1
|
Yang J, Tan F, Chen Y, Li X, Yuan C. The emerging role of long non-coding RNA SOX2-OT in cancers and non-malignant diseases. J Physiol Biochem 2025; 81:57-83. [PMID: 39702742 DOI: 10.1007/s13105-024-01059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 11/02/2024] [Indexed: 12/21/2024]
Abstract
SOX2 overlapping transcript (SOX2-OT) is a long non-coding RNA located at chromosome 3q26.33 in humans. Convincing data confirm that SOX2-OT is evolutionarily conserved and plays a significant role in various malignant and non-malignant diseases. In most cancers, the upregulation of SOX2-OT acts as an oncogenic factor, strongly correlating with tumor risk, adverse clinicopathological features, and poor prognosis. Mechanistically, SOX2-OT is regulated by seven transcription factors and influences cellular behavior by modulating SOX2 expression, competitively binding 20 types of miRNAs, stabilizing protein expression, or promoting protein ubiquitination. It also participates in epigenetic modifications and activates multiple signaling pathways to regulate cancer cell proliferation, apoptosis, migration, invasion, autophagy, immune evasion, and resistance to chemotherapy/targeted therapies. Additionally, SOX2-OT triggers apoptosis, oxidative stress, and inflammatory responses, contributing to neurodevelopmental disorders, cardiovascular diseases, and diabetes-related conditions. Genetic polymorphisms of SOX2-OT have also been linked to breast cancer, gastric cancer, recurrent miscarriage, sepsis, and eating disorders in patients with bipolar disorder. This review provides an overview of recent research progress on SOX2-OT in human diseases, highlights its substantial potential as a prognostic and diagnostic biomarker, and explores its future clinical applications.
Collapse
Affiliation(s)
- Jingjie Yang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Fangshun Tan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yaohui Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Xiaolan Li
- The Second People's Hospital of China Three Gorges University, Yichang, 443002, China.
- The Second People's Hospital of Yichang, Hubei, China.
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
2
|
Liu Y, Lu T, Li R, Xu R, Baranenko D, Yang L, Xiao D. Discovery of Jaspamycin from marine-derived natural product based on MTA3 to inhibit hepatocellular carcinoma progression. Sci Rep 2024; 14:25294. [PMID: 39455636 PMCID: PMC11511890 DOI: 10.1038/s41598-024-75205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Studies have underscored the pivotal role of metastasis-associated protein 3 (MTA3) as a cancer regulator, yet its potential as a drug target across cancers necessitates comprehensive evaluation. In this study, we analyzed MTA3 expression profiles to ascertain its diagnostic and prognostic value in pan-cancers, probing associations with genetic variations and immunological characteristics. Notably, liver hepatocellular carcinoma (LIHC) exhibited the most significant correlation with MTA3. By transfection of siRNA, interference of MTA3 affected HepG2 and Hepa1-6 cell viability and migration. Through drug screening and drug-likeness evaluation among marine-derived natural products, Jaspamycin was identified as a potential hepatocellular carcinoma treatment by targeting MTA3. By applying in vitro and in vivo experiment, the inhibitory effects of Jaspamycin on hepatocellular carcinoma viability, migration, and tumor progression were observed. To assess the potential of MTA3 as an anticancer drug target, MTA3 overexpression plasmid was transfected together with Jaspamycin treatment, and observed that MTA3 upregulation counteracted the inhibitory effects of Jaspamycin on hepatocarcinoma cell proliferation and migration, underscoring the efficacy of MTA3 as a drug target in hepatocellular carcinoma drug screening. This study highlights the clinical significance of MTA3 in pan-cancer, particularly in hepatocellular carcinoma. Additionally, it identifies Jaspamycin, a marine-derived compound with promising pharmacological properties, as an effective inhibitor of MTA3 activity, suggesting its potential for hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Yihan Liu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150001, China
| | - Tong Lu
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Runze Li
- National and Local Joint Engineering Laboratory for Synthesis Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Rui Xu
- Cancer Hospital, Shenzhen Hospital, National Cancer Center, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, Guangdong, China
| | - Denis Baranenko
- School of Life Sciences, Faculty of Ecotechnologies, ITMO University, St. Petersburg, 197101, Russia
| | - Lida Yang
- Heilongjiang Nursing Collage, Harbin, Heilongjiang, 150086, China
| | - Dan Xiao
- National and Local Joint Engineering Laboratory for Synthesis Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan, 450007, China.
- School of Medicine and Health, Harbin Institute of Technology, No. 92, Xidazhi Street, Nangang District, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
3
|
Zhang J, Wang Y, Zhang J, Wang X, Liu J, Huo M, Hu T, Ma T, Zhang D, Li Y, Guo C, Yang Y, Zhang M, Yuan B, Qin H, Teng X, Gao T, Hao X, Yu H, Huang W, Xu B, Wang Y. The feedback loop between MTA1 and MTA3/TRIM21 modulates stemness of breast cancer in response to estrogen. Cell Death Dis 2024; 15:597. [PMID: 39154024 PMCID: PMC11330498 DOI: 10.1038/s41419-024-06942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
The metastasis-associated protein (MTA) family plays a crucial role in the development of breast cancer, a common malignancy with a high incidence rate among women. However, the mechanism by which each member of the MTA family contributes to breast cancer progression is poorly understood. In this study, we aimed to investigate the roles of MTA1, MTA3, and tripartite motif-containing 21 (TRIM21) in the proliferation, invasion, epithelial-mesenchymal transition (EMT), and stem cell-like properties of breast cancer cells in vivo and in vitro. The molecular mechanisms of the feedback loop between MTA1 and MTA3/TRIM21 regulated by estrogen were explored using Chromatin immunoprecipitation (ChIP), luciferase reporter, immunoprecipitation (IP), and ubiquitination assays. These findings demonstrated that MTA1 acts as a driver to promote the progression of breast cancer by repressing the transcription of tumor suppressor genes, including TRIM21 and MTA3. Conversely, MTA3 inhibited MTA1 transcription and TRIM21 regulated MTA1 protein stability in breast cancer. Estrogen disrupted the balance between MTA1 and MTA3, as well as between MTA1 and TRIM21, thereby affecting stemness and the EMT processes in breast cancer. These findings suggest that MTA1 plays a vital role in stem cell fate and the hierarchical regulatory network of EMT through negative feedback loops with MTA3 or TRIM21 in response to estrogen, supporting MTA1, MTA3, and TRIM21 as potential prognostic biomarkers and MTA1 as a treatment target for future breast cancer therapies.
