1
|
Clément AE, Merdrignac C, Puiggros SR, Sévère D, Brionne A, Lafond T, Nguyen T, Montfort J, Guyomar C, Dauvé A, Herpin A, Jabaudon D, Colson V, Murat F, Bobe J. Parent-of-origin regulation by maternal auts2 shapes neurodevelopment and behavior in fish. Genome Biol 2025; 26:125. [PMID: 40346605 PMCID: PMC12063280 DOI: 10.1186/s13059-025-03600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 04/29/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Parental experience can influence progeny behavior through gamete-mediated non-genetic inheritance, that is, mechanisms that do not involve changes in inherited DNA sequence. However, underlying mechanisms remain poorly understood in vertebrates, especially for maternal effects. Here, we use the medaka, a model fish species, to investigate the role of auts2a, the ortholog of human AUTS2, a gene repressed in the fish oocyte following maternal stress and associated with neurodevelopmental disorders. RESULTS We show that auts2a expression in the oocyte influences long-term progeny behavior, including anxiety-like behavior and environment recognition capabilities. Using single-nuclei RNA-sequencing, we reveal that maternal auts2a influences gene expression in neural cell populations during neurodevelopment. We also show that maternal auts2a knock-out triggers differences in maternally inherited factors, including early embryonic transcriptional and post-transcriptional regulators. CONCLUSIONS Together, our results reveal the unsuspected role of an autism-related gene expressed in the mother's oocyte in shaping progeny neurodevelopment and behavior. Finally, we report that auts2a/AUTS2 is part of a group of evolutionarily conserved genes associated with human neurodevelopmental disorders and expressed in oocytes across species, from fish to mammals. These findings raise important questions about their potential role in the non-genetic regulation of progeny neurodevelopment and behavior in vertebrates.
Collapse
Affiliation(s)
| | | | - Sergi Roig Puiggros
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Dorine Sévère
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Aurélien Brionne
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Thomas Lafond
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Thaovi Nguyen
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Jérôme Montfort
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Cervin Guyomar
- Sigenae, GenPhySE, INRAE, ENVT, Université de Toulouse, Toulouse, Castanet Tolosan, France
| | - Alexandra Dauvé
- MGX-Montpellier GenomiX, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Amaury Herpin
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Violaine Colson
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Florent Murat
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Julien Bobe
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France.
| |
Collapse
|
2
|
Shimaoka K, Hori K, Miyashita S, Inoue YU, Tabe NKN, Sakamoto A, Hasegawa I, Nishitani K, Yamashiro K, Egusa SF, Tatsumoto S, Go Y, Abe M, Sakimura K, Inoue T, Imamura T, Hoshino M. The microcephaly-associated transcriptional regulator AUTS2 cooperates with Polycomb complex PRC2 to produce upper-layer neurons in mice. EMBO J 2025; 44:1354-1378. [PMID: 39815005 PMCID: PMC11876313 DOI: 10.1038/s44318-024-00343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 01/18/2025] Open
Abstract
AUTS2 syndrome is characterized by intellectual disability and microcephaly, and is often associated with autism spectrum disorder, but the underlying mechanisms, particularly concerning microcephaly, remain incompletely understood. Here, we analyze mice mutated for the transcriptional regulator AUTS2, which recapitulate microcephaly. Their brains exhibit reduced division of intermediate progenitor cells (IPCs), leading to fewer neurons and decreased thickness in the upper-layer cortex. Increased expression of the AUTS2 transcriptional target Robo1 in the mutant animals suppresses IPC division, and transcriptomic and chromatin profiling shows that AUTS2 primarily represses transcription of genes like Robo1 in IPCs. Regions around the transcriptional start sites of AUTS2 target genes are enriched for the repressive histone modification H3K27me3, which is reduced in Auts2 mutants. Furthermore, we find that AUTS2 interacts with Polycomb complex PRC2, with which it cooperates to promote IPC division. These findings shed light on the microcephaly phenotype observed in the AUTS2 syndrome.
