1
|
Reuss D, Brown JC, Sukhova K, Furnon W, Cowton V, Patel AH, Palmarini M, Thompson C, Barclay WS. Interference between SARS-CoV-2 and influenza B virus during coinfection is mediated by induction of specific interferon responses in the lung epithelium. Virology 2025; 608:110556. [PMID: 40318419 DOI: 10.1016/j.virol.2025.110556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Coinfections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus have represented a major health concern since the beginning of the COVID-19 pandemic. The continued spread and constant emergence of new SARS-CoV-2 variants mean that cocirculation and coinfection with seasonal respiratory viruses will continue. Despite the considerable contribution of influenza B virus (IBV) infections to global disease burdens, its interactions with SARS-CoV-2 remain largely unstudied. In this study, we sequentially coinfected lung epithelial cells with representative SARS-CoV-2 variants and IBV strains. We found that prior infection with IBV impaired SARS-CoV-2 D614G, Delta and Omicron BA.1 replication, but did not affect replication of the more recent Omicron EG.5.1 variant. We additionally show that pre-infection with SARS-CoV-2 reduces live attenuated influenza vaccine (LAIV) replication, suggesting vaccine effectiveness in children carrying SARS-CoV-2 pre-infections can be negatively impacted in coinfection. Both SARS-CoV-2 and IBV induced strong type III interferon (IFN) responses, whereas SARS-CoV-2 drove type I IFN production not seen in IBV infection, suggesting viral interference through specific IFN responses. Treatment with innate immune response inhibitors BX795 and Ruxolitinib abrogated viral interference between IBV and SARS-CoV-2 in coinfection, demonstrating that IFN-stimulated gene (ISG) responses play a vital role in viral interference. More specifically, we show that the magnitude and timing of ISG expression, triggered by the primary infecting virus in sequential coinfection, facilitates viral interference between IBV and SARS-CoV-2.
Collapse
Affiliation(s)
- Dorothee Reuss
- Department of Infectious Disease, Imperial College London, UK.
| | | | - Ksenia Sukhova
- Department of Infectious Disease, Imperial College London, UK
| | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Vanessa Cowton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | | | - Wendy S Barclay
- Department of Infectious Disease, Imperial College London, UK.
| |
Collapse
|
2
|
Zhang T, Zhang Y, Wang X, Hu H, Lin CG, Xu Y, Zheng H. Genome-wide CRISPR activation screen identifies ARL11 as a sensitivity determinant of PARP inhibitor therapy. Cancer Gene Ther 2025; 32:521-537. [PMID: 40123001 DOI: 10.1038/s41417-025-00893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 02/16/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Resistance to poly-(ADP)-ribose polymerase inhibitors (PARPi) remains a significant challenge in clinical practice, leading to treatment failure in many patients. It is crucial to better understand the molecular mechanisms that underlie PARPi resistance. In this study, utilizing a genome-wide CRISPR activation screen with olaparib, we identified ARL11 as a potential modulator of PARPi treatment response in BRCA-wild-type MDA-MB-231 cells. Mechanistically, ARL11 interacts with STING to enhance innate immunity and forms positive feedback with type I interferon (IFN) induction, which induces ARL11 up-regulation and contributes to resistance to PARPi therapy. Additionally, we observed that ARL11 interacts with the RUVBL1 and RUVBL2 (RUVBL1/2) complex, the key DNA double-strand repair proteins, facilitating DNA homologous recombination (HR) repair and significantly reducing PARPi-induced DNA double-strand damages. Clinical sample analysis reveals that the expression levels of ARL11 and RUVBL1/2 are significantly elevated in breast cancer patients compared to healthy controls. Collectively, our findings suggested that ARL11 and RUVBL1/2 may be promising therapeutic targets to sensitize breast cancer cells to PARPi therapy.
Collapse
Affiliation(s)
- Tengjiang Zhang
- State Key Laboratory of Molecular Oncology and Center for Cancer Biology, School of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yuan Zhang
- State Key Laboratory of Molecular Oncology and Center for Cancer Biology, School of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xuxiang Wang
- State Key Laboratory of Molecular Oncology and Center for Cancer Biology, School of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Haitian Hu
- State Key Laboratory of Molecular Oncology and Center for Cancer Biology, School of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Christopher G Lin
- State Key Laboratory of Molecular Oncology and Center for Cancer Biology, School of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yaru Xu
- State Key Laboratory of Molecular Oncology and Center for Cancer Biology, School of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Hanqiu Zheng
- State Key Laboratory of Molecular Oncology and Center for Cancer Biology, School of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi Province, China.
