisser
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France.
| | - Jean-Louis Bourges
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France; Ophthalmopole, AP-HP, Cochin Hospital, Paris, France.
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France; Ophthalmopole, AP-HP, Cochin Hospital, Paris, France.
| | - Min Zhao
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France.
| |
Collapse
|
3
|
Chang XJ, Guo XX, Li J, Pu Q, Li XY. Cyclopamine inhibits corneal neovascularization and fibrosis by alleviating inflammatory macrophage recruitment and endothelial cell activation. Int Immunopharmacol 2025; 147:114025. [PMID: 39799735 DOI: 10.1016/j.intimp.2025.114025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
PURPOSE To explore the function of cyclopamine in corneal neovascularization and subsequent fibrosis after cornea alkali-burn injury. METHODS In vivo, mice cornea were injured by NaOH, and then treated with cyclopamine, clodronate liposomes (CLO-LPS), and vehicle of cyclopamine separately by subconjunctival injections. Clinical features were observed and pathological characteristics were examined. In vitro, M1 macrophages (M1φ) and human umbilical vein endothelial cells (HUVECs) were co-cultured, and the abilities of proliferation, migration, and tube formation of HUVECs were detected under different interventions of M1φ. RESULTS Alkali-burn injury induced massive angiogenesis and decreased transparency of the cornea, along with numerous macrophages infiltration and Shh protein expression in the cornea. However, corneal neovascularization, macrophage infiltration, and Shh expression could suppressed by cyclopamine and CLO-LPS significantly. In addition, treatment with cyclopamine also reduced the expression of inflammatory factors (TNF-α, IL-6) and fibrosis factors (VIM, α-SMA). In vitro, M1φ promotes migration and tube formation of HUVECs by secreting Shh protein, which could be inhibited by cyclopamine. CONCLUSION Cyclopamine could suppress inflammation and angiogenesis of alkali-burned cornea, as well as subsequent fibrosis. The study reveals that cyclopamine suppresses corneal neovascularization in a dual mechanism of inhibiting macrophage infiltration and suppressing Shh signaling.
Collapse
Affiliation(s)
- Xue-Jiao Chang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030 China
| | - Xiao-Xiao Guo
- Department of Ophthalmology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Jing Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030 China
| | - Qi Pu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030 China.
| | - Xin-Yu Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030 China.
| |
Collapse
|
4
|
Tang X, Wu W, Zhang S, He C, Fan K, Fan Y, Yang X, Li J, Yang Y, Ling J. Photodynamic hemostatic silk fibroin film with photo-controllable modulation of macrophages for bacteria-infected wound healing. Biomater Sci 2025; 13:606-616. [PMID: 39308338 DOI: 10.1039/d4bm01038h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Massive hemorrhage and chronic wounds caused by bacterial infections after trauma are significant challenges in clinical practice. An ideal hemostatic wound dressing should simultaneously manage bleeding and prevent bacterial infections and also hold excellent biocompatibility and bioactivities to successfully modulate immune microenvironments to promote wound healing. In this study, a silk fibroin-based light-responsive film was demonstrated to possess effective capacity of light-induced non-compressible hemostasis on liver hemorrhage and tail bleeding in vivo by binding with blood platelets to promote the clotting cascade. The blood loss of the rats was significantly less after C-MASiF films were applied, which were 1223.33 ± 347.9 mg (liver trauma) and 363.33 ± 60.28 mg (tail trimming). Importantly, the films exhibited photo-controllable modulation activity on macrophages through repeated near-infrared irradiation to regulate the immune microenvironment to enhance photodynamic antibacterial therapy. Moreover, the light-responsive silk fibroin film effectively promoted Staphylococcus aureus infected burn wound healing in vivo. The quantity of residual bacteria in the wound sites of mice in the C-MASiF films group (0.05 ± 0.0047 × 108 CFU mL-1) was considerably less than that in the control group (3.18 ± 0.75 × 108 CFU mL-1), and the wound area in the C-MASiF group (78.03% ± 4.12%) was considerably smaller than that in the control group (60.33% ± 8.81%) after 14 days. Overall, this light-responsive silk fibroin film can provide a powerful strategy for wound healing of burns.
