1
|
Tanaka T, Hirai S, Manabe H, Endo K, Shimbo H, Nishito Y, Horiuchi J, Yoshitane H, Okado H. Minocycline prevents early age-related cognitive decline in a mouse model of intellectual disability caused by ZBTB18/RP58 haploinsufficiency. J Neuroinflammation 2024; 21:260. [PMID: 39396010 PMCID: PMC11471036 DOI: 10.1186/s12974-024-03217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/01/2024] [Indexed: 10/14/2024] Open
Abstract
Haploinsufficiency of the transcriptional repressor ZBTB18/RP58 is associated with intellectual disability. However, the mechanisms causing this disability are unknown, and preventative measures and treatments are not available. Here, we assessed multiple behaviors in Zbtb18/Rp58 heterozygous-knockout mice, and examined local field potentials, DNA fragmentation, mitochondrial morphology, and performed histochemical and transcriptome analyses in the hippocampus to evaluate chronic inflammation. In wild-type mice, object location memory was present at a similar level at 2 and 4-5 months of age, and became impaired at 12-18 months. In contrast, Zbtb18/Rp58 heterozygous-knockout mice displayed early onset impairments in object location memory by 4-5 months of age. These mice also exhibited earlier accumulation of DNA and mitochondrial damage, and activated microglia in the dentate gyrus, which are associated with defective DNA repair. Notably, chronic minocycline therapy, which has neuroprotective and anti-inflammatory effects, attenuated age-related phenotypes, including accumulation of DNA damage, increased microglial activation, and impairment of object location memory. Our results suggest that Zbtb18/Rp58 activity is required for DNA repair and its reduction results in DNA and mitochondrial damage, increased activation of microglia, and inflammation, leading to accelerated declines in cognitive functions. Minocycline has potential as a therapeutic agent for the treatment of ZBTB18/RP58 haploinsufficiency-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Tomoko Tanaka
- Department of Psychiatry and Behavioral Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
- Department of Basic Medical Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| | - Shinobu Hirai
- Department of Psychiatry and Behavioral Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hiroyuki Manabe
- Department of Neurophysiology, Nara Medical University, Nara, 634-8521, Japan
| | - Kentaro Endo
- Center for Medical Research Cooperation, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hiroko Shimbo
- Department of Psychiatry and Behavioral Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Yasumasa Nishito
- Center for Medical Research Cooperation, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Junjiro Horiuchi
- Center for Medical Research Cooperation, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hikari Yoshitane
- Department of Basic Medical Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Haruo Okado
- Department of Psychiatry and Behavioral Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| |
Collapse
|
2
|
Zhang X, Ge L, Jin G, Liu Y, Yu Q, Chen W, Chen L, Dong T, Miyagishima KJ, Shen J, Yang J, Lv G, Xu Y, Yang Q, Ye L, Yi S, Li H, Zhang Q, Chen G, Liu W, Yang Y, Li W, Ou J. Cold-induced FOXO1 nuclear transport aids cold survival and tissue storage. Nat Commun 2024; 15:2859. [PMID: 38570500 PMCID: PMC10991392 DOI: 10.1038/s41467-024-47095-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
Cold-induced injuries severely limit opportunities and outcomes of hypothermic therapies and organ preservation, calling for better understanding of cold adaptation. Here, by surveying cold-altered chromatin accessibility and integrated CUT&Tag/RNA-seq analyses in human stem cells, we reveal forkhead box O1 (FOXO1) as a key transcription factor for autonomous cold adaptation. Accordingly, we find a nonconventional, temperature-sensitive FOXO1 transport mechanism involving the nuclear pore complex protein RANBP2, SUMO-modification of transporter proteins Importin-7 and Exportin-1, and a SUMO-interacting motif on FOXO1. Our conclusions are supported by cold survival experiments with human cell models and zebrafish larvae. Promoting FOXO1 nuclear entry by the Exportin-1 inhibitor KPT-330 enhances cold tolerance in pre-diabetic obese mice, and greatly prolongs the shelf-life of human and mouse pancreatic tissues and islets. Transplantation of mouse islets cold-stored for 14 days reestablishes normoglycemia in diabetic mice. Our findings uncover a regulatory network and potential therapeutic targets to boost spontaneous cold adaptation.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Cancer Biology, Dana-Farber Cancer Institute; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Lihao Ge
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Guanghui Jin
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yasong Liu
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
| | - Qingfen Yu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weizhao Chen
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liang Chen
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Dong
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kiyoharu J Miyagishima
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Juan Shen
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong province engineering laboratory for transplantation medicine, Guangzhou, China
| | - Jinghong Yang
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guo Lv
- Guangdong province engineering laboratory for transplantation medicine, Guangzhou, China
| | - Yan Xu
- Cell-gene Therapy Translational Medicine Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qing Yang
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
| | - Linsen Ye
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuhong Yi
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
| | - Hua Li
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong province engineering laboratory for transplantation medicine, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong province engineering laboratory for transplantation medicine, Guangzhou, China
| | - Wei Liu
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Guangdong province engineering laboratory for transplantation medicine, Guangzhou, China.