| |
Collapse
|
3
|
Honrath S, Burger M, Leroux JC. Hurdles to healing: Overcoming cellular barriers for viral and nonviral gene therapy. Int J Pharm 2025; 674:125470. [PMID: 40112901 DOI: 10.1016/j.ijpharm.2025.125470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Gene delivery offers great potential for treating various diseases, yet its success requires overcoming several biological barriers. These hurdles span from extracellular degradation, reaching the target cells, and inefficient cellular uptake to endosomal entrapment, cytoplasmic transport, nuclear entry, and transcription limitations. Viruses and non-viral vectors deal with these barriers via different mechanisms. Viral vectors, such as adenoviruses, adeno-associated viruses, and lentiviruses use natural mechanisms to efficiently deliver genetic material but face limitations including immunogenicity, cargo capacity, and production complexity. Nonviral vectors, including lipid nanoparticles, polymers, and protein-based systems, offer scalable and safer alternatives but often fall short in overcoming intracellular barriers and achieving high transfection efficiencies. Recent advancements in vector engineering have partially overcome several of these challenges. Ionizable lipids improve endosomal escape while minimizing toxicity. Biodegradable polymers balance efficacy with safety, and engineered protein systems, inspired by viral or bacterial entry mechanisms, integrate multifunctionality for enhanced delivery. Despite these advances, challenges, particularly in achieving robust in vivo translatability, scalability, and reduced immunogenicity, remain. This review synthesizes current knowledge of cellular barriers and the approaches to overcome them, providing a roadmap for designing more efficient gene delivery systems. By addressing these barriers, the field can advance toward safer, and more effective therapies.
Collapse
Affiliation(s)
- Steffen Honrath
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Michael Burger
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland.
| | - Jean-Christophe Leroux
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland.
| |
Collapse
|
4
|
Nong J, Gong X, Dang QM, Tiwari S, Patel M, Wu J, Hanna A, Park WJ, Atochina-Vasserman EN, Huang HT, Marcos-Contreras OA, Morris-Blanco KC, Miner JJ, Weissman D, Muzykantov VR, Gupta K, Issadore D, Myerson JW, Wang Z, Brenner JS. Multi-stage-mixing to control the supramolecular structure of lipid nanoparticles, thereby creating a core-then-shell arrangement that improves performance by orders of magnitude. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.12.623321. [PMID: 39605450 PMCID: PMC11601355 DOI: 10.1101/2024.11.12.623321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
As they became the dominant gene therapy platform, lipid nanoparticles (LNPs) experienced nearly all their innovation in varying the structure of individual molecules in LNPs. This ignored control of the spatial arrangement of molecules, which is suboptimal because supramolecular structure determines function in biology. To control LNPs' supramolecular structure, we introduce multi-stage-mixing (MSM) to successively add different molecules to LNPs. We first utilize MSM to create a core-then-shell (CTS) synthesis. CTS-LNPs display a clear core-shell structure, vastly lower frequency of LNPs containing no detectable mRNA, and improved mRNA-LNP expression. With DNA-loaded LNPs, which for decades lagged behind mRNA-LNPs due to low expression, CTS improved DNA-LNPs' protein expression by 2-3 orders of magnitude, bringing it within range of mRNA-LNPs. These results show that supramolecular arrangement is critical to LNP performance and can be controlled by mixing methodology. Further, MSM/CTS have finally made DNA-LNPs into a practical platform for long-term gene expression.
Collapse
|
5
|
Li X, Yu F, Li L. Tandem-Controlled Dynamic DNA Assembly Enables Temporally-Selective Orthogonal Regulation of cGAS-STING Stimulation. Angew Chem Int Ed Engl 2025; 64:e202417916. [PMID: 39526866 DOI: 10.1002/anie.202417916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Despite advances in the controlled reconfiguration of DNA structures for biological applications, the dearth of strategies that allow for orthogonal regulation of immune pathways remains a challenge. Here, we report for the first time an endogenous and exogenous tandem-regulated DNA assembly strategy that enables orthogonally controlled stimulation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. A DNA motif containing two palindromic sequences is engineered with an abasic site (AP)-connected blocking sequence to inhibit its self-assembly function, while apurinic/apyrimidinic endonuclease 1 (APE1)-triggered enzymatic cleavage of the AP site enables the reconfiguration and self-assembly of DNA motif into long double-stranded structures, thus realizing allosteric activation of the catalytic activity of cGAS to produce 2'3'-cyclic-GMP-AMP for STING stimulation. Importantly, we demonstrate that APE1-regulated DNA assembly allows for cell-selective activation of cGAS-STING signaling. Furthermore, by re-engineering the DNA motif with a photocleavable group, enzyme-triggered DNA assembly allows the cGAS-STING stimulation to operate (switched "ON"), whereas light-mediated fragmentation of the double-stranded DNA enables termination of such stimulation (switched "OFF"), thereby achieving orthogonal control over immune regulation. This work highlights an endogenous and exogenous tandem regulated strategy to modulate the cGAS-STING pathway in an orthogonally controlled manner.