Collapse
Affiliation(s)
- Jingyao Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinuo Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaxiang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miaomiao Huo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Hu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianyu Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Die Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chang Guo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunkai Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baowen Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Qin
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Teng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Tianyang Gao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xinhui Hao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hefen Yu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yan Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Li J, Deng Z, Liu Y, Jin J, Xie C, Gan J. Prognostic and immunological significance of metastasis-associated protein 3 in patients with thymic epithelial tumors. Discov Oncol 2024; 15:216. [PMID: 38852126 PMCID: PMC11162987 DOI: 10.1007/s12672-024-01066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors have shown promising anticancer activity and have recently been proposed as a therapy for thymic epithelial tumors (TETs); however, this treatment is only effective for a subgroup of TET patients. Thus, this study aims to identify the potential genes implicated in the regulation of cancer immunity in TETs. METHODS The TETs RNA-seq and clinical data were obtained from The Cancer Genome Atlas (TCGA) database. The clinical significance of the tumor microenvironment (TME) in TETs was evaluated. Weighted gene coexpression network analysis (WGCNA) was used to identify the immune response-related hub genes. The expression of metastasis-associated protein 3 (MTA3) in TETs was investigated in public datasets and a patient cohort. Kaplan‒Meier curves were generated to analyze the prognostic value of various factors. The Tumor Immune Estimation Resource (TIMER2.0) was used to estimate the relevance of MTA3 to immune cell infiltration. Gene set enrichment analysis (GSEA) and pathway enrichment analysis were applied to explore the MTA3-related pathways. RESULTS The TME was found to be clinically significant in TETs. Moreover, MTA3 was identified as a key gene associated with the immune score, and lower MTA3 expression was linked to poor TME and reduced cytotoxic activity in TETs. Furthermore, MTA3 was found to be deregulated in TETs, predictive of poor prognosis. MTA3 was also significantly associated with the infiltration levels of various immune cell types and highly correlated with their corresponding markers. Notably, MTA3 was positively associated with various immune response pathways. CONCLUSION MTA3 is clinically significant in TETs and correlated with immune cell infiltration. Thus, MTA3 might be a biomarker for predicting the prognosis and immune status of TET patients.
Collapse
Affiliation(s)
- Jinping Li
- Department of Histology and Embryology, School of Preclinical Medicine, Guilin Medical University, Guilin, China
| | - Zhenyan Deng
- Department of Clinical Laboratory, Guilin Hospital of the Second Xiangya Hospital CSU, Guilin, China
| | - Yu Liu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, China
- Clinical Research Center, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Jiamin Jin
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, China
| | - Chichu Xie
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, China
| | - Jinfeng Gan
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China.
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, China.
| |
Collapse
|
5
|
Wang B, Shen XY, Pan LY, Li Z, Chen CJ, Yao YS, Tang DF, Gao W. The HDAC2-MTA3 interaction induces nonsmall cell lung cancer cell migration and invasion by targeting c-Myc and cyclin D1. Mol Carcinog 2023; 62:1630-1644. [PMID: 37401867 DOI: 10.1002/mc.23604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023]
Abstract
Genome-wide association studies have identified numerous single-nucleotide polymorphisms (SNPs) associated with lung cancer; however, the functions of histone deacetylase 2 (HDAC2) rs13213007 and HDAC2 in nonsmall cell lung cancer (NSCLC) remain unclear. Here we identified HDAC2 rs13213007 as a risk SNP and showed that HDAC2 was upregulated in both peripheral blood mononuclear cells (PBMCs) and NSCLC tissues with the rs13213007 A/A genotype compared with those with the rs13213007 G/G or G/A genotype. Patient clinical data indicated strong associations between rs13213007 genotype and N classification. Immunohistochemical staining confirmed that higher expression of HDAC2 was associated with NSCLC progression. Furthermore, we generated 293T cells with the rs13213007 A/A genotype using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 gene editing. Chromatin immunoprecipitation sequencing followed by motif analysis showed that HDAC2 can bind to c-Myc in rs13213007 A/A 293T cells. Cell Counting Kit-8, colony formation, wound-healing, and Transwell assays revealed that HDAC2 upregulates c-Myc and cyclin D1 expression and promotes NSCLC cell proliferation, migration, and invasion. Co-immunoprecipitation, quantitative reverse transcription-polymerase chain reaction, and western blot analysis assays showed that MTA3 interacts with HDAC2, decreases HDAC2 expression, and rescues the migration and invasion abilities of NSCLC cells. Taken together, these findings identify HDAC2 as a potential therapeutic biomarker in NSCLC.
