1
|
Pore AA, Kamyabi N, Bithi SS, Ahmmed SM, Vanapalli SA. Single-Cell Proliferation Microfluidic Device for High Throughput Investigation of Replicative Potential and Drug Resistance of Cancer Cells. Cell Mol Bioeng 2023; 16:443-457. [PMID: 38099214 PMCID: PMC10716102 DOI: 10.1007/s12195-023-00773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/10/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Cell proliferation represents a major hallmark of cancer biology, and manifests itself in the assessment of tumor growth, drug resistance and metastasis. Tracking cell proliferation or cell fate at the single-cell level can reveal phenotypic heterogeneity. However, characterization of cell proliferation is typically done in bulk assays which does not inform on cells that can proliferate under given environmental perturbations. Thus, there is a need for single-cell approaches that allow longitudinal tracking of the fate of a large number of individual cells to reveal diverse phenotypes. Methods We fabricated a new microfluidic architecture for high efficiency capture of single tumor cells, with the capacity to monitor cell divisions across multiple daughter cells. This single-cell proliferation (SCP) device enabled the quantification of the fate of more than 1000 individual cancer cells longitudinally, allowing comprehensive profiling of the phenotypic heterogeneity that would be otherwise masked in standard cell proliferation assays. We characterized the efficiency of single cell capture and demonstrated the utility of the SCP device by exposing MCF-7 breast tumor cells to different doses of the chemotherapeutic agent doxorubicin. Results The single cell trapping efficiency of the SCP device was found to be ~ 85%. At the low doses of doxorubicin (0.01 µM, 0.001 µM, 0.0001 µM), we observed that 50-80% of the drug-treated cells had undergone proliferation, and less than 10% of the cells do not proliferate. Additionally, we demonstrated the potential of the SCP device in circulating tumor cell applications where minimizing target cell loss is critical. We showed selective capture of breast tumor cells from a binary mixture of cells (tumor cells and white blood cells) that was isolated from blood processing. We successfully characterized the proliferation statistics of these captured cells despite their extremely low counts in the original binary suspension. Conclusions The SCP device has significant potential for cancer research with the ability to quantify proliferation statistics of individual tumor cells, opening new avenues of investigation ranging from evaluating drug resistance of anti-cancer compounds to monitoring the replicative potential of patient-derived cells. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00773-z.
Collapse
Affiliation(s)
- Adity A. Pore
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX USA
| | - Nabiollah Kamyabi
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX USA
- Present Address: 10x Genomics, Pleasanton, CA USA
| | - Swastika S. Bithi
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX USA
- Present Address: College of Engineering, West Texas A&M University, Canyon, TX USA
| | - Shamim M. Ahmmed
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX USA
- Present Address: Manufacturing Integration Engineer, Intel Corporation, Hillsboro, OR USA
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX USA
| |
Collapse
|
2
|
Pershina AG, Nevskaya KV, Morozov KR, Litviakov NV. Methods for assessing the effect of microRNA on stemness genes. BULLETIN OF SIBERIAN MEDICINE 2023. [DOI: 10.20538/1682-0363-2022-4-170-182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
According to the latest concepts, for micrometastasis to develop into macrometastasis, differentiated cancer cells must revert to a dedifferentiated state. Activation of stemness genes plays a key role in this transition. Suppression of stemness gene expression using microRNAs can become the basis for the development of effective anti-metastatic drugs. This article provides an overview of the existing methods for assessing the effect of microRNAs on stemness genes and cancer cell dedifferentiation.