Collapse
Affiliation(s)
- Xiangfei Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangzhi Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Kong LZ, Jang IH, Wang C, Lee SY, Kim SM, Oh SC, Lee S, Jo S, Kim JH, Kim KK, Kim TD. Transcriptomic landscapes of STING-mediated DNA-sensing reveal cellular response heterogeneity. Int J Biol Macromol 2025; 288:138752. [PMID: 39674484 DOI: 10.1016/j.ijbiomac.2024.138752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Transfection of plasmid DNA (pDNA) encoding target genes is a routine tool in gene function studies and therapeutic applications. However, nucleic acid-sensing-mediated innate immune responses influence multiple intracellular signaling pathways. The stimulator of interferon genes (STING) is a crucial adapter protein for DNA sensors in mammalian cells. In this study, we explored the molecular mechanisms underlying DNA sensing by investigating the relationship between mRNA and protein expression levels and the STING pathway using single-cell analysis. We observed that reporter gene expression was dose-nonlinear after transfection of pDNA in cells with intact DNA-sensing pathways. Moreover, blocking the STING pathway in THP-1 cells significantly downregulated innate immune responses, upregulated exogenous gene expression, and mitigated the effects of innate immune responses on cell and gene function, but did not affect the proportion of reporter protein-positive cells. We elucidated the mechanisms of DNA sensing-induced innate immune response and cell death by analyzing heterozygous cellular responses to DNA transfection and transcriptome changes in positive cells. These findings suggest that the regulation of STING-mediated nucleic acid-sensing pathways is crucial for the accuracy of gene function studies and could enhance the efficacy of gene therapy.
Collapse
Affiliation(s)
- Ling-Zu Kong
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - In-Hwan Jang
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Chunli Wang
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Soo Yun Lee
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seok-Min Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Se-Chan Oh
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sunyoung Lee
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Seona Jo
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Ji Hyun Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tae-Don Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea; Biomedical Mathematics Group, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea; Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
7
|
Majerciak V, Zheng ZM. Induction of translation-suppressive G3BP1 + stress granules and interferon-signaling cGAS condensates by transfected plasmid DNA. HLIFE 2025; 3:21-37. [PMID: 40078969 PMCID: PMC11902918 DOI: 10.1016/j.hlife.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Plasmid DNA transfection is one of the fundamental tools of biomedical research. Here, we found that plasmid DNA transfection mediated by liposomes activates multiple innate immune responses in several widely used cell lines. Their activations were visible by detection of stress granules (SG) and cGAS-DNA condensates (cGC) in the transfected cells in a plasmid DNA dose-dependent manner. The elevated levels of phosphorylated eukaryotic translation initiation factor 2 subunit alpha (eIF2α), interferon regulatory factor 3 (IRF3), and signal transducer and activator of transcription 1 (STAT1) were induced in plasmid DNA-transfected cells. The formation of SG but not cGC required active transcription and formation of dsRNA in transfected cells. Plasmid DNA-induced SG or cGC were mutually exclusive because of triggering two distinct pathways. Knockdown (KD) of PKR before plasmid DNA transfection led to abolish SG without affecting cGC formation. Conversely, cGAS KD could prevent cGC without affecting SG formation. In addition, plasmid DNA-induced SG and cGC formation could be prevented, respectively, by co-expression of KSHV proteins ORF57 (PKR inhibitor) and ORF52 (cGAS inhibitor). Inhibition of SG formation mediated by PKR KD, but not cGC KD, also led to increased expression of transgenes, indicating that PKR activation represents a major roadblock to gene expression. Together, these data indicate that plasmid DNA triggers innate immune responses in the transfected cells and causes a significant cellular perturbation that should be considered during experiment design and data interpretation.