Collapse
Affiliation(s)
- Bin Wang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Thoracic Surgery, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Xiao-Yong Shen
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Thoracic Surgery, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Lin-Yue Pan
- Department of Respiration, The Affiliated Zhongshan Hospital of Fudan University, Shanghai, China
| | - Zheng Li
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Thoracic Surgery, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Chun-Ji Chen
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Thoracic Surgery, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Yuan-Shan Yao
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Thoracic Surgery, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Dong-Fang Tang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Thoracic Surgery, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Wen Gao
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Thoracic Surgery, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| |
Collapse
|
6
|
Yuan S, Chen YC, Tsai CH, Chen HW, Shieh GS. Feature selection translates drug response predictors from cell lines to patients. Front Genet 2023; 14:1217414. [PMID: 37519889 PMCID: PMC10382684 DOI: 10.3389/fgene.2023.1217414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Targeted therapies and chemotherapies are prevalent in cancer treatment. Identification of predictive markers to stratify cancer patients who will respond to these therapies remains challenging because patient drug response data are limited. As large amounts of drug response data have been generated by cell lines, methods to efficiently translate cell-line-trained predictors to human tumors will be useful in clinical practice. Here, we propose versatile feature selection procedures that can be combined with any classifier. For demonstration, we combined the feature selection procedures with a (linear) logit model and a (non-linear) K-nearest neighbor and trained these on cell lines to result in LogitDA and KNNDA, respectively. We show that LogitDA/KNNDA significantly outperforms existing methods, e.g., a logistic model and a deep learning method trained by thousands of genes, in prediction AUC (0.70-1.00 for seven of the ten drugs tested) and is interpretable. This may be due to the fact that sample sizes are often limited in the area of drug response prediction. We further derive a novel adjustment on the prediction cutoff for LogitDA to yield a prediction accuracy of 0.70-0.93 for seven drugs, including erlotinib and cetuximab, whose pathways relevant to anti-cancer therapies are also uncovered. These results indicate that our methods can efficiently translate cell-line-trained predictors into tumors.
Collapse
Affiliation(s)
- Shinsheng Yuan
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Yen-Chou Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Chi-Hsuan Tsai
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Huei-Wen Chen
- College of Medicine, Graduate Institute of Toxicology, National Taiwan University, Taipei, Taiwan
| | - Grace S. Shieh
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
- Data Science Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Qi H, Wu F, Wang H. Function of TRPC1 in modulating hepatocellular carcinoma progression. Med Oncol 2023; 40:97. [PMID: 36797544 DOI: 10.1007/s12032-023-01964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023]
Abstract
The liver is the main organ of metabolism in the human body, and it is easy to suffer from hepatitis, cirrhosis, liver cancer, and other diseases, the most serious of which is liver cancer. Worldwide, liver cancer is the most common and deadly malignant tumor, the third leading cause of cancer death in the world. Based on TCGA and ICGC databases, our research discovered the important role of TRPC1 in liver cancer through bioinformatics. The results showed that TRPC1 was over-expressed in hepatocellular carcinoma, and the higher the expression level of TRPC1, the worse the OS and the lower the survival rate. TRPC1 was a risk factor affecting the overall survival probability of hepatocellular carcinoma patients. By analyzing the function of the TRP family in liver cancer, TRPC1 might promote the occurrence of liver cancer by up-regulating common signal pathways in tumors such as tumor proliferation signature, and down-regulating important metabolic reactions such as retinol metabolism. In addition, TRPC1 could promote the development of liver cancer by up-regulating the expression of ABI2, MAPRE1, YEATS2, MTA3, TMEM237, MTMR2, CCDC6, AC069544.2, and NCBP2 genes. These results illustrate that TRPC1 is very valuable in the study of liver cancer.
Collapse
Affiliation(s)
- Huimin Qi
- School of Basic Medicine, Weifang Medical University, Weifang, 261053, China
| | - Fengming Wu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
8
|
Polverino F, Mirra D, Yang CX, Esposito R, Spaziano G, Rojas-Quintero J, Sgambato M, Piegari E, Cozzolino A, Cione E, Gallelli L, Capuozzo A, Santoriello C, Berrino L, de- Torres JP, Hackett TL, Polverino M, D’Agostino B. Similar programmed death ligand 1 (PD-L1) expression profile in patients with mild COPD and lung cancer. Sci Rep 2022; 12:22402. [PMID: 36575294 PMCID: PMC9792927 DOI: 10.1038/s41598-022-26650-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Programmed Death Ligand 1 (PD-L1) is crucial in regulating the immunological tolerance in non-small cell lung cancer (NSCLC). Alveolar macrophage (AM)-derived PD-L1 binds to its receptor, PD-1, on surveilling lymphocytes, leading to lymphocyte exhaustion. Increased PD-L1 expression is associated with cigarette smoke (CS)-exposure. However, the PD-L1 role in CS-associated lung diseases associated with NSCLC, such as chronic obstructive pulmonary disease (COPD), is still unclear. In two different cohorts of ever smokers with COPD or NSCLC, and ever and never smoker controls, we evaluated PD-L1 expression: (1) via cutting-edge digital spatial proteomic and transcriptomic profiling (Geomx) of formalin-fixed paraffin-embedded (FFPE) lung tissue sections (n = 19); and (2) via triple immunofluorescence staining of bronchoalveolar lavage (BAL) AMs (n = 83). PD-L1 mRNA expression was also quantified in BAL AMs exposed to CS extract. PD-L1 expression was increased in the bronchiolar wall, parenchyma, and vascular wall from mild-moderate (GOLD 1-2) COPD patients compared to severe-very severe (GOLD 3-4) COPD patients and controls. Within all the COPD patients, PD-L1 protein expression was associated with upregulation of genes involved in tumor progression and downregulation of oncosuppressive genes, and strongly directly correlated with the FEV1% predicted, indicating higher PD-L1 expression in the milder vs. more severe COPD stages. In bronchioles, PD-L1 levels were strongly directly correlated with the number of functionally active AMs. In BAL, we confirmed that AMs from patients with both GOLD 1-2 COPD and NSCLC had the highest and similar, PD-L1 expression levels versus all the other groups, independently from active cigarette smoking. Intriguingly, AMs from patients with more severe COPD had reduced AM PD-L1 expression compared to patients with mild COPD. Acute CS extract stimulation increased PD-L1 mRNA expression only in never-and not in ever-smoker AMs. Lungs from patients with mild COPD and NSCLC are characterized by a similar strong PD-L1 expression signature in bronchioles and functionally active AMs compared to patients with severe COPD and controls. Active smoking does not affect PD-L1 levels. These observations represent a new resource in understanding the innate immune mechanisms underlying the link between COPD and lung cancer onset and progression and pave the way to future studies focused on the mechanisms by which CS promotes tumorigenesis and COPD.