Collapse
Affiliation(s)
| | | | | | - N. V. Litviakov
- Siberian State Medical University;
Cancer Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| |
Collapse
|
3
|
Thongchot S, Jamjuntra P, Prasopsiri J, Thuwajit P, Sawasdee N, Poungvarin N, Warnnissorn M, Sa-Nguanraksa D, O-Charoenrat P, Yenchitsomanus PT, Thuwajit C. Establishment and characterization of novel highly aggressive HER2‑positive and triple‑negative breast cancer cell lines. Oncol Rep 2021; 46:254. [PMID: 34651665 PMCID: PMC8548790 DOI: 10.3892/or.2021.8205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/16/2021] [Indexed: 11/05/2022] Open
Abstract
Breast cancer cell lines are widely used as an in vitro system with which to study the mechanisms underlying biological and chemotherapeutic resistance. In the present study, two novel breast cancer cell lines designated as PC‑B‑142CA and PC‑B‑148CA were successfully established from HER2‑positive and triple‑negative (TN) breast cancer tissues. The cell lines were characterized by cytokeratin (CK), α‑smooth muscle actin (α‑SMA), fibroblast‑activation protein (FAP) and programmed death‑ligand 1 (PD‑L1). Cell proliferation was assessed using a colony formation assay, an MTS assay, 3‑dimensional (3‑D) spheroid and 3‑D organoid models. Wound healing and Transwell migration assays were used to explore the cell migration capability. The responses to doxorubicin (DOX) and paclitaxel (PTX) were evaluated by 3‑D spheroids. The results showed that the PC‑B‑142CA and PC‑B‑148CA cell lines were α‑SMA‑negative, FAP‑negative, CK‑positive and PD‑L1‑positive. Both cell lines were adherent with the ability of 3‑D‑multicellular spheroid and organoid formations; invadopodia were found in the spheroids/organoids of only PC‑B‑148CA. PC‑B‑142CA had a faster proliferative but lower metastatic rate compared to PC‑B‑148CA. Compared to MDA‑MB‑231, a commercial TN breast cancer cell line, PC‑B‑148CA had a similar CD44+/CD24‑ stemness property (96.90%), whereas only 8.75% were found in PC‑B‑142CA. The mutations of BRCA1/2, KIT, PIK3CA, SMAD4, and TP53 were found in PC‑B‑142CA cells related to the resistance of several drugs, whereas PC‑B‑148CA had mutated BRCA2, NRAS and TP53. In conclusion, PC‑B‑142CA can serve as a novel HER2‑positive breast cancer cell line for drug resistance studies; while PC‑B‑148CA is a novel TN breast cancer cell line suitable for metastatic and stemness‑related properties.
Collapse
Affiliation(s)
- Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pranisa Jamjuntra
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jaturawitt Prasopsiri
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nunghathai Sawasdee
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Naravat Poungvarin
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Malee Warnnissorn
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Doonyapat Sa-Nguanraksa
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
4
|
Yu S, Lu Y, Su A, Chen J, Li J, Zhou B, Liu X, Xia Q, Li Y, Li J, Huang M, Ye Y, Zhao Q, Jiang S, Yan X, Wang X, Di C, Pan J, Su S. A CD10-OGP Membrane Peptolytic Signaling Axis in Fibroblasts Regulates Lipid Metabolism of Cancer Stem Cells via SCD1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101848. [PMID: 34363355 PMCID: PMC8498877 DOI: 10.1002/advs.202101848] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 05/27/2023]
Abstract
Carcinoma-associated fibroblasts (CAFs) consist of heterogeneous subpopulations that play a critical role in the dynamics of the tumor microenvironment. The extracellular signals of CAFs have been attributed to the extracellular matrix, cytokines, cell surface checkpoints, and exosomes. In the present study, it is demonstrated that the CD10 transmembrane hydrolase expressed on a subset of CAFs supports tumor stemness and induces chemoresistance. Mechanistically, CD10 degenerates an antitumoral peptide termed osteogenic growth peptide (OGP). OGP restrains the expression of rate-limiting desaturase SCD1 and inhibits lipid desaturation, which is required for cancer stem cells (CSCs). Targeting CD10 significantly improves the efficacy of chemotherapy in vivo. Clinically, CD10-OGP signals are associated with the response to neoadjuvant chemotherapy in patients with breast cancer. The collective data suggest that a nexus between the niche and lipid metabolism in CSCs is a promising therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Shubin Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Yiwen Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - An Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Jianing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Jiang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Boxuan Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Xinwei Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Qidong Xia
