1
|
Xiang J, Cui M. Neutrophil Extracellular Traps and neutrophilic asthma. Respir Med 2025:108150. [PMID: 40368066 DOI: 10.1016/j.rmed.2025.108150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/18/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025]
Abstract
There are more than 260 million asthma patients worldwide. How to provide targeted long-term standardized treatment and management still confuses clinical workers and patients. Neutrophilic asthma is a special type of asthma which is difficult to diagnose clinically and often associated with severe asthma and glucocorticoid resistance. Neutrophil Extracellular Traps (NETs) play an important role in the pathogenesis of this type of asthma particularly in children. This article explores the mechanism of NETs production, their association with neutrophilic asthma, biomarkers, and possible treatment options. A more detailed discussion is also provided on the diagnosis and treatment of children with neutrophilic asthma. Educational Aims The readers will gain an improved understanding of.
Collapse
Affiliation(s)
- Jiayi Xiang
- Department of Pediatrics, Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| | - Muyan Cui
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
2
|
Agache I, Annesi-Maesano I, Cecchi L, Biagioni B, Chung F, D'Amato G, Damialis A, Del Giacco S, Dominguez Ortega J, Galán C, Gilles S, Holgate S, Jeebhay M, Kazadzis S, Nadeau K, Papadopoulos NG, Quirce S, Sastre J, Traidl-Hoffmann C, Walusiak-Skorupa J, Zemelka-Wiacek M, Jutel M, Akdis CA. EAACI Guidelines on Environmental Science for Allergy and Asthma-Recommendations on the Impact of Indoor Air Pollutants on the Risk of New-Onset Asthma and on Asthma-Related Outcomes. Allergy 2025; 80:651-676. [PMID: 40018799 DOI: 10.1111/all.16502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 03/01/2025]
Abstract
The EAACI Guidelines used the GRADE approach to evaluate the impact of major indoor air pollutants (dampness and mould, cleaning agents, volatile organic compounds and pesticides) on the risk of new-onset asthma and on asthma-related outcomes. The guideline also acknowledges the synergies among indoor air pollutants and other components of the indoor exposome (allergens, viruses, endotoxins). Very low to low certainty of evidence was found for the association between exposure to indoor pollutants and increased risk of new-onset asthma and asthma worsening. Only for mould exposure there was moderate certainty of evidence for new-onset asthma. Due to the quality of evidence, conditional recommendations were formulated on the risk of exposure to all indoor pollutants. Recommendations are provided for prevention, patient care and mitigation in a framework supporting rational decisions for healthcare professionals and patients to individualize and improve asthma management. For policymakers and regulators this evidence-informed guideline supports setting legally binding standards and goals for indoor air quality at international, national and local levels. Asthma management counselled by the current EAACI guidelines can improve asthma-related outcomes but community and governmental measures for improved indoor air quality are needed to achieve significant impact.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Isabella Annesi-Maesano
- Institute Desbrest of Epidemiology and Public Health, University of Montpellier and INSERM, Montpellier, France
| | - Lorenzo Cecchi
- Allergology and Clinical Immunology, S Giovanni di Dio Hospital, Florence, Italy
| | - Benedetta Biagioni
- Allergy and Clinical Immunology Unit, San Giovanni di Dio Hospital, Florence, Italy
| | | | - Gennaro D'Amato
- Respiratory Disease Department, Hospital Cardarelli, Naples, Italy
- Medical School of Respiratory Diseases, University of Naples Federico II, Naples, Italy
| | - Athanasios Damialis
- Terrestrial Ecology and Climate Change, Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Javier Dominguez Ortega
- Department of Allergy, La Paz University Hospital, IdiPAZ, and CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Carmen Galán
- Inter-University Institute for Earth System Research (IISTA), international Campus of Excellence on Agrifood (ceiA3), University of Córdoba, Córdoba, Spain
| | - Stefanie Gilles