Collapse
Affiliation(s)
- F. Polverino
- grid.39382.330000 0001 2160 926XPulmonary and Critical Care Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX 77030 USA
| | - D. Mirra
- grid.9841.40000 0001 2200 8888University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - C. X. Yang
- grid.17091.3e0000 0001 2288 9830University of British Columbia, Vancouver, Canada
| | - R. Esposito
- grid.9841.40000 0001 2200 8888University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - G. Spaziano
- grid.9841.40000 0001 2200 8888University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - J. Rojas-Quintero
- grid.39382.330000 0001 2160 926XPulmonary and Critical Care Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX 77030 USA
| | - M. Sgambato
- grid.9841.40000 0001 2200 8888University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - E. Piegari
- grid.9841.40000 0001 2200 8888University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - A. Cozzolino
- grid.9841.40000 0001 2200 8888University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - E. Cione
- grid.7778.f0000 0004 1937 0319University of Calabria, Rende, Italy
| | - L. Gallelli
- grid.411489.10000 0001 2168 2547University of Catanzaro, Catanzaro, Italy
| | | | | | - L. Berrino
- grid.9841.40000 0001 2200 8888University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - J. P. de- Torres
- grid.410356.50000 0004 1936 8331Queen’s University, Hamilton, Canada
| | - T. L. Hackett
- grid.17091.3e0000 0001 2288 9830University of British Columbia, Vancouver, Canada
| | | | - B. D’Agostino
- grid.9841.40000 0001 2200 8888University of Campania “Luigi Vanvitelli”, Caserta, Italy
| |
Collapse
|
9
|
Mirzaei S, Paskeh MDA, Entezari M, Mirmazloomi SR, Hassanpoor A, Aboutalebi M, Rezaei S, Hejazi ES, Kakavand A, Heidari H, Salimimoghadam S, Taheriazam A, Hashemi M, Samarghandian S. SOX2 function in cancers: Association with growth, invasion, stemness and therapy response. Biomed Pharmacother 2022; 156:113860. [DOI: 10.1016/j.biopha.2022.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/29/2022] Open
|
10
|
Lin Z, Liu Y, Lin P, Li J, Gan J. Clinical significance of STING expression and methylation in lung adenocarcinoma based on bioinformatics analysis. Sci Rep 2022; 12:13951. [PMID: 35978045 PMCID: PMC9385651 DOI: 10.1038/s41598-022-18278-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/09/2022] [Indexed: 02/05/2023] Open
Abstract
The role of stimulator of interferon genes [STING, also known as transmembrane protein 173 (TMEM173)] in various human cancers has begun to emerge. However, the clinical value of STING in lung adenocarcinoma (LUAD) remains elusive. This study aims to elucidate the clinical significance of STING expression and methylation in LUAD. Here, through analyzing data from public resources, we found that both the mRNA and protein expression of STING were reduced in lung cancer. Moreover, lower expression of STING was associated with a worse prognosis in LUAD, but not lung squamous cell carcinoma (LUSC). Of note, higher methylation of STING was found in LUAD and had the potential to distinguish LUAD tissues from adjacent non-tumor lung tissues and correlated with unfavorable outcomes. Furthermore, the methylation of STING could serve as an independent prognostic indicator for both the overall survival (OS) and disease-free survival (DFS) of LUAD patients. Additionally, the constructed nomogram exhibited a favorable predictive accuracy in predicting the probability of 1- and 2-year OS. Our findings suggest that the mRNA expression, and especially the DNA methylation of STING, have the potential to be prognostic indicators for LUAD patients.