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Yihong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Jiaqian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Min Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Yingying Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Qiyi Zhao
- Department of Infectious Diseasesthe Third Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510630China
- Guangdong Provincial Key Laboratory of Liver Disease Researchthe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
- Key Laboratory of Tropical Disease Control (Sun Yat‐sen University)Ministry of EducationGuangzhouGuangdong510080China
| | - Sushi Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Xiaoqing Yan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Xiaojuan Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Can Di
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Jiayao Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Department of Infectious Diseasesthe Third Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510630China
- Department of ImmunologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| |
Collapse
|
5
|
PE38-based gene therapy of HER2-positive breast cancer stem cells via VHH-redirected polyamidoamine dendrimers. Sci Rep 2021; 11:15517. [PMID: 34330942 PMCID: PMC8324773 DOI: 10.1038/s41598-021-93972-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/30/2021] [Indexed: 11/08/2022] Open
Abstract
Breast cancer stem cells (BCSCs) resist conventional treatments and cause tumor recurrence. Almost 25% of breast cancers overexpress human epidermal growth factor receptor-2 (HER2). Here we developed a novel multi-targeted nanosystem to specifically eradicate HER2+ BCSCs. Plasmids containing CXCR1 promoter, PE38 toxin, and 5′UTR of the basic fibroblast growth factor-2 (bFGF 5'UTR) were constructed. Polyamidoamine (PAMAM) dendrimers functionalized with anti-HER2 VHHs were used for plasmid delivery. Stem cell proportion of MDA-MB-231, MDA-MB-231/HER2+ and MCF-10A were evaluated by mammosphere formation assay. Hanging drop technique was used to produce spheroids. The uptake, gene expression, and killing efficacy of the multi-targeted nanosystem were evaluated in both monolayer and spheroid culture. MDA-MB-231/HER2+ had higher ability to form mammosphere compared to MCF-10A. Our multi-targeted nanosystem efficiently inhibited the mammosphere formation of MDA-MB-231 and MDA-MB-231/HER2+ cells, while it was unable to prevent the mammosphere formation of MCF-10A. In the hanging drop culture, MDA-MB-231/HER+ generated compact well-rounded spheroids, while MCF-10A failed to form compact cellular masses. The multi-targeted nanosystem showed much better uptake, higher PE38 expression, and subsequent cell death in MDA-MB-231/HER2+ compared to MCF-10A. However, the efficacy of our targeted toxin gene therapy was lower in MDA-MB-231/HER2+ spheroids compared with that in the monolayer culture. the combination of the cell surface, transcriptional, and translational targeting increased the stringency of the treatment.
Collapse
|
6
|
Bhandary L, Bailey PC, Chang KT, Underwood KF, Lee CJ, Whipple RA, Jewell CM, Ory E, Thompson KN, Ju JA, Mathias TM, Pratt SJP, Vitolo MI, Martin SS. Lipid tethering of breast tumor cells reduces cell aggregation during mammosphere formation. Sci Rep 2021; 11:3214. [PMID: 33547369 PMCID: PMC7865010 DOI: 10.1038/s41598-021-81919-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
Mammosphere assays are widely used in vitro to identify prospective cancer-initiating stem cells that can propagate clonally to form spheres in free-floating conditions. However, the traditional mammosphere assay inevitably introduces cell aggregation that interferes with the measurement of true mammosphere forming efficiency. We developed a method to reduce tumor cell aggregation and increase the probability that the observed mammospheres formed are clonal in origin. Tethering individual tumor cells to lipid anchors prevents cell drift while maintaining free-floating characteristics. This enables real-time monitoring of single tumor cells as they divide to form mammospheres. Monitoring tethered breast cancer cells provided detailed size information that correlates directly to previously published single cell tracking data. We observed that 71% of the Day 7 spheres in lipid-coated wells were between 50 and 150 μm compared to only 37% in traditional low attachment plates. When an equal mixture of MCF7-GFP and MCF7-mCherry cells were seeded, 65% of the mammospheres in lipid-coated wells demonstrated single color expression whereas only 32% were single-colored in low attachment wells. These results indicate that using lipid tethering for mammosphere growth assays can reduce the confounding factor of cell aggregation and increase the formation of clonal mammospheres.