Collapse
Affiliation(s)
- Kazumi Shimaoka
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Kei Hori
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Satoshi Miyashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Yukiko U Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Nao K N Tabe
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
- Department of NCNP Brain Physiology and Pathology, Institute of Science Tokyo, Tokyo, 113-8510, Japan
| | - Asami Sakamoto
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Ikuko Hasegawa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Kayo Nishitani
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Kunihiko Yamashiro
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Saki F Egusa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Shoji Tatsumoto
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Yasuhiro Go
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
- Department of System Neuroscience, Division of Behavioral Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
- Graduate School of Information Science, University of Hyogo, Kobe, Hyogo, 650-0047, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Takuya Imamura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan.
- Department of NCNP Brain Physiology and Pathology, Institute of Science Tokyo, Tokyo, 113-8510, Japan.
| |
Collapse
|
3
|
Tajima Y, Vargas CDM, Ito K, Wang W, Luo JD, Xing J, Kuru N, Machado LC, Siepel A, Carroll TS, Jarvis ED, Darnell RB. A humanized NOVA1 splicing factor alters mouse vocal communications. Nat Commun 2025; 16:1542. [PMID: 39966351 PMCID: PMC11836289 DOI: 10.1038/s41467-025-56579-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
NOVA1, a neuronal RNA-binding protein expressed in the central nervous system, is essential for survival in mice and normal development in humans. A single amino acid change (I197V) in NOVA1's second RNA binding domain is unique to modern humans. To study its physiological effects, we generated mice carrying the human-specific I197V variant (Nova1hu/hu) and analyzed the molecular and behavioral consequences. While the I197V substitution had minimal impact on NOVA1's RNA binding capacity, it led to specific effects on alternative splicing, and CLIP revealed multiple binding peaks in mouse brain transcripts involved in vocalization. These molecular findings were associated with behavioral differences in vocalization patterns in Nova1hu/hu mice as pups and adults. Our findings suggest that this human-specific NOVA1 substitution may have been part of an ancient evolutionary selective sweep in a common ancestral population of Homo sapiens, possibly contributing to the development of spoken language through differential RNA regulation during brain development.
Collapse
Affiliation(s)
- Yoko Tajima
- The Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, NY, USA.
| | - César D M Vargas
- The Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
| | - Keiichi Ito
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Wei Wang
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Jiawei Xing
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Nurdan Kuru
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Luiz Carlos Machado
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Erich D Jarvis
- The Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Robert B Darnell
- The Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
4
|
Loberti L, Adamo L, Antolini E, Casamassima G, Destrèe A, Brunetti-Pierri N, Genevieve D, Christophe P, Coubes C, Van Esch H, Herget T, Kortüm F, Lisfeld J, Möllring AC, Zenker M, Levy J, Perrin L, Tabet AC, Maruani A, Sorlin A, Stieber D, Herissant L, Dahan K, Sinibaldi L, Capolino R, Dentici ML, Dallapiccola B, Novelli A, Garavelli L, Caraffi SG, Piatelli G, Valenzuela I, Digilio MC, Caumes R, Knopp C, Chwiałkowska K, Jezela-Stanek A, Kwasniewski M, Korotko U, Gorzałczyńska E, Canitano R, Grosso S, Rahikkala E, Mattern L, Elbracht M, Zuffardi O, Caputo V, Toschi B, Beunders G, Leeuwen L, Elting MW, van der Laan L, Broekema MF, Groffen AJ, van de Kamp JM, van Haelst MM, Alders M, Mauro SP, De Razza F, Varvara D, Kick J, Gaspar H, Braun D, Lausberg E, Maier A, Ruault V, Genesio R, Tartaglia M, Tita R, Bruttini M, Longo I, Baldassarri M, Mencarelli MA, Renieri A, Pinto AM. AUTS2-related syndrome: Insights from a large European cohort. Genet Med 2025; 27:101375. [PMID: 39953909 DOI: 10.1016/j.gim.2025.101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