- Institute of Environmental Medicine and Integrative Health, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Allergy Service, Fundación Jiménez Díaz, Faculty of Medicine Universidad Autónoma de Madrid and CIBERES, Instituto Carlos III, Ministry of Science and Innovation, Madrid, Spain
| | - Stephen Holgate
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mohamed Jeebhay
- Occupational Medicine Division and Centre for Environmental & Occupational Health Research, University of Cape Town, Cape Town, South Africa
| | - Stelios Kazadzis
- Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Davos, Switzerland
| | - Kari Nadeau
- John Rock Professor of Climate and Population Studies; Chair, Department of Environmental Health, Interim Director, Center for Climate, Health, and the Global Environment, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Nikos G Papadopoulos
- Department of Allergy, second Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
- Lydia Becker Institute, University of Manchester, Manchester, UK
| | - Santiago Quirce
- Department of Allergy, La Paz University Hospital, IdiPAZ, and CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz, Faculty of Medicine Universidad Autónoma de Madrid and CIBERES, Instituto Carlos III, Ministry of Science and Innovation, Madrid, Spain
| | - Claudia Traidl-Hoffmann
- Institute of Environmental Medicine and Integrative Health, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Insitute of Environmental Medicine, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jolanta Walusiak-Skorupa
- Department of Occupational Diseases and Environmental Health, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Magdalena Zemelka-Wiacek
- Department of Clinical Immunology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Marek Jutel
- Department of Clinical Immunology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| |
Collapse
|
3
|
Zhang Q, Wu J, Lan Y, Wang Y, Chen M, Wang J, Zhao X, Liu L, Zhao W, Zhao H. Targeting PGAM5 attenuates airway inflammation in asthma by inhibiting HMGB1 release in bronchial epithelium. Free Radic Biol Med 2025; 228:207-220. [PMID: 39756489 DOI: 10.1016/j.freeradbiomed.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Previous studies have demonstrated that high-mobility group box protein 1(HMGB1) was increased and released to the extracellular and participated in the pathogenesis of steroid-insensitive asthma induced by toluene diisocyanate (TDI). Mitochondrial dysfunction of bronchial epithelia is a critical feature in TDI asthma. However, whether mitochondrial dysfunction regulated HMGB1 release in asthma remains unknown. The aim of this study was to explore whether phosphoglycerate mutase family member 5 (PGAM5), a mitochondrial protein, can regulate HMGB1 release in TDI-induced asthma. The gene expression data series (GSE) 67472 from gene expression omnibus (GEO) database was analyzed to compare the levels of PGAM5 in airway epithelial cells from asthma patients and healthy individuals. Male C57BL/6J mice were sensitized and challenged with TDI and treated with the PGAM5 inhibitor LFHP-1c. In vitro, human bronchial epithelial cells(16HBE) were stimulated by TDI-human serum albumin (HSA) and pretreated with PGAM5 siRNA. In this study, we observed PGAM5 expression was notably increased in airway epithelial cells of asthma patients and TDI-induced asthma mice. In vivo, inhibition of PGAM5 significantly ameliorated airway inflammation, airway hyperresponsiveness (AHR) and mucus hypersecretion, coupled with the decrease of pulmonary HMGB1 expression and release in TDI-exposed mice. In vitro, inhibition of PGAM5 improved mitochondrial dysfunction, decreased the production of reactive oxygen species (ROS) in mitochondrial. Knockdown of PGAM5 reduced the release of cytochrome C (cyt c) and HMGB1 release in TDI-induced asthma. Mechanistically, PGAM5 in bronchial epithelial cells treated by TDI-HSA significantly increased the dephosphorylation of Bax at the S184 residue, promoted the translocation of Bax to mitochondria, and contributed to the activation of mitochondrial-dependent apoptosis in TDI-induced asthma. Based on these findings, we uncovered a novel regulatory mechanism by which high PGAM5 expression promotes airway inflammation by mediating HMGB1 release in TDI-induced asthma, identifying the therapeutic effects of targeting PGAM5 in steroid-insensitive asthma model.