Collapse
Affiliation(s)
- Lekhana Bhandary
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine (UMGCCC), 22 S. Greene St., Baltimore, MD, 21201, USA
| | - Patrick C Bailey
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine (UMGCCC), 22 S. Greene St., Baltimore, MD, 21201, USA.,Graduate Program in Biochemistry, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Katarina T Chang
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine (UMGCCC), 22 S. Greene St., Baltimore, MD, 21201, USA.,Graduate Program in Life Sciences, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Karen F Underwood
- UMGCCC Flow Cytometry Shared Service, 655 West Baltimore Street, BRB 7-022, Baltimore, MD, 21201, USA
| | - Cornell J Lee
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine (UMGCCC), 22 S. Greene St., Baltimore, MD, 21201, USA
| | - Rebecca A Whipple
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine (UMGCCC), 22 S. Greene St., Baltimore, MD, 21201, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, 3102 A. James Clark Hall, College Park, MD, 20742, USA
| | - Eleanor Ory
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine (UMGCCC), 22 S. Greene St., Baltimore, MD, 21201, USA
| | - Keyata N Thompson
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine (UMGCCC), 22 S. Greene St., Baltimore, MD, 21201, USA
| | - Julia A Ju
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine (UMGCCC), 22 S. Greene St., Baltimore, MD, 21201, USA
| | - Trevor M Mathias
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine (UMGCCC), 22 S. Greene St., Baltimore, MD, 21201, USA
| | - Stephen J P Pratt
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine (UMGCCC), 22 S. Greene St., Baltimore, MD, 21201, USA.,Graduate Program in Biochemistry, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Michele I Vitolo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine (UMGCCC), 22 S. Greene St., Baltimore, MD, 21201, USA. .,Graduate Program in Biochemistry, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD, 21201, USA. .,Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA.
| | - Stuart S Martin
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine (UMGCCC), 22 S. Greene St., Baltimore, MD, 21201, USA. .,Graduate Program in Biochemistry, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD, 21201, USA. .,Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA. .,, Bressler Research Building Room 10-29, 655 West Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
7
|
Ospina-Muñoz N, Vernot JP. Partial acquisition of stemness properties in tumorspheres obtained from interleukin-8-treated MCF-7 cells. Tumour Biol 2020; 42:1010428320979438. [PMID: 33325322 DOI: 10.1177/1010428320979438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The interleukin-8 is an important regulator of the tumor microenvironment, promoting the epithelial-mesenchymal transition and the acquisition of stem-like cell properties in cancer cells. The tumorsphere-formation assay has been used for the identification of cancer stem cell. Interleukin-8 induces the formation of larger tumorspheres in Michigan Cancer Foundation-7 (MCF-7) cells, suggesting cancer stem cell enrichment. In this work, we aimed to study the phenotypic and functional characteristics of the cells present within the tumorspheres of MCF-7 cells previously treated with interleukin-8. MCF-7 cells treated for 5 days or not with this cytokine were further cultivated in ultralow attachment plates for another 5 days to allow tumorspheres formation. We showed that the enhanced sphere formation by MCF-7 cells was not a consequence of higher cell proliferation by interleukin-8 stimulation. Despite maintaining an epithelial-mesenchymal transition phenotype with the presence of epithelial and mesenchymal markers, basic stemness properties were impaired in tumorspheres and in those treated with interleukin-8, while others were increased. Self-renewal capacity was increased in interleukin-8-treated cells only in the first generation of tumorspheres but was not sustained in consecutive assays. Accordingly, self-renewal and reprogramming gene expression, differentiation capacity to adipocytes, and clonogenicity were also impaired. We showed also that tumorspheres were enriched in differentiated luminal cells (EpCAM+/CD49f-). Nevertheless, cells were more quiescent and maintain a partial epithelial-mesenchymal transition, consistent with their increased resistance to Paclitaxel and Doxorubicin. They also presented higher migration and interleukin-8-directed invasion. Therefore, the breast cancer cell line MCF-7, having a low stemness index, might partially acquire some stem-like cell attributes after interleukin-8 stimulation, increasing its aggressiveness.