| | - Yang Yang
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China.
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Guangdong province engineering laboratory for transplantation medicine, Guangzhou, China.
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jingxing Ou
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China.
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Guangdong province engineering laboratory for transplantation medicine, Guangzhou, China.
| |
Collapse
|
3
|
Guo X, Peng K, He Y, Xue L. Mechanistic regulation of FOXO transcription factors in the nucleus. Biochim Biophys Acta Rev Cancer 2024; 1879:189083. [PMID: 38309444 DOI: 10.1016/j.bbcan.2024.189083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
FOXO proteins represent evolutionarily conserved transcription factors (TFs) that play critical roles in responding to various physiological signals or pathological stimuli, either through transcription-dependent or -independent mechanisms. Dysfunction of these proteins have been implicated in numerous diseases, including cancer. Although the regulation of FOXO TFs shuttling between the cytoplasm and the nucleus has been extensively studied and reviewed, there's still a lack of a comprehensive review focusing on the intricate interactions between FOXO, DNA, and cofactors in the regulation of gene expression. In this review, we aim to summarize recent advances and provide a detailed understanding of the mechanism underlying FOXO proteins binding to target DNA. Additionally, we will discuss the challenges associated with pharmacological approaches in modulating FOXO function, and explore the dynamic association between TF, DNA, and RNA on chromatin. This review will contribute to a better understanding of mechanistic regulations of eukaryotic TFs within the nucleus.
Collapse
Affiliation(s)
- Xiaowei Guo
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China.
| | - Kai Peng
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yanwen He
- Changsha Stomatological Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lei Xue
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
4
|
Cui X, Zhong H, Wu Y, Zhang Z, Zhang X, Li L, He J, Chen C, Wu Z, Ji C. The secreted peptide BATSP1 promotes thermogenesis in adipocytes. Cell Mol Life Sci 2023; 80:377. [PMID: 38010450 PMCID: PMC10682272 DOI: 10.1007/s00018-023-05027-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
Although brown adipose tissue (BAT) has historically been viewed as a major site for energy dissipation through thermogenesis, its endocrine function has been increasingly recognized. However, the circulating factors in BAT that play a key role in controlling systemic energy homeostasis remain largely unexplored. Here, we performed a peptidomic analysis to profile the extracellular peptides released from human brown adipocytes upon exposure to thermogenic stimuli. Specifically, we identified a secreted peptide that modulates adipocyte thermogenesis in a cell-autonomous manner, and we named it BATSP1. BATSP1 promoted BAT thermogenesis and induced browning of white adipose tissue in vivo, leading to increased energy expenditure under cold stress. BATSP1 treatment in mice prevented high-fat diet-induced obesity and improved glucose tolerance and insulin resistance. Mechanistically, BATSP1 facilitated the nucleocytoplasmic shuttling of forkhead transcription factor 1 (FOXO1) and released its transcriptional inhibition of uncoupling protein 1 (UCP1). Overall, we provide a comprehensive analysis of the human brown adipocyte extracellular peptidome following acute forskolin (FSK) stimulation and identify BATSP1 as a novel regulator of thermogenesis that may offer a potential approach for obesity treatment.