Collapse
Affiliation(s)
- Xiaoxuan Tang
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Wenpin Wu
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Shuxuan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Chang He
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Kewei Fan
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Yulan Fan
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Xuewa Yang
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Jiaying Li
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Jue Ling
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| |
Collapse
|
5
|
Biscu F, Zouzaf A, Cicia D, Pridans C, Matteoli G. Innate immunity champions: The diverse functions of macrophages. Eur J Immunol 2024; 54:e2451139. [PMID: 39308210 DOI: 10.1002/eji.202451139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 12/11/2024]
Abstract
Macrophages are instrumental in maintaining tissue homeostasis, modulating inflammation, and driving regeneration. The advent of omics techniques has led to the identification of numerous tissue-specific macrophage subtypes, thereby introducing the concept of the "macrophage niche". This paradigm underscores the ability of macrophages to adapt their functions based on environmental cues, such as tissue-specific signals. This adaptability is closely linked to their metabolic states, which are crucial for their function and role in health and disease. Macrophage metabolism is central to their ability to switch between proinflammatory and anti-inflammatory states. In this regard, environmental factors, including the extracellular matrix, cellular interactions, and microbial metabolites, profoundly influence macrophage behavior. Moreover, diet and gut microbiota significantly impact macrophage function, with nutrients and microbial metabolites influencing their activity and contributing to conditions like inflammatory bowel disease. Targeting specific macrophage functions and their metabolic processes is leading to the development of novel treatments for a range of chronic inflammatory conditions. The exploration of macrophage biology enriches our understanding of immune regulation and holds the promise of innovative approaches to managing diseases marked by inflammation and immune dysfunction, offering a frontier for scientific and clinical advancement.
Collapse
Affiliation(s)
- Francesca Biscu
- Laboratory of Mucosal Immunology, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Anissa Zouzaf
- Laboratory of Mucosal Immunology, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Donatella Cicia
- Laboratory of Mucosal Immunology, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Clare Pridans
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Gianluca Matteoli
- Laboratory of Mucosal Immunology, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Zabihi MR, Akhoondian M, Tamimi P, Ghaderi A, Mazhari SA, Farhadi B, Karkhah S, Ghorbani Vajargah P, Mobayen M, Norouzkhani N, Farzan R. Prediction of immune molecules activity during burn wound healing among elderly patients: in-silico analyses: experimental research. Ann Med Surg (Lond) 2024; 86:3972-3983. [PMID: 38989182 PMCID: PMC11230785 DOI: 10.1097/ms9.0000000000002055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/28/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Burn injuries lead to dysregulation of immune molecules, impacting cellular and humoral immune pathways. This study aims to determine the prediction of immune molecule activity during burn wound healing among elderly patients. Methods The current study utilized the Gene Expression Omnibus (GEO) database to extract the proper gene set. Also, the literature review was conducted in the present study to find immune signatures. The study used the "enrich r" website to identify the biological functions of extracted genes. The critical gene modules related to mortality were identified using the weighted gene co-expression network analysis (WGCNA) R package. Results The appreciated GSE was extracted. According to the data, the most upregulated signatures were related to natural killer (NK) cells, and the most downregulated signatures were associated with M1 macrophages. Also, the results of WGCNA have shown that the most related gene modules (P<107 and score 0.17) to mortality were investigated, and the modules 100 first genes were extracted. Additionally, the enrich r analysis has demonstrated related pathways, including the immune process, including regulation of histamine secreted from mast cell (P<0.05), T helper 17 cell differentiation (P<0.05), and autophagy (P<0.05) were obtained. Finally, by network analysis, the critical gene "B3GNT5" were obtained (degree>ten and "betweenness and centrality">30 were considered). Conclusion The study identified significant changes in macrophage and NK cell expression patterns post-burn injury, linking them to potential improvements in clinical outcomes and wound healing. The gene B3GNT5, associated with mortality, was highlighted as a key marker for prognostic evaluation.