Collapse
Affiliation(s)
- Ze Lin
- Department of Biochemistry, Shantou University Medical College, Shantou, People's Republic of China
| | - Yu Liu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, People's Republic of China
| | - Peng Lin
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jinping Li
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, People's Republic of China
| | - Jinfeng Gan
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, People's Republic of China
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
11
|
Li K, Lin Y, Luo Y, Xiong X, Wang L, Durante K, Li J, Zhou F, Guo Y, Chen S, Chen Y, Zhang D, Yeung SCJ, Zhang H. A signature of saliva-derived exosomal small RNAs as predicting biomarker for esophageal carcinoma: a multicenter prospective study. Mol Cancer 2022; 21:21. [PMID: 35042519 PMCID: PMC8764835 DOI: 10.1186/s12943-022-01499-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/02/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The tRNA-derived small RNAs (tsRNAs) are produced in a nuclease-dependent manner in responses to variety of stresses that are common in cancers. We focus on a cancer-enriched tsRNA signature to develop a salivary exosome-based non-invasive biomarker for human esophageal squamous cell carcinoma (ESCC). METHODS Cancer-enriched small RNAs were identified by RNA sequencing of salivary exosomes obtained from ESCC patients (n = 3) and healthy controls (n = 3) in a pilot study and further validated in discovery cohort (n = 66). A multicenter prospective observational study was conducted in two ESCC high-incidence regions (n = 320 and 200, respectively) using the newly developed biomarker signature. RESULTS The tsRNA (tRNA-GlyGCC-5) and a previously undocumented small RNA were specifically enriched in salivary exosomes of ESCC patients, ESCC tissues and ESCC cells. The bi-signature composed of these small RNAs was able to discriminate ESCC patients from the controls with high sensitivity (90.50%) and specificity (94.20%). Based on the bi-signature Risk Score for Prognosis (RSP), patients with high-RSP have both shorter overall survival (OS) (HR 4.95, 95%CI 2.90-8.46) and progression-free survival (PFS) (HR 3.69, 95%CI 2.24-6.10) than those with low-RSP. In addition, adjuvant therapy improved OS (HR 0.47, 95%CI 0.29-0.77) and PFS (HR 0.36, 95%CI 0.21-0.62) only for patients with high but not low RSP. These findings are consistent in both training and validation cohort. CONCLUSIONS The tsRNA-based signature not only has the potential for diagnosis and prognosis but also may serve as a pre-operative biomarker to select patients who would benefit from adjuvant therapy. TRIAL REGISTRATION A prospective study of diagnosis biomarkers of esophageal squamous cell carcinoma, ChiCTR2000031507 . Registered 3 April 2016 - Retrospectively registered.
Collapse
Affiliation(s)
- Kai Li
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, and Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
| | - Yusheng Lin
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, Guangzhou, Guangdong, China
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Graduate School, Shantou University Medical College, Shantou, Guangdong, China
| | - Yichen Luo
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, and Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
| | - Xiao Xiong
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, and Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
| | - Lu Wang
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, and Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
| | - Kameron Durante
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Ave, Philadelphia, PA, 19131, USA
| | - Junkuo Li
- Department of Thoracic Surgery, Anyang Tumor Hospital, Anyang, Henan, China
| | - Fuyou Zhou
- Department of Thoracic Surgery, Anyang Tumor Hospital, Anyang, Henan, China
| | - Yi Guo
- Endoscopy Center, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shaobin Chen
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yuping Chen
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Ave, Philadelphia, PA, 19131, USA
| | - Sai-Ching Jim Yeung
- Department of Emergency Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hao Zhang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University Medical College, 601 Huangpu Avenue West, Guangzhou, 510632, Guangdong, China.
- Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
12
|
Dong H, Du L, Cai S, Lin W, Chen C, Still M, Yao Z, Coppes RP, Pan Y, Zhang D, Gao S, Zhang H. Tyrosine Phosphatase PTPRO Deficiency in ERBB2-Positive Breast Cancer Contributes to Poor Prognosis and Lapatinib Resistance. Front Pharmacol 2022; 13:838171. [PMID: 35431974 PMCID: PMC9010868 DOI: 10.3389/fphar.2022.838171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Despite the initial benefit from treating ERBB2-positive breast cancer with tyrosine kinase inhibitor lapatinib, resistance develops inevitably. Since the expression of protein tyrosine phosphatase receptor-type O (PTPRO), a member of the R3 subfamily of receptor protein tyrosine phosphatases (PTPs), is inversely correlated with the aggressiveness of multiple malignancies, we decided to explore the correlation between PTPRO and lapatinib resistance in ERBB2-positive breast cancer. Results of immunohistochemical (IHC) staining and the correlation analysis between the expression levels of PTPRO and the clinicopathological parameters indicate that PTPRO is downregulated in cancer tissues as compared with normal tissues and negatively associated with differentiation, tumor size, tumor depth, as well as the expression of ERBB2 and Ki67. Results from Kaplan-Meier analyses indicate that lower expression of PTPRO is correlated with shorter relapse-free survival for patients with ERBB2-positive breast cancer, and multivariable Cox regression analysis found that PTPRO can potentially serve as an independent prognostic indicator for ERBB2-positive breast cancer. Results from both human breast cancer cells with PTPRO knockdown or overexpression and mouse embryonic fibroblasts (MEFs) which derived from Ptpro +/+ and Ptpro -/- mice with then stably transfected plasmid FUGW-Erbb2 consistently demonstrated the essentiality of PTPRO in the lapatinib-mediated anticancer process. Our findings suggest that PTPRO is not only able to serve as an independent prognostic indicator, but upregulating PTPRO can also reverse the lapatinib resistance of ERBB2-positive breast cancer.