Collapse
Affiliation(s)
- Vladimir Majerciak
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Maryland, USA
| | | |
Collapse
|
8
|
Yuan S, Straub AC. STING inhibition enables efficient plasmid-based gene expression in primary vascular cells: A simple and cost-effective transfection protocol. PLoS One 2024; 19:e0303472. [PMID: 38990864 PMCID: PMC11238992 DOI: 10.1371/journal.pone.0303472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/25/2024] [Indexed: 07/13/2024] Open
Abstract
Plasmid transfection in cells is widely employed to express exogenous proteins, offering valuable mechanistic insight into their function(s). However, plasmid transfection efficiency in primary vascular endothelial cells (ECs) and smooth muscle cells (SMCs) is restricted with lipid-based transfection reagents such as Lipofectamine. The STING pathway, activated by foreign DNA in the cytosol, prevents foreign gene expression and induces DNA degradation. To address this, we explored the potential of STING inhibitors on the impact of plasmid expression in primary ECs and SMCs. Primary human aortic endothelial cells (HAECs) were transfected with a bicistronic plasmid expressing cytochrome b5 reductase 4 (CYB5R4) and enhanced green fluorescent protein (EGFP) using Lipofectamine 3000. Two STING inhibitors, MRT67307 and BX795, were added during transfection and overnight post-transfection. As a result, MRT67307 significantly enhanced CYB5R4 and EGFP expression, even 24 hours after its removal. In comparison, MRT67307 pretreatment did not affect transfection, suggesting the inhibitor's effect was readily reversible. The phosphorylation of endothelial nitric oxide synthase (eNOS) at Serine 1177 (S1177) by vascular endothelial growth factor is essential for endothelial proliferation, migration, and survival. Using the same protocol, we transfected wild-type and phosphorylation-incapable mutant (S1177A) eNOS in HAECs. Both forms of eNOS localized on the plasma membrane, but only the wild-type eNOS was phosphorylated by vascular endothelial growth factor treatment, indicating normal functionality of overexpressed proteins. MRT67307 and BX795 also improved plasmid expression in human and rat aortic SMCs. In conclusion, this study presents a modification enabling efficient plasmid transfection in primary vascular ECs and SMCs, offering a favorable approach to studying protein function(s) in these cell types, with potential implications for other primary cell types that are challenging to transfect.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Adam C. Straub
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Microvascular Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
9
|
Scherer D, Burger M, Leroux JC. Revival of Bioengineered Proteins as Carriers for Nucleic Acids. Bioconjug Chem 2024; 35:561-566. [PMID: 38621363 PMCID: PMC11099893 DOI: 10.1021/acs.bioconjchem.4c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024]
Affiliation(s)
- David Scherer
- Institute of Pharmaceutical
Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Michael Burger
- Institute of Pharmaceutical
Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical
Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
10
|
Sarratea MB, Alberti AS, Redolfi DM, Truant SN, Iannantuono Lopez LV, Bivona AE, Mariuzza RA, Fernández MM, Malchiodi EL. Zika virus NS4B protein targets TANK-binding kinase 1 and inhibits type I interferon production. Biochim Biophys Acta Gen Subj 2023; 1867:130483. [PMID: 37802371 DOI: 10.1016/j.bbagen.2023.130483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND During viral infections, nucleic acid sensing by intracellular receptors can trigger type I interferon (IFN-I) production, key mediators in antiviral innate immunity. However, many flaviviruses use non-structural proteins to evade immune sensing favoring their survival. These mechanisms remain poorly characterized. Here, we studied the role of Zika virus (ZIKV) NS4B protein in the inhibition of IFN-I induction pathway and its biophysical interaction with host proteins. METHODS Using different cell-based assays, we studied the effect of ZIKV NS4B in the activation of interferon regulatory factors (IRFs), NF-κB, cytokines secretion and the expression of interferon-stimulating genes (ISG). We also analyzed the in vitro interaction between recombinant ZIKV NS4B and TANK-binding kinase 1 (TBK1) using surface plasmon resonance (SPR). RESULTS Transfection assays showed that ZIKV NS4B inhibits IRFs activation involved in different nucleic acid sensing cascades. Cells expressing NS4B secreted lower levels of IFN-β and IL-6. Furthermore, early induction of ISGs was also restricted by ZIKV NS4B. For the first time, we demonstrate by SPR assays that TBK1, a critical component in IFN-I production pathway, binds directly to ZIKV NS4B (KD of 3.7 × 10-6 M). In addition, we show that the N-terminal region of NS4B is directly involved in this interaction. CONCLUSIONS Altogether, our results strongly support that ZIKV NS4B affects nucleic acid sensing cascades and disrupts the TBK1/IRF3 axis, leading to an impairment of IFN-β production. SIGNIFICANCE This study provides the first biophysical data of the interaction between ZIKV NS4B and TBK1, and highlights the role of ZIKV NS4B in evading the early innate immune response.
Collapse
Affiliation(s)
- Maria B Sarratea
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina; W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Andrés Sánchez Alberti
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología-IMPAM (UBA-CONICET), Paraguay 2155, C1121ABG Buenos Aires, Argentina
| | - Daniela M Redolfi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina
| | - Sofía Noli Truant
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina
| | - Laura V Iannantuono Lopez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina
| | - Augusto E Bivona
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología-IMPAM (UBA-CONICET), Paraguay 2155, C1121ABG Buenos Aires, Argentina
| | - Roy A Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Marisa M Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina.
| | - Emilio L Malchiodi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología-IMPAM (UBA-CONICET), Paraguay 2155, C1121ABG Buenos Aires, Argentina.