PURPOSE AUTS2-related syndrome is characterized by developmental delay, autism spectrum disorder, and intellectual disability. From alternative promoters, AUTS2 encodes 2 distinct long and short isoforms encoding a putative transcriptional activator. METHODS Through a European collaborative study, we collected clinical and genotype data on the largest AUTS2-related syndrome cohort of 58 patients harboring genomic rearrangements or single-nucleotide variants (SNVs). RESULTS Pathogenic SNVs were recurrently found in individuals from different countries, suggesting mutational hotspots. Independent of the underlying defect at the AUTS2 locus, we observed that autistic behavior, hyperactivity, learning difficulties, and speech delay are common features of AUTS2-related syndrome. Among patients with SNVs, individuals carrying pathogenic variants affecting both longer and shorter AUTS2 transcripts showed a recognizable phenotype with microcephaly, brachycephaly, microretrognathia, broad nasal base, and anteverted nares. Behavioral disorders were more common in patients with variants affecting only the longer isoform. Arthrogryposis and stiff movements were only observed in patients with SNVs. CONCLUSION This study provides a comprehensive clinical characterization of AUTS2-related syndrome, reveals few genotype-phenotype correlations, and suggests that the disruption of the 2 distinct AUTS2 transcripts has a different impact on the clinical phenotype.
Collapse
Affiliation(s)
- Lorenzo Loberti
- Medical Genetics, University of Siena, Siena, Italy; Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Loredaria Adamo
- Medical Genetics, University of Siena, Siena, Italy; Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Enrica Antolini
- Medical Genetics, University of Siena, Siena, Italy; Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Giulia Casamassima
- Medical Genetics, University of Siena, Siena, Italy; Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Anne Destrèe
- Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| | - David Genevieve
- Montpellier University and INSERM U1183, Montpellier, France; Reference Center for Malformative Syndrome and Developmental Anomalies, Clinical Genetics Unit, Montpellier University Hospital, ERN ITHACA, Montpellier, France
| | - Philippe Christophe
- Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France; UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHU-TRANSLAD, Dijon, France
| | - Christine Coubes
- Département de Génétique Médicale, Hôpital Arnaud de Villeneuve, CHRU Montpellier, Montpellier, France
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Theresia Herget
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Lisfeld
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Martin Zenker
- Institute of Human Genetics, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jonathan Levy
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, France
| | - Laurence Perrin
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, France
| | - Anne-Claude Tabet
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, France
| | - Anna Maruani
- Excellence Centre for Autism & Neuro-developmental Disorders, Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, and CRMR Déficiences intellectuelles et TND de causes rares-Robert-Debré, Paris, France
| | - Arthur Sorlin
- National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Daniel Stieber
- National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Lucas Herissant
- National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Karin Dahan
- National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Lorenzo Sinibaldi
- Medical Genetics Unit and Scientific Rectorate and Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Capolino
- Medical Genetics Unit and Scientific Rectorate and Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Lisa Dentici
- Medical Genetics Unit and Scientific Rectorate and Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Bruno Dallapiccola
- Medical Genetics Unit and Scientific Rectorate and Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Medical Genetics Unit and Scientific Rectorate and Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Gianluca Piatelli
- U.O.C. Neurochirurgia, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Irene Valenzuela
- Area of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Maria Cristina Digilio
- Medical Genetics Unit and Scientific Rectorate and Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Cordula Knopp
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Karolina Chwiałkowska
- IMAGENE.ME SA, Bialystok, Poland; Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Białystok, Poland
| | - Aleksandra Jezela-Stanek
- IMAGENE.ME SA, Bialystok, Poland; Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Miroslaw Kwasniewski
- IMAGENE.ME SA, Bialystok, Poland; Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Białystok, Poland
| | - Urszula Korotko
- IMAGENE.ME SA, Bialystok, Poland; Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Białystok, Poland
| | | | - Roberto Canitano
- Division of Child and Adolescent Neuropsychiatry, University of Siena, Siena, Italy