Collapse
Affiliation(s)
- Mohammad Reza Zabihi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Akhoondian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pegah Tamimi
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliasghar Ghaderi
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Bahar Farhadi
- School of Medicine, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Samad Karkhah
- Burn and Regenerative Medicine Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Department of Medical-Surgical Nursing, School of Nursing and Midwifery, Guilan University of Medical Sciences, Rasht, Iran
| | - Pooyan Ghorbani Vajargah
- Burn and Regenerative Medicine Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Department of Medical-Surgical Nursing, School of Nursing and Midwifery, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammadreza Mobayen
- Burn and Regenerative Medicine Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Narges Norouzkhani
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramyar Farzan
- Department of Plastic & Reconstructive Surgery, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
7
|
Xie M, Liao M, Chen S, Zhu D, Zeng Q, Wang P, Su C, Lian R, Chen J, Zhang J. Cell spray printing combined with Lycium barbarum glycopeptide promotes repair of corneal epithelial injury. Exp Eye Res 2024; 244:109928. [PMID: 38750781 DOI: 10.1016/j.exer.2024.109928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/29/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
The corneal epithelium, located as the outermost layer of the cornea, is inherently susceptible to injuries that may lead to corneal opacities and compromise visual acuity. Rapid restoration of corneal epithelial injury is crucial for maintaining the transparency and integrity of the cornea. Cell spray treatment emerges as an innovative and effective approach in the field of regenerative medicine. In our study, a cell spray printing platform was established, and the optimal printing parameters were determined to be a printing air pressure of 5 PSI (34.47 kPa) and a liquid flow rate of 30 ml/h. Under these conditions, the viability and phenotype of spray-printed corneal epithelial cells were preserved. Moreover, Lycium barbarum glycopeptide (LBGP), a glycoprotein purified from wolfberry, enhanced proliferation while simultaneously inhibiting apoptosis of the spray-printed corneal epithelial cells. We found that the combination of cell spray printing and LBGP facilitated the rapid construction of multilayered cell sheets on flat and curved collagen membranes in vitro. Furthermore, the combined cell spray printing and LBGP accelerated the recovery of the rat corneal epithelium in the mechanical injury model. Our findings offer a therapeutic avenue for addressing corneal epithelial injuries and regeneration.
Collapse
Affiliation(s)
- Mengyuan Xie
- Department of Optoelectronic Engineering, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Meizhong Liao
- Department of Optoelectronic Engineering, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Sihui Chen
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Deliang Zhu
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Qiaolang Zeng
- Department of Ophthalmology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570000, China
| | - Peiyuan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510623, China
| | - Caiying Su
- Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Ruiling Lian
- Aier Eye Institute, Changsha, Hunan, 410015, China
| | - Jiansu Chen
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Aier Eye Institute, Changsha, Hunan, 410015, China; Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632, China.
| | - Jun Zhang
- Department of Optoelectronic Engineering, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Engineering Technology Research Center on Visible Light Communication, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
8
|
Sun Z, Lu K, He Q, Tang Y, Li H, Pazo EE, Hu L, Wei R. INOS ablation promotes corneal wound healing via activation of Akt signaling. Exp Eye Res 2024; 243:109886. [PMID: 38583755 DOI: 10.1016/j.exer.2024.109886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/24/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Corneal injury leads to impaired normal structure of the cornea. Improving the wound healing process in epithelial cells significantly contributes to ocular damage treatments. Here, we aimed to investigate the potential mechanisms of nitric oxide (NO) and its mediator, inducible nitric oxide synthase (iNOS), in the process of corneal wound healing. We established a corneal injury model of iNOS-/- mice, and treated human corneal epithelial cell lines (HCE-2) with the iNOS inhibitor L-INL, with or without NO replenishment by supplying sodium nitroferricyanide dihydrate (SNP). Our findings showed that inhibition of NO/iNOS accelerated corneal repair, enhanced uPAR (a receptor protein indicating the migration ability), and improved epithelial cell migration. Furthermore, NO/iNOS ablation activated Akt phosphorylation, reduced neutrophil marker protein MPO expression, and downregulated the transcription of inflammation cytokines CXCL-1, CXCL-2, IL-1β, IL-6, and TNF-α. However, the protective effects of NO/iNOS inhibition are significantly reduced by NO replenishment when treated with SNP. Therefore, we confirmed that inhibiting NO/iNOS improved the corneal wound healing by facilitating epithelial cell migration and reducing inflammatory reactions, which might be related to the activation of the Akt signaling pathway.