| |
Collapse
|
11
|
Korneenko TV, Pestov NB, Nevzorov IA, Daks AA, Trachuk KN, Solopova ON, Barlev NA. At the Crossroads of the cGAS-cGAMP-STING Pathway and the DNA Damage Response: Implications for Cancer Progression and Treatment. Pharmaceuticals (Basel) 2023; 16:1675. [PMID: 38139802 PMCID: PMC10747911 DOI: 10.3390/ph16121675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
The evolutionary conserved DNA-sensing cGAS-STING innate immunity pathway represents one of the most important cytosolic DNA-sensing systems that is activated in response to viral invasion and/or damage to the integrity of the nuclear envelope. The key outcome of this pathway is the production of interferon, which subsequently stimulates the transcription of hundreds of genes. In oncology, the situation is complex because this pathway may serve either anti- or pro-oncogenic roles, depending on context. The prevailing understanding is that when the innate immune response is activated by sensing cytosolic DNA, such as DNA released from ruptured micronuclei, it results in the production of interferon, which attracts cytotoxic cells to destroy tumors. However, in tumor cells that have adjusted to significant chromosomal instability, particularly in relapsed, treatment-resistant cancers, the cGAS-STING pathway often supports cancer progression, fostering the epithelial-to-mesenchymal transition (EMT). Here, we review this intricate pathway in terms of its association with cancer progression, giving special attention to pancreatic ductal adenocarcinoma and gliomas. As the development of new cGAS-STING-modulating small molecules and immunotherapies such as oncolytic viruses involves serious challenges, we highlight several recent fundamental discoveries, such as the proton-channeling function of STING. These discoveries may serve as guiding lights for potential pharmacological advancements.
Collapse
Affiliation(s)
- Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Nikolay B. Pestov
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| | - Ivan A. Nevzorov
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
| | - Alexandra A. Daks
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
| | - Kirill N. Trachuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| | - Olga N. Solopova
- Research Institute of Experimental Diagnostics and Tumor Therapy, Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia
| | - Nickolai A. Barlev
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
12
|
Johnson AMF, Hager K, Alameh MG, Van P, Potchen N, Mayer-Blackwell K, Fiore-Gartland A, Minot S, Lin PJC, Tam YK, Weissman D, Kublin JG. The Regulation of Nucleic Acid Vaccine Responses by the Microbiome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1680-1692. [PMID: 37850965 PMCID: PMC10656434 DOI: 10.4049/jimmunol.2300196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023]
Abstract
Nucleic acid vaccines, including both RNA and DNA platforms, are key technologies that have considerable promise in combating both infectious disease and cancer. However, little is known about the extrinsic factors that regulate nucleic acid vaccine responses and which may determine their effectiveness. The microbiome is recognized as a significant regulator of immune development and response, whose role in regulating some traditional vaccine platforms has recently been discovered. Using germ-free and specific pathogen-free mouse models in combination with different protein, DNA, and mRNA vaccine regimens, we demonstrate that the microbiome is a significant regulator of nucleic acid vaccine immunogenicity. Although the presence of the microbiome enhances CD8+ T cell responses to mRNA lipid nanoparticle immunization, the microbiome suppresses Ig and CD4+ T cell responses to DNA-prime, DNA-protein-boost immunization, indicating contrasting roles for the microbiome in the regulation of these different nucleic acid vaccine platforms. In the case of mRNA lipid nanoparticle vaccination, germ-free mice display reduced dendritic cell/macrophage activation that may underlie the deficient vaccine response. Our study identifies the microbiome as a relevant determinant of nucleic acid vaccine response with implications for continued therapeutic development and deployment of these vaccines.
Collapse
Affiliation(s)
- Andrew M. F. Johnson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Kevin Hager
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Phuong Van
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Nicole Potchen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | | | - Samuel Minot
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | | | - Drew Weissman
- Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA
| | - James G. Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
13
|
Lin G, Wang J, Yang YG, Zhang Y, Sun T. Advances in dendritic cell targeting nano-delivery systems for induction of immune tolerance. Front Bioeng Biotechnol 2023; 11:1242126. [PMID: 37877041 PMCID: PMC10593475 DOI: 10.3389/fbioe.2023.1242126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Dendritic cells (DCs) are the major specialized antigen-presenting cells (APCs), play a key role in initiating the body's immune response, maintain the balance of immunity. DCs can also induce immune tolerance by rendering effector T cells absent and anergy, and promoting the expansion of regulatory T cells. Induction of tolerogenic DCs has been proved to be a promising strategy for the treatment of autoimmune diseases, organ transplantation, and allergic diseases by various laboratory researches and clinical trials. The development of nano-delivery systems has led to advances in situ modulation of the tolerance phenotype of DCs. By changing the material composition, particle size, zeta-potential, and surface modification of nanoparticles, nanoparticles can be used for the therapeutic payloads targeted delivery to DCs, endowing them with great potential in the induction of immune tolerance. This paper reviews how nano-delivery systems can be modulated for targeted delivery to DCs and induce immune tolerance and reviews their potential in the treatment of autoimmune diseases, organ transplantation, and allergic diseases.