Collapse
Affiliation(s)
- Xianwei Cui
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Hong Zhong
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Yangyang Wu
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Zhuo Zhang
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Xiaoxiao Zhang
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Lu Li
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Jin He
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Chen Chen
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Zhenggang Wu
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Chenbo Ji
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China.
| |
Collapse
|
5
|
Brandão BB, Poojari A, Rabiee A. Thermogenic Fat: Development, Physiological Function, and Therapeutic Potential. Int J Mol Sci 2021; 22:5906. [PMID: 34072788 PMCID: PMC8198523 DOI: 10.3390/ijms22115906] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The concerning worldwide increase of obesity and chronic metabolic diseases, such as T2D, dyslipidemia, and cardiovascular disease, motivates further investigations into preventive and alternative therapeutic approaches. Over the past decade, there has been growing evidence that the formation and activation of thermogenic adipocytes (brown and beige) may serve as therapy to treat obesity and its associated diseases owing to its capacity to increase energy expenditure and to modulate circulating lipids and glucose levels. Thus, understanding the molecular mechanism of brown and beige adipocytes formation and activation will facilitate the development of strategies to combat metabolic disorders. Here, we provide a comprehensive overview of pathways and players involved in the development of brown and beige fat, as well as the role of thermogenic adipocytes in energy homeostasis and metabolism. Furthermore, we discuss the alterations in brown and beige adipose tissue function during obesity and explore the therapeutic potential of thermogenic activation to treat metabolic syndrome.
Collapse
Affiliation(s)
- Bruna B. Brandão
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Ankita Poojari
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA;
| | - Atefeh Rabiee
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA;
| |
Collapse
|
6
|
Nanduri R. Epigenetic Regulators of White Adipocyte Browning. EPIGENOMES 2021; 5:3. [PMID: 34968255 PMCID: PMC8594687 DOI: 10.3390/epigenomes5010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/16/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
Adipocytes play an essential role in maintaining energy homeostasis in mammals. The primary function of white adipose tissue (WAT) is to store energy; for brown adipose tissue (BAT), primary function is to release fats in the form of heat. Dysfunctional or excess WAT can induce metabolic disorders such as dyslipidemia, obesity, and diabetes. Preadipocytes or adipocytes from WAT possess sufficient plasticity as they can transdifferentiate into brown-like beige adipocytes. Studies in both humans and rodents showed that brown and beige adipocytes could improve metabolic health and protect from metabolic disorders. Brown fat requires activation via exposure to cold or β-adrenergic receptor (β-AR) agonists to protect from hypothermia. Considering the fact that the usage of β-AR agonists is still in question with their associated side effects, selective induction of WAT browning is therapeutically important instead of activating of BAT. Hence, a better understanding of the molecular mechanisms governing white adipocyte browning is vital. At the same time, it is also essential to understand the factors that define white adipocyte identity and inhibit white adipocyte browning. This literature review is a comprehensive and focused update on the epigenetic regulators crucial for differentiation and browning of white adipocytes.
Collapse
Affiliation(s)
- Ravikanth Nanduri
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Okado H. Nervous system regulated by POZ domain Krüppel-like zinc finger (POK) family transcription repressor RP58. Br J Pharmacol 2020; 178:813-826. [PMID: 32959890 DOI: 10.1111/bph.15265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/07/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022] Open
Abstract
The POZ domain Krüppel-like zinc finger transcription repressor (POK family) contains many important molecules, including RP58, Bcl6 and PLZF. They function as transcription repressors via chromatin remodelling and histone deacetylation and are known to be involved in the development and tumourigenesis of various organs. Furthermore, they are important in the formation and function of the nervous system. This review summarizes the role of the POK family transcription repressors in the nervous system. We particularly targeted Rp58 (also known as Znf238, Znp238 and Zbtb18), a sequence-specific transcriptional repressor that is strongly expressed in developing glutamatergic projection neurons in the cerebral cortex. It regulates various physiological processes, including neuronal production, neuronal migration and neuronal maturation. Human studies suggest that reduced RP58 levels are involved in cognitive function impairment and brain tumour formation. This review particularly focuses on the mechanisms underlying RP58-mediated neuronal development and function. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.4/issuetoc.