Collapse
Affiliation(s)
- Qian Zhang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jie Wu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yisheng Lan
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanhong Wang
- Department of Respiratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Meijia Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Junrao Wang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xueying Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Laiyu Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenqu Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Gou Y, Lin F, Dan L, Zhang D. Exposure to toluene diisocyanate induces dysbiosis of gut-lung homeostasis: Involvement of gut microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125119. [PMID: 39414067 DOI: 10.1016/j.envpol.2024.125119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Toluene diisocyanate (TDI) is a major industrial compound that induces occupational asthma with steroid-resistant properties. Recent studies suggest that the gastrointestinal tract may be an effective target for the treatment of respiratory diseases. However, the alterations of the gut-lung axis in TDI-induced asthma remain unexplored. Therefore, in this study, a model of stable occupational asthma caused by TDI exposure was established to detect the alteration of the gut-lung axis. Exposure to TDI resulted in dysbiosis of the gut microbiome, with significant decreases in Barnesiella_intestinihominis, Faecalicoccus_pleomorphus, Lactobacillus_apodemi, and Lactobacillus_intestinalis, but increases in Alistipes_shahii and Odoribacter_laneus. The largest change in abundance was in Barnesiella_intestinihominis, which decreased from 12.14 per cent to 6.18 per cent. The histopathological abnormalities, including shorter length of intestinal villi, thinner thickness of muscularis, reduced number of goblet cells and inflammatory cell infiltration, were found in TDI-treated mice compared to control mice. In addition, increased permeability (evidenced by significantly reduced levels of ZO-1, Occludin and Claudin-1) and activation of TLR4/NF-κB signaling were observed in the intestine of these TDI-exposed mice. Concurrently, exposure to TDI resulted in airway hyperresponsiveness, overt cytokine production (e.g., IL-4, IL-5, IL-13, IL-25, and IL-33), and elevated IgE level within the respiratory tract. The expression of tight junction proteins is reduced and TLR4/NF-κB signaling is activated in the lung following TDI treatment. In addition, correlation analyses showed that changes in the gut microbiota were correlated with TDI exposure-induced airway inflammation. In conclusion, the present study suggests that the immune gut-lung axis may be involved in the development of TDI-induced asthma, which may have implications for potential interventions against steroid-resistant asthma.
Collapse
Affiliation(s)
- Yuxuan Gou
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou, 561113, China.
| | - Fu Lin
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Li Dan
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Dianyu Zhang
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| |
Collapse
|
5
|
He X, Yao D, Yuan X, Ban J, Gou Y, You M. Occupational agents-mediated asthma: From the perspective of autophagy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175880. [PMID: 39216756 DOI: 10.1016/j.scitotenv.2024.175880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Occupational asthma (OA) is a common occupational pulmonary disease that is frequently underdiagnosed and underreported. The complexity of diagnosing and treating OA creates a significant social and economic burden, making it an important public health issue. In addition to avoiding allergens, patients with OA require pharmacotherapy; however, new therapeutic targets and strategies need further investigation. Autophagy may be a promising intervention target, but there is a lack of relevant studies summarizing the role of autophagy in OA. In this review consolidates the current understanding of OA, detailing principal and novel agents responsible for its onset. Additionally, we summarize the mechanisms of autophagy in HMW and LMW agents induced OA, revealing that occupational allergens can induce autophagy disorders in lung epithelial cells, smooth muscle cells, and dendritic cells, ultimately leading to OA through involving inflammatory responses, oxidative stress, and cell death. Finally, we discuss the prospects of targeting autophagy as an effective strategy for managing OA and even steroid-resistant asthma, encompassing autophagy interventions focused on organoids, organ-on-a-chip systems, nanomaterials vehicle, and nanobubbles; developing combined exposure models, and the role of non-classical autophagy in occupational asthma. In briefly, this review summarizes the role of autophagy in occupational asthma, offers a theoretical foundation for OA interventions based on autophagy, and identifies directions and challenges for future research.
Collapse
Affiliation(s)
- Xiu He
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China
| | - Dengxiang Yao
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Xiaoli Yuan
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Jiaqi Ban
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Yuxuan Gou
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Clinical Medical School, Guizhou Medical University, Guiyang 561113, China
| | - Mingdan You
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China.