Collapse
Affiliation(s)
- Guojiao Lin
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Jialiang Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, China
| |
Collapse
|
14
|
Rossi M, Anerillas C, Idda ML, Munk R, Shin CH, Donega S, Tsitsipatis D, Herman AB, Martindale JL, Yang X, Piao Y, Mazan-Mamczarz K, Fan J, Ferrucci L, Johnson PF, De S, Abdelmohsen K, Gorospe M. Pleiotropic effects of BAFF on the senescence-associated secretome and growth arrest. eLife 2023; 12:e84238. [PMID: 37083495 PMCID: PMC10121226 DOI: 10.7554/elife.84238] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/26/2023] [Indexed: 04/22/2023] Open
Abstract
Senescent cells release a variety of cytokines, proteases, and growth factors collectively known as the senescence-associated secretory phenotype (SASP). Sustained SASP contributes to a pattern of chronic inflammation associated with aging and implicated in many age-related diseases. Here, we investigated the expression and function of the immunomodulatory cytokine BAFF (B-cell activating factor; encoded by the TNFSF13B gene), a SASP protein, in multiple senescence models. We first characterized BAFF production across different senescence paradigms, including senescent human diploid fibroblasts (WI-38, IMR-90) and monocytic leukemia cells (THP-1), and tissues of mice induced to undergo senescence. We then identified IRF1 (interferon regulatory factor 1) as a transcription factor required for promoting TNFSF13B mRNA transcription in senescence. We discovered that suppressing BAFF production decreased the senescent phenotype of both fibroblasts and monocyte-like cells, reducing IL6 secretion and SA-β-Gal staining. Importantly, however, the influence of BAFF on the senescence program was cell type-specific: in monocytes, BAFF promoted the early activation of NF-κB and general SASP secretion, while in fibroblasts, BAFF contributed to the production and function of TP53 (p53). We propose that BAFF is elevated across senescence models and is a potential target for senotherapy.
Collapse
Affiliation(s)
- Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Maria Laura Idda
- Institute for Genetic and Biomedical Research (IRGB), National Research CouncilSassaryItaly
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Chang Hoon Shin
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Stefano Donega
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
- Translational Gerontology Branch, NIA IRP, NIHBaltimoreUnited States
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Allison B Herman
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Jinshui Fan
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Luigi Ferrucci
- Translational Gerontology Branch, NIA IRP, NIHBaltimoreUnited States
| | - Peter F Johnson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute IRPFrederickUnited States
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| |
Collapse
|
15
|
Johnson AMF, Hager K, Alameh MG, Van P, Potchen N, Mayer-Blackwell K, Fiore-Gartland A, Minot S, Lin PJC, Tam YK, Weissman D, Kublin JG. The Regulation of Nucleic Acid Vaccine Responses by the Microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.18.529093. [PMID: 36824851 PMCID: PMC9949122 DOI: 10.1101/2023.02.18.529093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Nucleic acid vaccines, including both RNA and DNA platforms, are key technologies that have considerable promise in combating both infectious disease and cancer. However, little is known about the extrinsic factors that regulate nucleic acid vaccine responses and which may determine their effectiveness. The microbiome is recognized as a significant regulator of immune development and response, whose role in regulating some traditional vaccine platforms has recently been discovered. Using germ-free and specific-pathogen-free mouse models in combination with different protein, DNA, and mRNA vaccine regimens, we demonstrate that the microbiome is a significant regulator of nucleic acid vaccine immunogenicity. While the presence of the microbiome enhances CD8+ T cell responses to mRNA lipid nanoparticle (LNP) immunization, the microbiome suppresses immunoglobulin and CD4+ T cell responses to DNA-prime, DNA-protein-boost immunization, indicating contrasting roles for the microbiome in the regulation of these different nucleic acid vaccine platforms. In the case of mRNA-LNP vaccination, germ-free mice display reduced dendritic cell/macrophage activation that may underlie the deficient vaccine response. Our study identifies the microbiome as a relevant determinant of nucleic acid vaccine response with implications for their continued therapeutic development and deployment.