Collapse
Affiliation(s)
- Hongmei Dong
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Department of General Surgery, The First Affiliated Hospital of Jinan University, Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Liang Du
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Department of General Surgery, The First Affiliated Hospital of Jinan University, Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
- Departments of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology and Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Graduate School, Shantou University Medical College, Shantou, China
| | - Songwang Cai
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wan Lin
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Chaoying Chen
- Graduate School, Shantou University Medical College, Shantou, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Hunan Traditional Chinese Medical College (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, China
| | - Matthew Still
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Zhimeng Yao
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Department of General Surgery, The First Affiliated Hospital of Jinan University, Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Robert P. Coppes
- Departments of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology and Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Yunlong Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Shegan Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang, China
- *Correspondence: Hao Zhang, ; Shegan Gao,
| | - Hao Zhang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Institute of Precision Cancer Medicine and Pathology, School of Medicine, Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
- *Correspondence: Hao Zhang, ; Shegan Gao,
| |
Collapse
|
13
|
Abstract
The proliferation, metastasis and therapy response of tumour cells are tightly regulated by interaction among various signalling networks. The microRNAs (miRNAs) can bind to 3'-UTR of mRNA and down-regulate expression of target gene. The miRNAs target various molecular pathways in regulating biological events such as apoptosis, differentiation, angiogenesis and migration. The aberrant expression of miRNAs occurs in cancers and they have both tumour-suppressor and tumour-promoting functions. On the contrary, SOX proteins are capable of binding to DNA and regulating gene expression. SOX2 is a well-known member of SOX family that its overexpression in different cancers to ensure progression and stemness. The present review focuses on modulatory impact of miRNAs on SOX2 in affecting growth, migration and therapy response of cancers. The lncRNAs and circRNAs can function as upstream mediators of miRNA/SOX2 axis in cancers. In addition, NF-κB, TNF-α and SOX17 are among other molecular pathways regulating miRNA/SOX2 axis in cancer. Noteworthy, anti-cancer compounds including bufalin and ovatodiolide are suggested to regulate miRNA/SOX2 axis in cancers. The translation of current findings to clinical course can pave the way to effective treatment of cancer patients and improve their prognosis.
Collapse
|
14
|
Dong H, Xie C, Jiang Y, Li K, Lin Y, Pang X, Xiong X, Zheng J, Ke X, Chen Y, Li Y, Zhang H. Tumor-Derived Exosomal Protein Tyrosine Phosphatase Receptor Type O Polarizes Macrophage to Suppress Breast Tumor Cell Invasion and Migration. Front Cell Dev Biol 2021; 9:703537. [PMID: 34650968 PMCID: PMC8505750 DOI: 10.3389/fcell.2021.703537] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/09/2021] [Indexed: 02/05/2023] Open
Abstract
Tumor-derived exosomes, containing multiple nucleic acids and proteins, have been implicated to participate in the interaction between tumor cells and microenvironment. However, the functional involvement of phosphatases in tumor-derived exosomes is not fully understood. We and others previously demonstrated that protein tyrosine phosphatase receptor type O (PTPRO) acts as a tumor suppressor in multiple cancer types. In addition, its role in tumor immune microenvironment remains elusive. Bioinformatical analyses revealed that PTPRO was closely associated with immune infiltration, and positively correlated to M1-like macrophages, but negatively correlated to M2-like macrophages in breast cancer tissues. Co-cultured with PTPRO-overexpressing breast cancer cells increased the proportion of M1-like tumor-associated macrophages (TAMs) while decreased that of M2-like TAMs. Further, we observed that tumor-derived exosomal PTPRO induced M1-like macrophage polarization, and regulated the corresponding functional phenotypes. Moreover, tumor cell-derived exosomal PTPRO inhibited breast cancer cell invasion and migration, and inactivated STAT signaling in macrophages. Our data suggested that exosomal PTPRO inhibited breast cancer invasion and migration by modulating macrophage polarization. Anti-tumoral effect of exosomal PTPRO was mediated by inactivating STAT family in macrophages. These findings highlight a novel mechanism of tumor invasion regulated by tumor-derived exosomal tyrosine phosphatase, which is of translational potential for the therapeutic strategy against breast cancer.
Collapse
Affiliation(s)
- Hongmei Dong
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Chaoyu Xie
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Yuchen Jiang
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Kai Li
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Yusheng Lin
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Graduate School, Shantou University Medical College, Shantou, China
| | - Xijiao Pang
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiao Xiong
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Jiehua Zheng
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiurong Ke
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China
- Graduate School, Shantou University Medical College, Shantou, China
- Laboratory for Translational Surgical Oncology, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Yexi Chen
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yong Li
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, Australia
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hao Zhang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Dong DY, Li PY. Identifying SOX2-OT transcript that is responsible for regulating SOX2 in cancer cells and embryonic stem cells. RESEARCH IDEAS AND OUTCOMES 2021. [DOI: 10.3897/rio.7.e69726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
SOX2 overlapping transcript (SOX2-OT) is an evolutionarily conserved long non-coding RNA (lncRNA) whose intronic region contains the transcript of pluripotency gene SRY-box transcription factor 2 (SOX2). It has been suggested that SOX2-OT can regulate its overlapping gene, SOX2. Studies demonstrated that elevated SOX2-OT promotes SOX2 expression in cancer cells, whereas levels of SOX2-OT are inversely correlated with levels of SOX2 in embryonic stem cells. It is not clear why there is a tremendous discrepancy in the regulation of SOX2 by SOX2-OT in cancer cells and embryonic stem cells. Due to the diversified transcription of the SOX2-OT gene, we hypothesize that differential expression of transcripts of the SOX2-OT gene in cancer cells and embryonic stem cells may contribute to the divergence in the regulatory relationship of SOX2-OT and SOX2. A CRISPR screening platform can be leveraged to systemic evaluate which transcript of the SOX2-OT gene may be responsible for upregulation or downregulation of SOX2 in cancer cells and embryonic stem cells, respectively.