Collapse
Affiliation(s)
- Natalia Ospina-Muñoz
- Cellular and Molecular Physiology Group, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, DC, Colombia
| | - Jean-Paul Vernot
- Cellular and Molecular Physiology Group, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, DC, Colombia.,Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, DC, Colombia
| |
Collapse
|
8
|
Ju JA, Lee CJ, Thompson KN, Ory EC, Lee RM, Mathias TJ, Pratt SJP, Vitolo MI, Jewell CM, Martin SS. Partial thermal imidization of polyelectrolyte multilayer cell tethering surfaces (TetherChip) enables efficient cell capture and microtentacle fixation for circulating tumor cell analysis. LAB ON A CHIP 2020; 20:2872-2888. [PMID: 32744284 PMCID: PMC7595763 DOI: 10.1039/d0lc00207k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The technical challenges of imaging non-adherent tumor cells pose a critical barrier to understanding tumor cell responses to the non-adherent microenvironments of metastasis, like the bloodstream or lymphatics. In this study, we optimized a microfluidic device (TetherChip) engineered to prevent cell adhesion with an optically-clear, thermal-crosslinked polyelectrolyte multilayer nanosurface and a terminal lipid layer that simultaneously tethers the cell membrane for improved spatial immobilization. Thermal imidization of the TetherChip nanosurface on commercially-available microfluidic slides allows up to 98% of tumor cell capture by the lipid tethers. Importantly, time-lapse microscopy demonstrates that unique microtentacles on non-adherent tumor cells are rapidly destroyed during chemical fixation, but tethering microtentacles to the TetherChip surface efficiently preserves microtentacle structure post-fixation and post-blood isolation. TetherChips remain stable for more than 6 months, enabling shipment to distant sites. The broad retention capability of TetherChips allows comparison of multiple tumor cell types, revealing for the first time that carcinomas beyond breast cancer form microtentacles in suspension. Direct integration of TetherChips into the Vortex VTX-1 CTC isolation instrument shows that live CTCs from blood samples are efficiently captured on TetherChips for rapid fixation and same-day immunofluorescence analysis. Highly efficient and unbiased label-free capture of CTCs on a surface that allows rapid chemical fixation also establishes a streamlined clinical workflow to stabilize patient tumor cell samples and minimize analytical variables. While current studies focus primarily on CTC enumeration, this microfluidic device provides a novel platform for functional phenotype testing in CTCs with the ultimate goal of identifying anti-metastatic, patient-specific therapies.
Collapse
Affiliation(s)
- Julia A Ju
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Bressler Research Building Rm 10-29, 655 W, Baltimore St., Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chen YC, Zhang Z, Yoon E. Early Prediction of Single-Cell Derived Sphere Formation Rate Using Convolutional Neural Network Image Analysis. Anal Chem 2020; 92:7717-7724. [PMID: 32427465 DOI: 10.1021/acs.analchem.0c00710] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Functional identification of cancer stem-like cells (CSCs) is an established method to identify and study this cancer subpopulation critical for cancer progression and metastasis. The method is based on the unique capability of single CSCs to survive and grow to tumorspheres in harsh suspension culture environment. Recent advances in microfluidic technology have enabled isolating and culturing thousands of single cells on a chip. However, tumorsphere assay takes a relatively long period of time, limiting the throughput of this assay. In this work, we incorporated machine learning with single-cell analysis to expedite tumorsphere assay. We collected 1,710 single-cell events as the database and trained a convolutional neural network model that predicts whether a single cell could grow to a tumorsphere on Day 14 based on its Day 4 image. With this future-telling model, we precisely estimated the sphere formation rate of SUM159 breast cancer cells to be 17.8% based on Day 4 images. The estimation was close to the ground truth of 17.6% on Day 14. The preliminary work demonstrates not only the feasibility to significantly accelerate tumorsphere assay but also a synergistic combination between single-cell analysis with machine learning, which can be applied to many other biomedical applications.
Collapse
Affiliation(s)
- Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States.,Forbes Institute for Cancer Discovery, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Zhixiong Zhang
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States.,Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd., Ann Arbor, Michigan 48109-2099, United States.,Center for Nanomedicine, Institute for Basic Science (IBS) and Graduate Program of Nano Biomedical Engineering (Nano BME), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
10
|
Abstract
Stem cells including cancer stem cells (CSC) divide symmetrically or asymmetrically. Usually symmetric cell division makes two daughter cells of the same fate, either as stem cells or more differentiated progenies; while asymmetric cell division (ACD) produces daughter cells of different fates. In this review, we first provide an overview of ACD, and then discuss more molecular details of ACD using the well-characterized Drosophila neuroblast system as an example. Aiming to explore the connections between cell heterogeneity in cancers and the critical need of ACD for self-renewal and generating cell diversity, we then examine how cell division symmetry control impacts common features associated with CSCs, including niche competition, cancer dormancy, drug resistance, epithelial-mesenchymal transition (EMT) and its reverse process mesenchymal-epithelial transition (MET), and cancer stem cell plasticity. As CSC may underlie resistance to therapy and cancer metastasis, understanding how cell division mode is selected and executed in these cells will provide possible strategies to target CSC.