Collapse
Affiliation(s)
- Ziwen Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300070, Tianjin, China
| | - Kunpeng Lu
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, 300070, Tianjin, China
| | - Qing He
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300070, Tianjin, China
| | - Yang Tang
- Qingdao State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, 266071, Qingdao, China
| | - Haoru Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300070, Tianjin, China
| | - Emmanuel Eric Pazo
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300070, Tianjin, China
| | - Lizhi Hu
- Basic Medical College, Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300070, Tianjin, China.
| |
Collapse
|
9
|
Zhang Q, Yan K, Zheng X, Liu Q, Han Y, Liu Z. Research progress of photo-crosslink hydrogels in ophthalmology: A comprehensive review focus on the applications. Mater Today Bio 2024; 26:101082. [PMID: 38774449 PMCID: PMC11107262 DOI: 10.1016/j.mtbio.2024.101082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Hydrogel presents a three-dimensional polymer network with high water content. Over the past decade, hydrogel has developed from static material to intelligent material with controllable response. Various stimuli are involved in the formation of hydrogel network, among which photo-stimulation has attracted wide attention due to the advantages of controllable conditions, which has a good application prospect in the treatment of ophthalmic diseases. This paper reviews the application of photo-crosslink hydrogels in ophthalmology, focusing on the types of photo-crosslink hydrogels and their applications in ophthalmology, including drug delivery, tissue engineering and 3D printing. In addition, the limitations and future prospects of photo-crosslink hydrogels are also provided.
Collapse
Affiliation(s)
- Qinghe Zhang
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Ke Yan
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Xiaoqin Zheng
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Qiuping Liu
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Yi Han
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Zuguo Liu
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen Fujian 361005, China
| |
Collapse
|
10
|
Song D, Yang Q, Li X, Chen K, Tong J, Shen Y. The role of the JAK/STAT3 signaling pathway in acquired corneal diseases. Exp Eye Res 2024; 238:109748. [PMID: 38081573 DOI: 10.1016/j.exer.2023.109748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/05/2023] [Accepted: 12/05/2023] [Indexed: 01/02/2024]
Abstract
Acquired corneal diseases such as dry eye disease (DED), keratitis and corneal alkali burns are significant contributors to vision impairment worldwide, and more effective and innovative therapies are urgently needed. The Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway plays an indispensable role in cell metabolism, inflammation and the immune response. Studies have shown that regulators of this pathway are extensively expressed in the cornea, inducing significant activation of JAK/STAT3 signaling in specific acquired corneal diseases. The activation of JAK/STAT3 signaling contributes to various pathophysiological processes in the cornea, including inflammation, neovascularization, fibrosis, and wound healing. In the context of DED, the hypertonic environment activates JAK/STAT3 signaling to stimulate corneal inflammation. Inflammation and injury progression in infectious keratitis can also be modulated by JAK/STAT3 signaling. Furthermore, JAK/STAT3 signaling is involved in every stage of corneal repair after alkali burns, including acute inflammation, angiogenesis and fibrosis. Treatments modulating JAK/STAT3 signaling have shown promising results in attenuating corneal damage, indicating its potential as a novel therapeutic target. Thus, this review emphasizes the multiple roles of the JAK/STAT3 signaling pathway in common acquired corneal disorders and summarizes the current achievements of JAK/STAT3-targeting therapy to provide new insights into future applications.