Collapse
|
16
|
Herrera‐Solorio AM, Peralta‐Arrieta I, Armas López L, Hernández‐Cigala N, Mendoza Milla C, Ortiz Quintero B, Catalán Cárdenas R, Pineda Villegas P, Rodríguez Villanueva E, Trejo Iriarte CG, Zúñiga J, Arrieta O, Ávila‐Moreno F. LncRNA SOX2-OT regulates AKT/ERK and SOX2/GLI-1 expression, hinders therapy, and worsens clinical prognosis in malignant lung diseases. Mol Oncol 2021; 15:1110-1129. [PMID: 33433063 PMCID: PMC8024737 DOI: 10.1002/1878-0261.12875] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/31/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
The involvement of LncRNA SOX2-overlapping transcript (SOX2-OT), SOX2, and GLI-1 transcription factors in cancer has been well documented. Nonetheless, it is still unknown whether co-expressed SOX2-OT/SOX2 or SOX2-OT/SOX2/GLI-1 axes are epigenetically/transcriptionally involved in terms of resistance to oncology therapy and in poorer clinical outcomes for patients with lung cancer. We evaluated the role of SOX2-OT/SOX2 and SOX2-OT/SOX2/GLI-1 axes using RT-qPCR, western blot, immunofluorescence analyses, gene silencing, cellular cytotoxic, and ChIP-qPCR assays on human cell lines, solid lung malignant tumors, and normal lung tissue. We detected that the SOX2-OT/SOX2/GLI-1 axis promotes resistance to tyrosine kinase inhibitor (TKI)-erlotinib and cisplatin-based therapy. Evidence from this study show that SOX2-OT modulates the expression/activation of EGFR-pathway members AKT/ERK. Further, both SOX2-OT and GLI-1 genes are epigenetically regulated at their promoter sequences, in an LncRNA SOX2-OT-dependent manner, mainly through modifying the enrichment of the activation histone mark H3K4me3/H3K27Ac, versus the repressive histone mark H3K9me3/H3K27me3. In addition, we identified that inhibition of SOX2-OT and reduced expression of SOX2/GLI-1 sensitizes lung cancer cells to EGFR/TKI-erlotinib or cisplatin-based treatment. Finally, we show that high co-expression of SOX2-OT/SOX2 transcripts and SOX2/GLI-1 proteins appears to correlate with a poor clinical prognosis and lung malignant phenotype. Collectively, these results present evidence that LncRNA SOX2-OT modulates an orchestrated resistance mechanism, promoting poor prognosis and human lung malignancy through genetic, epigenetic, and post-translational mechanisms.
Collapse
Affiliation(s)
- Abril Marcela Herrera‐Solorio
- Biomedicine Research Unit (UBIMED)Lung Diseases and Cancer Epigenomics LaboratoryFacultad de Estudios Superiores (FES) IztacalaNational Autonomous University of Mexico (UNAM)Tlalnepantla de BazMexico
| | - Irlanda Peralta‐Arrieta
- Biomedicine Research Unit (UBIMED)Lung Diseases and Cancer Epigenomics LaboratoryFacultad de Estudios Superiores (FES) IztacalaNational Autonomous University of Mexico (UNAM)Tlalnepantla de BazMexico
| | - Leonel Armas López
- Biomedicine Research Unit (UBIMED)Lung Diseases and Cancer Epigenomics LaboratoryFacultad de Estudios Superiores (FES) IztacalaNational Autonomous University of Mexico (UNAM)Tlalnepantla de BazMexico
| | - Nallely Hernández‐Cigala
- Biomedicine Research Unit (UBIMED)Lung Diseases and Cancer Epigenomics LaboratoryFacultad de Estudios Superiores (FES) IztacalaNational Autonomous University of Mexico (UNAM)Tlalnepantla de BazMexico
| | - Criselda Mendoza Milla
- National Institute of Respiratory Diseases (INER), Ismael Cosío VillegasMexico CityMexico
| | - Blanca Ortiz Quintero
- National Institute of Respiratory Diseases (INER), Ismael Cosío VillegasMexico CityMexico
| | - Rodrigo Catalán Cárdenas
- Thoracic Oncology UnitLaboratory of Personalized MedicineInstituto Nacional de Cancerología (INCAN)Mexico CityMexico
| | - Priscila Pineda Villegas
- Biomedicine Research Unit (UBIMED)Lung Diseases and Cancer Epigenomics LaboratoryFacultad de Estudios Superiores (FES) IztacalaNational Autonomous University of Mexico (UNAM)Tlalnepantla de BazMexico
| | - Evelyn Rodríguez Villanueva
- Grupo de Investigación en Células Troncales e Ingeniería de Tejidos (GICTIT)Laboratorio de Investigación en Odontología AlmarazFES‐IztacalaNational Autonomous University of México (UNAM)Tlalnepantla de BazMexico
| | - Cynthia G. Trejo Iriarte
- Grupo de Investigación en Células Troncales e Ingeniería de Tejidos (GICTIT)Laboratorio de Investigación en Odontología AlmarazFES‐IztacalaNational Autonomous University of México (UNAM)Tlalnepantla de BazMexico
| | - Joaquín Zúñiga
- National Institute of Respiratory Diseases (INER), Ismael Cosío VillegasMexico CityMexico
| | - Oscar Arrieta
- Thoracic Oncology UnitLaboratory of Personalized MedicineInstituto Nacional de Cancerología (INCAN)Mexico CityMexico
| | - Federico Ávila‐Moreno
- Biomedicine Research Unit (UBIMED)Lung Diseases and Cancer Epigenomics LaboratoryFacultad de Estudios Superiores (FES) IztacalaNational Autonomous University of Mexico (UNAM)Tlalnepantla de BazMexico
- National Institute of Respiratory Diseases (INER), Ismael Cosío VillegasMexico CityMexico
| |
Collapse
|
17
|
Wang L, Xiong X, Yao Z, Zhu J, Lin Y, Lin W, Li K, Xu X, Guo Y, Chen Y, Pan Y, Zhou F, Fan J, Chen Y, Gao S, Jim Yeung SC, Zhang H. Chimeric RNA ASTN2-PAPPA as aggravates tumor progression and metastasis in human esophageal cancer. Cancer Lett 2021; 501:1-11. [PMID: 33388371 DOI: 10.1016/j.canlet.2020.10.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 02/05/2023]
Abstract
Transcription-induced chimeric RNAs are an emerging area of research into molecular signatures for disease biomarker and therapeutic target development. Despite their importance, little is known for chimeric RNAs-relevant roles and the underlying mechanisms for cancer pathogenesis and progression. Here we describe a unique ASTN2-PAPPAantisense chimeric RNA (A-PaschiRNA) that could be the first reported chimeric RNA derived from the splicing of exons and intron antisense of two neighboring genes, respectively. Aberrant A-PaschiRNA level in ESCC tissues was associated with tumor progression and patients' outcome. In vitro and in vivo studies demonstrated that A-PaschiRNA aggravated ESCC metastasis and enhanced stemness through modulating OCT4. Mechanistic studies demonstrated that ERK5-mediated non-canonical PAF1 activity was required for A-PaschiRNA-induced cancer malignancy. The study defined an undocumented function of chimeric RNAs in aggravating cancer stemness and metastasis.