Collapse
|
16
|
Ramos B, Ferreira AR, Ribeiro D. Tools to Investigate the Peroxisome-Dependent Antiviral Response. Methods Mol Biol 2023; 2643:295-307. [PMID: 36952193 DOI: 10.1007/978-1-0716-3048-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The importance of peroxisomes in the context of viral infections has been increasingly demonstrated in recent years. The discovery that MAVS localizes at peroxisomes and that peroxisomal and mitochondrial MAVS perform complementing functions within the antiviral response has raised the interest in studying the peroxisome-dependent signaling in the context of infection by different viruses. To that end, specific experimental procedures should be applied, taking into consideration the endogenous localization of MAVS at both organelles. The analysis of peroxisomal MAVS activation requires, hence, the preliminar generation and validation of cell lines where MAVS localizes solely at peroxisomes, as well as other specific cellular tools. Here, we present a detailed protocol to analyse the peroxisome-dependent antiviral response, using virus-specific and virus-unspecific stimuli.
Collapse
Affiliation(s)
- Bruno Ramos
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Ana Rita Ferreira
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Daniela Ribeiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
17
|
Transcriptomic analysis of the innate immune response to in vitro transfection of plasmid DNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 31:43-56. [PMID: 36618265 PMCID: PMC9800263 DOI: 10.1016/j.omtn.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
The innate immune response to cytosolic DNA is intended to protect the host from viral infections, but it can also inhibit the delivery and expression of therapeutic transgenes in gene and cell therapies. The goal of this work was to use mRNA sequencing to identify genes that may influence transfection efficiency in four different cell types (PC-3, Jurkat, HEK-293T, and primary T cells). The highest transfection efficiency was observed in HEK-293T cells, which upregulated only 142 genes with no known antiviral functions after transfection with lipofectamine. Lipofection upregulated 1,057 cytokine-stimulated genes (CSGs) in PC-3 cells, which exhibited a significantly lower transfection efficiency. However, when PC-3 cells were transfected in serum-containing media or electroporated, the observed transfection efficiencies were significantly higher while the expression levels of cytokines and CSGs decreased. In contrast, lipofection of Jurkat and primary T cells only upregulated a few genes, but several of the antiviral CSGs that were absent in HEK-293T cells and upregulated in PC-3 cells were observed to be constitutively expressed in T cells, which may explain the relatively low Lipofection efficiencies observed with T cells (8%-21% GFP+). Indeed, overexpression of one CSG (IFI16) significantly decreased transfection efficiency in HEK-293T cells.
Collapse
|
18
|
Park T, Hwang H, Moon S, Kang SG, Song S, Kim YH, Kim H, Ko EJ, Yoon SD, Kang SM, Hwang HS. Vaccines against SARS-CoV-2 variants and future pandemics. Expert Rev Vaccines 2022; 21:1363-1376. [PMID: 35924678 PMCID: PMC9979704 DOI: 10.1080/14760584.2022.2110075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/02/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Vaccination continues to be the most effective method for controlling COVID-19 infectious diseases. Nonetheless, SARS-CoV-2 variants continue to evolve and emerge, resulting in significant public concerns worldwide, even after more than 2 years since the COVID-19 pandemic. It is important to better understand how different COVID-19 vaccine platforms work, why SARS-CoV-2 variants continue to emerge, and what options for improving COVID-19 vaccines can be considered to fight against SARS-CoV-2 variants and future pandemics. AREA COVERED Here, we reviewed the innate immune sensors in the recognition of SARS-CoV-2 virus, innate and adaptive immunity including neutralizing antibodies by different COVID-19 vaccines. Efficacy comparison of the several COVID-19 vaccine platforms approved for use in humans, concerns about SARS-CoV-2 variants and breakthrough infections, and the options for developing future COIVD-19 vaccines were also covered. EXPERT OPINION Owing to the continuous emergence of novel pathogens and the reemergence of variants, safer and more effective new vaccines are needed. This review also aims to provide the knowledge basis for the development of next-generation COVID-19 and pan-coronavirus vaccines to provide cross-protection against new SARS-CoV-2 variants and future coronavirus pandemics.
Collapse
Affiliation(s)
- Taeyoung Park
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Hyogyeong Hwang
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Suhyeong Moon
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Sang Gu Kang
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Seunghyup Song
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Young Hun Kim
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Hanbi Kim
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Eun-Ju Ko
- College of Veterinary Medicine and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, South Korea
| | - Soon-Do Yoon
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, South Korea
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Hye Suk Hwang
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| |
Collapse
|
19
|
Chuang ST, Conklin B, Stein JB, Pan G, Lee KB. Nanotechnology-enabled immunoengineering approaches to advance therapeutic applications. NANO CONVERGENCE 2022; 9:19. [PMID: 35482149 PMCID: PMC9047473 DOI: 10.1186/s40580-022-00310-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 05/24/2023]
Abstract
Immunotherapy has reached clinical success in the last decade, with the emergence of new and effective treatments such as checkpoint blockade therapy and CAR T-cell therapy that have drastically improved patient outcomes. Still, these therapies can be improved to limit off-target effects, mitigate systemic toxicities, and increase overall efficacies. Nanoscale engineering offers strategies that enable researchers to attain these goals through the manipulation of immune cell functions, such as enhancing immunity against cancers and pathogens, controlling the site of immune response, and promoting tolerance via the delivery of small molecule drugs or biologics. By tuning the properties of the nanomaterials, such as size, shape, charge, and surface chemistry, different types of immune cells can be targeted and engineered, such as dendritic cells for immunization, or T cells for promoting adaptive immunity. Researchers have come to better understand the critical role the immune system plays in the progression of pathologies besides cancer, and developing nanoengineering approaches that seek to harness the potential of immune cell activities can lead to favorable outcomes for the treatment of injuries and diseases.