| |
Collapse
|
6
|
Li Y, Yang T, Jiang B. Neutrophil and neutrophil extracellular trap involvement in neutrophilic asthma: A review. Medicine (Baltimore) 2024; 103:e39342. [PMID: 39183388 PMCID: PMC11346896 DOI: 10.1097/md.0000000000039342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/21/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
Asthma is a highly prevalent chronic inflammatory disease characterized by variable airflow obstruction and airway hyperresponsiveness. Neutrophilic asthma (NA) is classified as "type 2 low" asthma, defined as 65% or more neutrophils in the total cell count. There is no clear consensus on the pathogenesis of NA, and the accumulation of neutrophils and release of neutrophil extracellular traps (NETs) may be responsible for its development. A NET is a large extracellular meshwork comprising cell membrane and granule proteins. It is a powerful antimicrobial defence system that traps, neutralizes, and kills bacteria, fungi, viruses, and parasites and prevents the spread of microorganisms. However, dysregulation of NETs may lead to chronic airway inflammation, is associated with worsening of asthma, and has been the subject of major research advances in chronic lung diseases in recent years. NA is insensitive to steroids, and there is a need to find effective biomarkers as targets for the treatment of NA to replace steroids. This review analyses the mechanisms of action between asthmatic neutrophil recruitment and NET formation and their impact on NA development. It also discusses their possible therapeutic significance in NA, summarizing the advances made in NA agents and providing strategies for the treatment of NA, provide a theoretical basis for the development of new therapeutic drugs, thereby improving the level of diagnosis and treatment, and promoting the research progress in the field of asthma.
Collapse
Affiliation(s)
- Yuemu Li
- Institutes of Integrative Medicine, Heilongjiang Provincial Hospital of Traditional Chinese Medicine, Heilongjiang, China
| | - Tianyi Yang
- Institutes of Integrative Medicine, Heilongjiang Provincial Hospital of Traditional Chinese Medicine, Heilongjiang, China
| | - Baihua Jiang
- Institutes of Integrative Medicine, Heilongjiang Provincial Hospital of Traditional Chinese Medicine, Heilongjiang, China
| |
Collapse
|
7
|
Chen Y, Huang J, Li Y, Chen Y, Gong Z, Xu M, Ma Y, Hu D, Peng X, Xu G, Cai S, Liu L, Zhao W, Zhao H. Bongkrekic acid alleviates airway inflammation via breaking the mPTP/mtDAMPs/RAGE feedback loop in a steroid-insensitive asthma model. Biomed Pharmacother 2024; 177:117111. [PMID: 39013220 DOI: 10.1016/j.biopha.2024.117111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/18/2024] Open
Abstract
Mitochondrial dysfunction is critical in the pathogenesis of asthma. Mitochondrial permeability transition pore (mPTP) regulates the release of mitochondrial damage-associated molecular patterns (mtDAMPs) to maintain mitochondrial homeostasis. Bongkrekic acid (BKA) is a highly selective inhibitor of mPTP opening, participates the progression of various diseases. This research investigated the exact roles of BKA and mPTP in the pathogenesis of asthma and elucidated its underlying mechanisms. In the present study, cytochrome c, one of the mtDAMPs, levels were elevated in asthmatic patients, and associated to airway inflammation and airway obstruction. BKA, the inhibitor of mPTP markedly reversed TDI-induced airway hyperresponsiveness, airway inflammation, and mitochondrial dysfunction. Pretreatment with mitochondrial precipitation, to simulate the release of mtDAMPs, further increased TDI-induced airway inflammation and the expression of RAGE in mice. Administration of the inhibitor of RAGE, FPS-ZM1, alleviated the airway inflammation, the abnormal open of mPTP and mitochondrial dysfunction induced by mtDAMPs and TDI. Furthermore, stimulation with different mtDAMPs activated RAGE signaling in human bronchial epithelial cells. Accordingly, our study indicated that mPTP was important and BKA was efficient in alleviating inflammation in TDI-induced asthma. A positive feedback loop involving mPTP, mtDAMPs and RAGE was present in TDI-induced asthma, indicating that mPTP might serve as a potential therapeutic target for asthma.
Collapse
Affiliation(s)
- Ying Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junwen Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuemao Li
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yaoxin Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhaoqian Gong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Maosheng Xu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanyan Ma
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dapeng Hu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xianru Peng
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guilin Xu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Laiyu Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenqu Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
8
|
Gu W, Huang C, Chen G, Kong W, Zhao L, Jie H, Zhen G. The role of extracellular traps released by neutrophils, eosinophils, and macrophages in asthma. Respir Res 2024; 25:290. [PMID: 39080638 PMCID: PMC11290210 DOI: 10.1186/s12931-024-02923-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Extracellular traps (ETs) are a specialized form of innate immune defense in which leukocytes release ETs composed of chromatin and active proteins to eliminate pathogenic microorganisms. In addition to the anti-infection effect of ETs, researchers have also discovered their involvement in the pathogenesis of inflammatory disease, tumors, autoimmune disease, and allergic disease. Asthma is a chronic airway inflammatory disease involving multiple immune cells. The increased level of ETs in asthma patients suggests that ETs play an important role in the pathogenesis of asthma. Here we review the research work on the formation mechanism, roles, and therapeutic strategies of ETs released by neutrophils, eosinophils, and macrophages in asthma.