Collapse
Affiliation(s)
- Haruo Okado
- Laboratory of Neural Development, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
8
|
Wang G. Body Mass Dynamics Is Determined by the Metabolic Ohm's Law and Adipocyte-Autonomous Fat Mass Homeostasis. iScience 2020; 23:101176. [PMID: 32480131 PMCID: PMC7262567 DOI: 10.1016/j.isci.2020.101176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/05/2020] [Accepted: 05/14/2020] [Indexed: 11/06/2022] Open
Abstract
An ODE model integrating metabolic mechanisms with clinical data reveals an Ohm's law governing lifetime body mass dynamics, where fat and lean tissues are analogous to a parallel nonlinear capacitor and resistor, respectively. The law unexpectedly decouples weight stability (a cell-autonomous property of adipocytes) and weight change (a parabolic trajectory governed by Ohm's law). In middle age, insulin resistance causes fat accumulation to avoid excessive body shrinkage in old age. Moderate middle-age spread is thus natural, not an anomaly caused by hypothalamic defects, as proposed by lipostatic theory. These discoveries provide valuable insights into health care practices such as weight control and health assessment, explain certain observed phenomena, make testable predictions, and may help to resolve major conundrums in the field. The ODE model, which is more comprehensive than Ohm's law, is useful to study metabolism at the detailed microscopic levels.
Collapse
Affiliation(s)
- Guanyu Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Computational Science and Material Design, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Cell Microenviroment and Disease Research, Shenzhen, Guangdong 518055, China; Shenzhen Key Laboratory of Cell Microenviroment, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
9
|
Adipose Tissue and FoxO1: Bridging Physiology and Mechanisms. Cells 2020; 9:cells9040849. [PMID: 32244542 PMCID: PMC7226803 DOI: 10.3390/cells9040849] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 12/22/2022] Open
Abstract
Forkhead box O class proteins (FoxOs) are expressed nearly in all tissues and are involved in different functions such as energy metabolism, redox homeostasis, differentiation, and cell cycle arrest. The plasticity of FoxOs is demonstrated by post-translational modifications that determine diverse levels of transcriptional regulations also controlled by their subcellular localization. Among the different members of the FoxO family, we will focus on FoxO1 in adipose tissue, where it is abundantly expressed and is involved in differentiation and transdifferentiation processes. The capability of FoxO1 to respond differently in dependence of adipose tissue subtype underlines the specific involvement of the transcription factor in energy metabolism and the “browning” process of adipocytes. FoxO1 can localize to nuclear, cytoplasm, and mitochondrial compartments of adipocytes responding to different availability of nutrients and source of reactive oxygen species (ROS). Specifically, fasted state produced-ROS enhance the nuclear activity of FoxO1, triggering the transcription of lipid catabolism and antioxidant response genes. The enhancement of lipid catabolism, in combination with ROS buffering, allows systemic energetic homeostasis and metabolic adaptation of white/beige adipocytes. On the contrary, a fed state induces FoxO1 to accumulate in the cytoplasm, but also in the mitochondria where it affects mitochondrial DNA gene expression. The importance of ROS-mediated signaling in FoxO1 subcellular localization and retrograde communication will be discussed, highlighting key aspects of FoxO1 multifaceted regulation in adipocytes.
Collapse
|
10
|
Tissue-Specific Metabolic Regulation of FOXO-Binding Protein: FOXO Does Not Act Alone. Cells 2020; 9:cells9030702. [PMID: 32182991 PMCID: PMC7140670 DOI: 10.3390/cells9030702] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022] Open
Abstract
The transcription factor forkhead box (FOXO) controls important biological responses, including proliferation, apoptosis, differentiation, metabolism, and oxidative stress resistance. The transcriptional activity of FOXO is tightly regulated in a variety of cellular processes. FOXO can convert the external stimuli of insulin, growth factors, nutrients, cytokines, and oxidative stress into cell-specific biological responses by regulating the transcriptional activity of target genes. However, how a single transcription factor regulates a large set of target genes in various tissues in response to a variety of external stimuli remains to be clarified. Evidence indicates that FOXO-binding proteins synergistically function to achieve tightly controlled processes. Here, we review the elaborate mechanism of FOXO-binding proteins, focusing on adipogenesis, glucose homeostasis, and other metabolic regulations in order to deepen our understanding and to identify a novel therapeutic target for the prevention and treatment of metabolic disorders.