Collapse
Affiliation(s)
- Sreemita Majumdar
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Song-Tao Liu
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
11
|
Koh EY, You JE, Jung SH, Kim PH. Biological Functions and Identification of Novel Biomarker Expressed on the Surface of Breast Cancer-Derived Cancer Stem Cells via Proteomic Analysis. Mol Cells 2020; 43:384-396. [PMID: 32235022 PMCID: PMC7191048 DOI: 10.14348/molcells.2020.2230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/09/2020] [Accepted: 01/28/2020] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is one of the most common life-threatening malignancies and the top cause of cancer deaths in women. Although many conventional therapies exist for its treatment, breast cancer still has many handicaps to overcome. Cancer stem cells (CSCs) are a well-known cause of tumor recurrences due to the ability of CSCs for self-renewal and differentiation into cell subpopulations, similar to stem cells. To fully treat breast cancer, a strategy for the treatment of both cancer cells and CSCs is required. However, current strategies for the eradication of CSCs are non-specific and have low efficacy. Therefore, surface biomarkers to selectively treat CSCs need to be developed. Here, 34 out of 641 surface biomarkers on CSCs were identified by proteomic analysis between the human breast adenocarcinoma cell line MCF-7 and MCF-7-derived CSCs. Among them, carcinoembryonic antigen-related cell adhesion molecules 6 (CEACAM6 or CD66c), a member of the CEA family, was selected as a novel biomarker on the CSC surface. This biomarker was then experimentally validated and evaluated for use as a CSC-specific marker. Its biological effects were assessed by treating breast cancer stem cells (BCSCs) with short hairpin (sh)-RNA under oxidative cellular conditions. This study is the first to evaluate the biological function of CD66c as a novel biomarker on the surface of CSCs. This marker is available as a moiety for use in the development of targeted therapeutic agents against CSCs.
Collapse
Affiliation(s)
- Eun-Young Koh
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea
| | - Ji-Eun You
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea
| | - Se-Hwa Jung
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea
| | - Pyung-Hwan Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea
| |
Collapse
|
12
|
Fu X, Griette Q, Magal P. A cell-cell repulsion model on a hyperbolic Keller-Segel equation. J Math Biol 2020; 80:2257-2300. [PMID: 32328703 DOI: 10.1007/s00285-020-01495-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/13/2020] [Indexed: 11/24/2022]
Abstract
In this work, we discuss a cell-cell repulsion model based on a hyperbolic Keller-Segel equation with two populations, which aims at describing the cell growth and dispersion in the co-culture experiment from the work of Pasquier et al. (Biol Direct 6(1):5, 2011). We introduce the notion of solution integrated along the characteristics, which allows us to prove the existence and uniqueness of solutions and the segregation property for the two species. From a numerical perspective, we also observe that our model admits a competitive exclusion principle which is different from the classical competitive exclusion principle for the corresponding ODE model. More importantly, our model shows the complexity of the short term (6 days) co-cultured cell distribution depending on the initial distribution of each species. Through numerical simulations, we show that the impact of the initial distribution on the proportion of each species in the final population lies in the initial number of cell clusters and that the final proportion of each species is not influenced by the precise distribution of the initial distribution. We also find that a fast dispersion rate gives a short-term advantage while the vital dynamics contributes to a long-term population advantage. When the initial condition for the two species is not segregated, the numerical simulations suggest that asymptotic segregation occurs when the dispersion coefficients are not equal for two populations.