Collapse
Affiliation(s)
- Dongjie Song
- Department of Ophthalmology, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, China
| | - Qianjie Yang
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Li
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
11
|
Yan D, Ouyang W, Lin J, Liu Z. Smart coating by thermo-sensitive Pluronic F-127 for enhanced corneal healing via delivery of biological macromolecule progranulin. Int J Biol Macromol 2023; 253:127586. [PMID: 37866564 DOI: 10.1016/j.ijbiomac.2023.127586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
As a leading cause of vision impairment and blindness, corneal alkali burns lead to long-term visual deterioration or even permanent visual impairment while effective treatment strategies remain a challenge. Herein, a thermo-sensitive hydrogel with the combination of multi-functional protein progranulin (PGRN), a biological macromolecule consisting of several hundred amino acids and possessing a high molecular weight, is efficiently prepared through a convenient stirring and mixing at the low temperature. The hydrogel can be easily administrated to the ocular surface contacting with the cornea, which can be immediately transformed into gel-like state due to the thermo-responsive behavior, realizing a site-specific coating to isolate further external stimulation. The smart coating not only exhibits excellent transparency and biocompatibility, but also presents a constant delivery of PGRN, creating a nutritious and supportive micro-environment for the ocular surface. The results show that the prepared functional hydrogel can efficiently suppress inflammation, accelerate re-epithelization, and intriguingly enhance axonal regeneration via modulation of multiple signaling pathways, indicating the novel designed HydrogelPGRN is a promising therapy option for serious corneal injury.
Collapse
Affiliation(s)
- Dan Yan
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361005, China
| | - Weijie Ouyang
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361005, China
| | - Jinyou Lin
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China.
| | - Zuguo Liu
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361005, China; Department of Ophthalmology, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
12
|
Shi J, Yang J, Xu H, Luo Q, Sun J, Zhang Y, Liang Z, Zhao N, Zhang J. Preparation of a Sunitinib loaded microemulsion for ocular delivery and evaluation for the treatment of corneal neovascularization in vitro and in vivo. Front Pharmacol 2023; 14:1157084. [PMID: 37497104 PMCID: PMC10366539 DOI: 10.3389/fphar.2023.1157084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
Background: Corneal neovascularization (CNV) is a pathological condition that can disrupt corneal transparency, thus harming visual acuity. However, there is no effective drug to treat CNV. Sunitinib (STB), a small-molecule multiple receptor tyrosine kinase inhibitor, was shown to have an effect on CNV. The purpose of this study was to develop an STB microemulsion (STB-ME) eye drop to inhibit CNV by topical application. Methods: We successfully prepared an STB-ME by the phase inversion emulsification method, and the physicochemical properties of STB-MEs were investigated. The short-term storage stability, cytotoxicity to human corneal epithelial cells, drug release, ocular irritation, ocular pharmacokinetics and the inhibitory effect on CNV were evaluated in vitro and in vivo. Results: The optimal formulation of STB-ME is composed of oleic acid, CRH 40, Transcutol P, water and sodium hyaluronate (SH). It is a uniform spherical particle with a mean droplet size of 18.74 ± 0.09 nm and a polydispersity index of 0.196 ± 0.004. In the in vitro drug release results, STB-ME showed sustained release and was best fitted by a Korsmeyer-Peppas model (R 2 = 0.9960). The results of the ocular pharmacokinetics in rabbits showed that the formulation containing SH increased the bioavailability in the cornea (2.47-fold) and conjunctiva (2.14-fold). STB-ME (0.05% and 0.1%), administered topically, suppressed alkali burn-induced CNV in mice more effectively than saline, and high-dose (0.1%) STB-ME had similar efficacy to dexamethasone (0.025%). Conclusion: This study provides a promising formulation of STB-ME for the inhibition of CNV by topical administration, which has the excellent characteristics of effectiveness, sustained release and high ocular bioavailability.
Collapse
Affiliation(s)
- Jieran Shi
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jingjing Yang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Haohang Xu
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Qing Luo
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jun Sun
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yali Zhang
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhen Liang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Ningmin Zhao
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Junjie Zhang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|