Collapse
Affiliation(s)
- Wei Gu
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Chunli Huang
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Gongqi Chen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Weiqiang Kong
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Lu Zhao
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Huiru Jie
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Guohua Zhen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China.
| |
Collapse
|
9
|
Wang Y, Le Y, Wu J, Zhao W, Zhang Q, Xu G, Gong Z, Xu M, Ma Y, Yu C, Cai S, Zhao H. Inhibition of xanthine oxidase by allopurinol suppresses HMGB1 secretion and ameliorates experimental asthma. Redox Biol 2024; 70:103021. [PMID: 38219573 PMCID: PMC10825647 DOI: 10.1016/j.redox.2023.103021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Extracellular high mobility group box 1 (HMGB1) is a key mediator in driving allergic airway inflammation and contributes to asthma. Yet, mechanism of HMGB1 secretion in asthma is poorly defined. Pulmonary metabolic dysfunction is recently recognized as a driver of respiratory pathology. However, the altered metabolic signatures and the roles of metabolic to allergic airway inflammation remain unclear. METHODS Male C57BL/6 J mice were sensitized and challenged with toluene diisocyanate (TDI) to generate a chemically induced asthma model. Pulmonary untargeted metabolomics was employed. According to results, mice were orally administered allopurinol, a xanthine oxidase (XO) inhibitor. Human bronchial epithelial cells (16HBE) were stimulated by TDI-human serum albumin (HSA). RESULTS We identified the purine metabolism was the most enriched pathway in TDI-exposed lungs, corresponding to the increase of xanthine and uric acid, products of purine degradation mediated by XO. Inhibition of XO by allopurinol ameliorates TDI-induced oxidative stress and DNA damage, mixed granulocytic airway inflammation and Th1, Th2 and Th17 immunology as well as HMGB1 acetylation and secretion. Mechanistically, HMGB1 acetylation was caused by decreased activation of the NAD+-sirtuin 1 (SIRT1) axis triggered by hyperactivation of the DNA damage sensor poly (ADP-ribose)-polymerase 1 (PARP-1). This was rescued by allopurinol, PARP-1 inhibitor or supplementation with NAD+ precursor in a SIRT1-dependent manner. Meanwhile, allopurinol attenuated Nrf2 defect due to SIRT1 inactivation to help ROS scavenge. CONCLUSIONS We demonstrated a novel regulation of HMGB1 acetylation and secretion by purine metabolism that is critical for asthma onset. Allopurinol may have therapeutic potential in patients with asthma.
Collapse
Affiliation(s)
- Yanhong Wang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yanqing Le
- Department of Respiratory and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jie Wu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wenqu Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Qian Zhang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Guiling Xu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhaoqian Gong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Maosheng Xu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yanyan Ma
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Changhui Yu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
10
|
Xuan N, Zhao J, Kang Z, Cui W, Tian BP. Neutrophil extracellular traps and their implications in airway inflammatory diseases. Front Med (Lausanne) 2024; 10:1331000. [PMID: 38283037 PMCID: PMC10811107 DOI: 10.3389/fmed.2023.1331000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are essential for immune defense and have been increasingly recognized for their role in infection and inflammation. In the context of airway inflammatory diseases, there is growing evidence suggesting the involvement and significance of NETs. This review aims to provide an overview of the formation mechanisms and components of NETs and their impact on various airway inflammatory diseases, including acute lung injury/ARDS, asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis. By understanding the role of NETs in airway inflammation, we can gain valuable insights into the underlying pathogenesis of these diseases and identify potential targets for future therapeutic strategies that either target NETs formation or modulate their harmful effects. Further research is warranted to elucidate the complex interactions between NETs and airway inflammation and to develop targeted therapies that can effectively mitigate their detrimental effects while preserving their beneficial functions in host defense.
Collapse
Affiliation(s)
- Nanxia Xuan
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Zhiying Kang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Cui
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bao-ping Tian
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|