Collapse
Affiliation(s)
- Lu Wang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xiao Xiong
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Zhimeng Yao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jianlin Zhu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yusheng Lin
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China; Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Wan Lin
- Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Kai Li
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xiaozheng Xu
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yi Guo
- Endoscopy Center, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yuping Chen
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yunlong Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Fuyou Zhou
- The Fourth Affiliated Hospital of Henan University of Science and Technology, Anyang, Henan, 455001, China; Department of Thoracic Surgery, Anyang Tumor Hospital, Anyang, Henan, 455001, China
| | - Jun Fan
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yan Chen
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shegan Gao
- College of Clinical Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Henan Key Laboratory of Cancer Epigenetics, Luoyang, 471003, China.
| | - Sai-Ching Jim Yeung
- Department of Emergency Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hao Zhang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Long Noncoding RNA SOX2-OT: Regulations, Functions, and Roles on Mental Illnesses, Cancers, and Diabetic Complications. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2901589. [PMID: 33294436 PMCID: PMC7718063 DOI: 10.1155/2020/2901589] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
SRY-box transcription factor 2 (SOX2) overlapping transcript (SOX2-OT) is an evolutionarily conserved long noncoding RNA. Its intronic region contains the SOX2 gene, the major regulator of the pluripotency of embryonic stem cells. The human SOX2-OT gene comprises multiple exons and has multiple transcription start sites and generates hundreds of transcripts. Transcription factors (IRF4, AR, and SOX3), transcriptional inhibitors (NSPc1, MTA3, and YY1), and miRNAs (miR-211 and miR-375) have been demonstrated to control certain SOX2-OT transcript level at the transcriptional or posttranscriptional levels. Accumulated evidence indicates its crucial roles in the regulation of the SOX2 gene, miRNAs, and transcriptional process. Restricted expression of SOX2-OT transcripts in the brain results in the association between SOX2-OT single nucleotide polymorphisms and mental illnesses such as schizophrenia and anorexia nervosa. SOX2-OT is notably elevated in tumor tissues, and a high level of SOX2-OT is well correlated with poor clinical outcomes in cancer patients, leading to the establishment of its role as an oncogene and a prognostic or diagnostic biomarker for cancers. The emerging evidence supports that SOX2-OT mediates diabetic complications. In summary, SOX2-OT has diversified functions and could be a therapeutic target for various diseases.
Collapse
|
19
|
Shao X, Wang Y, Lu X, Hu Y, Liao J, Li J, Chen X, Yu Y, Ai N, Ying M, Fan X. A Clinical Genomics-Guided Prioritizing Strategy Enables Selecting Proper Cancer Cell Lines for Biomedical Research. iScience 2020; 23:101748. [PMID: 33225250 PMCID: PMC7662851 DOI: 10.1016/j.isci.2020.101748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 08/01/2020] [Accepted: 10/26/2020] [Indexed: 11/18/2022] Open
Abstract
Selecting appropriate cell lines to represent a disease is crucial for the success of biomedical research, because the usage of less relevant cell lines could deliver misleading results. However, systematic guidance on cell line selection is unavailable. Here we developed a clinical Genomics-guided Prioritizing Strategy for Cancer Cell Lines (CCL-cGPS) and help to guide this process. Statistical analyses revealed CCL-cGPS selected cell lines were among the most appropriate models. Moreover, we observed a linear correlation between the drug response and CCL-cGPS score of cell lines for breast and thyroid cancers. Using RT4 cells selected by CCL-GPS, we identified mebendazole and digitoxin as candidate drugs against bladder cancer and validate their promising anticancer effect through in vitro and in vivo experiments. Additionally, a web tool was developed. In conclusion, CCL-cGPS bridges the gap between tumors and cell lines, presenting a helpful guide to select the most suitable cell line models. Cell lines were ranked by the resemblance of transcriptional signatures to tumors Among 44 tumor subtypes, CCL-cGPS provides proper cell lines for each subtype CCL-cGPS was verified by the computational analysis, in vitro and in vivo assays A web tool was developed to guide the selection of the most suitable cell lines
Collapse
Affiliation(s)
- Xin Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Hu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Liao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junying Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuechun Chen
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunru Yu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ni Ai
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meidan Ying
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin 301617, China
- Corresponding author
| |
Collapse
|