Collapse
|
11
|
The adrenergic-induced ERK3 pathway drives lipolysis and suppresses energy dissipation. Genes Dev 2020; 34:495-510. [PMID: 32139423 PMCID: PMC7111262 DOI: 10.1101/gad.333617.119] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
In this study, El-Merahbi et al. investigated new regulators of lipolysis, and using a high-throughput screen identified the extracellular-regulated kinase 3 (ERK3) in lipolysis regulation. They identified a downstream target of the ERK3/MK5 pathway, the transcription factor FOXO1, which promotes expression of the major lipolytic enzyme ATGL, and provide evidence that targeted deletion of ERK3 in mouse adipocytes inhibits lipolysis. Obesity-induced diabetes affects >400 million people worldwide. Uncontrolled lipolysis (free fatty acid release from adipocytes) can contribute to diabetes and obesity. To identify future therapeutic avenues targeting this pathway, we performed a high-throughput screen and identified the extracellular-regulated kinase 3 (ERK3) as a hit. We demonstrated that β-adrenergic stimulation stabilizes ERK3, leading to the formation of a complex with the cofactor MAP kinase-activated protein kinase 5 (MK5), thereby driving lipolysis. Mechanistically, we identified a downstream target of the ERK3/MK5 pathway, the transcription factor FOXO1, which promotes the expression of the major lipolytic enzyme ATGL. Finally, we provide evidence that targeted deletion of ERK3 in mouse adipocytes inhibits lipolysis, but elevates energy dissipation, promoting lean phenotype and ameliorating diabetes. Thus, ERK3/MK5 represents a previously unrecognized signaling axis in adipose tissue and an attractive target for future therapies aiming to combat obesity-induced diabetes.
Collapse
|
12
|
A Review of FoxO1-Regulated Metabolic Diseases and Related Drug Discoveries. Cells 2020; 9:cells9010184. [PMID: 31936903 PMCID: PMC7016779 DOI: 10.3390/cells9010184] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
FoxO1 is a conserved transcription factor involved in energy metabolism. It is tightly regulated by modifications on its mRNA and protein and responds to environmental nutrient signals. FoxO1 controls the transcription of downstream genes mediating metabolic regulation. Dysfunction of FoxO1 pathways results in several metabolic diseases, including diabetes, obesity, non-alcoholic fatty liver disease, and atherosclerosis. Here, we summarize the mechanism of FoxO1 regulation behind these diseases and FoxO1-related drug discoveries.
Collapse
|
13
|
Kikuchi T, Nakae J, Kawano Y, Watanabe N, Onodera M, Itoh H. Foxo in T Cells Regulates Thermogenic Program through Ccr4/Ccl22 Axis. iScience 2019; 22:81-96. [PMID: 31756626 PMCID: PMC6880116 DOI: 10.1016/j.isci.2019.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/21/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022] Open
Abstract
Crosstalk between immunity and the thermogenic program has provided insight into metabolic energy regulation. Here, we generated thermogenic program-accelerating mice (T-QKO), in which Foxo1 is knockout and Foxo3 is hetero-knockout in CD4+ T cells. T-QKO exhibit lean phenotype under HFD due to increased energy expenditure. Cold exposure significantly increased expression of the thermogenic genes (Ppargc1a and Ucp1), Th2 cytokines (Il4 and Il13), and Th2 marker gene (Gata3) in subcutaneous adipose tissue (SC) of T-QKO. Furthermore, Ccr4 expression was significantly increased in Th2 cells of T-QKO, and cold exposure induced Ccl22 expression in SC, leading to increased accumulation of Th2 cell population in SC of T-QKO. These data reveal a mechanism by which cold exposure induces selective recruitment of Th2 cells into SC, leading to regulation of energy expenditure by generating beige adipocyte and suggest that inhibition of Foxo in T cells may support a strategy to prevent and treat obesity. T-QKO increases Gata3 and Ccr4 expression in CD4+ T cells Cold exposure increases Ccl22 expression in subcutaneous adipose tissue Cold exposure increases SC-specific recruitment of Th2 cells in T-QKO Recruited Th2 cells secrete IL-4 and IL-13 and increase beiging of adipocytes
Collapse
Affiliation(s)
- Tetsuhiro Kikuchi
- Navigation Medicine of Kidney and Metabolism, Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Jun Nakae
- Navigation Medicine of Kidney and Metabolism, Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Physiology, International University of Health and Welfare School of Medicine, Narita 286-8686, Japan.
| | - Yoshinaga Kawano
- Navigation Medicine of Kidney and Metabolism, Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Nobuyuki Watanabe
- Department of Human Genetics, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Masafumi Onodera
- Department of Human Genetics, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Hiroshi Itoh
- Navigation Medicine of Kidney and Metabolism, Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|