Collapse
Affiliation(s)
- Skylar T Chuang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Brandon Conklin
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Joshua B Stein
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - George Pan
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
20
|
Wang D, Zhao H, Shen Y, Chen Q. A Variety of Nucleic Acid Species Are Sensed by cGAS, Implications for Its Diverse Functions. Front Immunol 2022; 13:826880. [PMID: 35185917 PMCID: PMC8854490 DOI: 10.3389/fimmu.2022.826880] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/20/2022] [Indexed: 12/20/2022] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) recognizes double-stranded DNA (dsDNA) derived from invading pathogens and induces an interferon response via activation of the key downstream adaptor protein stimulator of interferon genes (STING). This is the most classic biological function of the cGAS-STING signaling pathway and is critical for preventing pathogenic microorganism invasion. In addition, cGAS can interact with various types of nucleic acids, including cDNA, DNA : RNA hybrids, and circular RNA, to contribute to a diverse set of biological functions. An increasing number of studies have revealed an important relationship between the cGAS-STING signaling pathway and autophagy, cellular senescence, antitumor immunity, inflammation, and autoimmune diseases. This review details the mechanism of action of cGAS as it interacts with different types of nucleic acids, its rich biological functions, and the potential for targeting this pathway to treat various diseases.
Collapse
Affiliation(s)
| | | | - Yangkun Shen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| |
Collapse
|
21
|
Piett CG, Pecen TJ, Laverty DJ, Nagel ZD. Large-scale preparation of fluorescence multiplex host cell reactivation (FM-HCR) reporters. Nat Protoc 2021; 16:4265-4298. [PMID: 34363069 PMCID: PMC9272811 DOI: 10.1038/s41596-021-00577-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/28/2021] [Indexed: 01/14/2023]
Abstract
Repair of DNA damage is a critical survival mechanism that affects susceptibility to various human diseases and represents a key target for cancer therapy. A major barrier to applying this knowledge in research and clinical translation has been the lack of efficient, quantitative functional assays for measuring DNA repair capacity in living primary cells. To overcome this barrier, we recently developed a technology termed 'fluorescence multiplex host cell reactivation' (FM-HCR). We describe a method for using standard molecular biology techniques to generate large quantities of FM-HCR reporter plasmids containing site-specific DNA lesions and using these reporters to assess DNA repair capacity in at least six major DNA repair pathways in live cells. We improve upon previous methodologies by (i) providing a universal workflow for generating reporter plasmids, (ii) improving yield and purity to enable large-scale studies that demand milligram quantities and (iii) reducing preparation time >ten-fold.
Collapse
Affiliation(s)
- C G Piett
- Department of Environmental Health, JBL Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - T J Pecen
- Department of Environmental Health, JBL Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - D J Laverty
- Department of Environmental Health, JBL Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Z D Nagel
- Department of Environmental Health, JBL Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
22
|
Kim C, Wang XD, Yu Y. PARP1 inhibitors trigger innate immunity via PARP1 trapping-induced DNA damage response. eLife 2020; 9:60637. [PMID: 32844745 PMCID: PMC7486119 DOI: 10.7554/elife.60637] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
It is being increasingly appreciated that the immunomodulatory functions of PARP1 inhibitors (PARPi) underlie their clinical activities in various BRCA-mutated tumors. PARPi possess both PARP1 inhibition and PARP1 trapping activities. The relative contribution of these two mechanisms toward PARPi-induced innate immune signaling, however, is poorly understood. We find that the presence of the PARP1 protein with uncompromised DNA-binding activities is required for PARPi-induced innate immune response. The activation of cGAS-STING signaling induced by various PARPi closely depends on their PARP1 trapping activities. Finally, we show that a small molecule PARP1 degrader blocks the enzymatic activity of PARP1 without eliciting PARP1 trapping or cGAS-STING activation. Our findings thus identify PARP1 trapping as a major contributor of the immunomodulatory functions of PARPi. Although PARPi-induced innate immunity is highly desirable in human malignancies, the ability of ‘non-trapping’ PARP1 degraders to avoid the activation of innate immune response could be useful in non-oncological diseases.
Collapse
Affiliation(s)
- Chiho Kim
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Xu-Dong Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Yonghao Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|