Collapse
Affiliation(s)
- Xiaoming Fu
- IMB, UMR 5251, Univ. Bordeaux, 33400, Talence, France.,IMB, UMR 5251, CNRS, 33400, Talence, France
| | - Quentin Griette
- IMB, UMR 5251, Univ. Bordeaux, 33400, Talence, France.,IMB, UMR 5251, CNRS, 33400, Talence, France
| | - Pierre Magal
- IMB, UMR 5251, Univ. Bordeaux, 33400, Talence, France. .,IMB, UMR 5251, CNRS, 33400, Talence, France.
| |
Collapse
|
13
|
Moradian C, Rahbarizadeh F. Targeted Toxin Gene Therapy Of Breast Cancer Stem Cells Using CXCR1 Promoter And bFGF 5'UTR. Onco Targets Ther 2019; 12:8809-8820. [PMID: 31695436 PMCID: PMC6821057 DOI: 10.2147/ott.s221223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/03/2019] [Indexed: 12/26/2022] Open
Abstract
Background Breast cancer stem cells (BCSCs) are cells with a higher ability to metastasis and resistance to conventional treatments. They have a phenotype of (CD44high/CD24low) and the unlimited ability for proliferation. Development of strategies to target the BCSC population may lead to the establishment of more effective cancer therapies. Pseudomonas exotoxin A (PE) is a potent cytotoxic protein. CXCR1 promoter provides BCSC and HER2 specificity on transcription level. 5′UTR of the basic fibroblast growth factor-2 (bFGF 5ʹUTR) provides tumor specificity on translation level. Here, we utilized a mutant form of PE encoding DNA “PE38”, CXCR1 promoter and bFGF 5ʹUTR to target BCSCs. Methods The stemness of SK-BR-3, MDA-MB-231 and MCF10A cell lines were evaluated based on the expression of the CD44high/CD24low stem cell signature and the ability to form mammospheres. Then, the cell lines were transfected with constructs encoding luciferase/PE38 under the control of the CMV/CXCR1 promoter with or without bFGF 5′UTR. Luciferase protein expression was evaluated using dual-luciferase reporter assay. PE38 transcript expression was measured by real-time PCR, and the cytotoxic effect of PE38 protein expression was determined by MTT assay. Results The percentage of CD44high/CD24low population did not correlate to mammosphere forming efficiency (MFE). Given that the percentage of CD44 high/CD24 low is not a conclusive BCSC profile, we based our work on the mammosphere assay. However, in comparison with MCF10A, the two tumorigenic cell lines had higher MFE, probably due to their higher BCSC content. Reporter assay and real-time PCR results demonstrated that CXCR1 promoter combined with bFGF 5ʹUTR increased BCSC-specific gene expression. Meanwhile, tightly regulated expression of PE38 using these two gene regulatory elements resulted in high levels of cell death in the two tumorigenic cell lines while having little toxicity toward normal MCF10A. Conclusion Our data show that PE38, CXCR1 promoter and bFGF 5ʹUTR in combination can be considered as a promising tool for killer gene therapy of breast cancer.
Collapse
Affiliation(s)
- Cobra Moradian
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
14
|
Tsai MT, Huang BH, Yeh CC, Lei KF, Tsang NM. Non-Invasive Quantification of the Growth of Cancer Cell Colonies by a Portable Optical Coherence Tomography. MICROMACHINES 2019; 10:mi10010035. [PMID: 30621072 PMCID: PMC6356435 DOI: 10.3390/mi10010035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022]
Abstract
Investigation of tumor development is essential in cancer research. In the laboratory, living cell culture is a standard bio-technology for studying cellular response under tested conditions to predict in vivo cellular response. In particular, the colony formation assay has become a standard experiment for characterizing the tumor development in vitro. However, quantification of the growth of cell colonies under a microscope is difficult because they are suspended in a three-dimensional environment. Thus, optical coherence tomography (OCT) imaging was develop in this study to monitor the growth of cell colonies. Cancer cell line of Huh 7 was used and the cells were applied on a layer of agarose hydrogel, i.e., a non-adherent surface. Then, cell colonies were gradually formed on the surface. The OCT technique was used to scan the cell colonies every day to obtain quantitative data for describing their growth. The results revealed the average volume increased with time due to the formation of cell colonies day-by-day. Additionally, the distribution of cell colony volume was analyzed to show the detailed information of the growth of the cell colonies. In summary, the OCT provides a non-invasive quantification technique for monitoring the growth of the cell colonies. From the OCT images, objective and precise information is obtained for higher prediction of the in vivo tumor development.
Collapse
Affiliation(s)
- Meng-Tsan Tsai
- Department of Electrical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
| | - Bo-Huei Huang
- Department of Electrical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Chun-Chih Yeh
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Kin Fong Lei
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
| | - Ngan-Ming Tsang
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
- Department of Traditional Chinese Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|