| | - Salvatore Grosso
- Clinical Paediatrics, Department of Molecular Medicine and Development, University of Siena, Siena, Italy
| | - Elisa Rahikkala
- Department of Clinical Genetics, Research Unit of Clinical Medicine, and Medical Research Center Oulu, University of Oulu, and Oulu University Hospital, Oulu, Finland
| | - Larissa Mattern
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Orsetta Zuffardi
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Valentina Caputo
- Medical Genetics, University of Siena, Siena, Italy; Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Benedetta Toschi
- Medical Genetics Unit, Oncological Department, University Hospital of Pisa, Pisa, Italy
| | - Gea Beunders
- University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Lisette Leeuwen
- University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Mariet W Elting
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Liselot van der Laan
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Marjoleine F Broekema
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexander J Groffen
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Jiddeke M van de Kamp
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Mieke M van Haelst
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Marielle Alders
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Dora Varvara
- UOC Genetica Medica, Presidio Ospedaliero Vito Fazzi, Lecce, Italy
| | - Johanna Kick
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Harald Gaspar
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dominique Braun
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Eva Lausberg
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Andrea Maier
- Department of Neurology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Valentin Ruault
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU Montpellier, Montpellier, France
| | - Rita Genesio
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Tita
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Mirella Bruttini
- Medical Genetics, University of Siena, Siena, Italy; Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Ilaria Longo
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, Siena, Italy; Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy; Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Anna Maria Pinto
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy.
| |
Collapse
|
5
|
Scala M, Bradley CA, Howe JL, Trost B, Salazar NB, Shum C, Mendes M, Reuter MS, Anagnostou E, MacDonald JR, Ko SY, Frankland PW, Charlebois J, Elsabbagh M, Granger L, Anadiotis G, Pullano V, Brusco A, Keller R, Parisotto S, Pedro HF, Lusk L, McDonnell PP, Helbig I, Mullegama SV, Douine ED, Corona RI, Russell BE, Nelson SF, Graziano C, Schwab M, Simone L, Zara F, Scherer SW. Genetic variants in DDX53 contribute to autism spectrum disorder associated with the Xp22.11 locus. Am J Hum Genet 2025; 112:154-167. [PMID: 39706195 PMCID: PMC11739878 DOI: 10.1016/j.ajhg.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 12/23/2024] Open
Abstract
Autism spectrum disorder (ASD) exhibits an ∼4:1 male-to-female sex bias and is characterized by early-onset impairment of social/communication skills, restricted interests, and stereotyped behaviors. Disruption of the Xp22.11 locus has been associated with ASD in males. This locus includes the three-exon PTCHD1, an adjacent multi-isoform long noncoding RNA (lncRNA) named PTCHD1-AS (spanning ∼1 Mb), and a poorly characterized single-exon RNA helicase named DDX53 that is intronic to PTCHD1-AS. While the relationship between PTCHD1/PTCHD1-AS and ASD is being studied, the role of DDX53 has not been comprehensively examined, in part because there is no apparent functional murine ortholog. Through clinical testing, here, we identified 8 males and 2 females with ASD from 8 unrelated families carrying rare, predicted damaging or loss-of-function variants in DDX53. Additionally, we identified a family consisting of a male proband and his affected mother with high-functioning autism, both harboring a gene deletion involving DDX53 and exons of the noncoding RNA PTCHD1-AS. Then, we examined databases, including the Autism Speaks MSSNG and Simons Foundation Autism Research Initiative, as well as population controls. We identified 26 additional individuals with ASD harboring 19 mostly maternally inherited, rare, damaging DDX53 variations, including two variants detected in families from the original clinical analysis. Our findings in humans support a direct link between DDX53 and ASD, which will be important in clinical genetic testing. These same autism-related findings, coupled with the observation that a functional orthologous gene is not found in mice, may also influence the design and interpretation of murine modeling of ASD.
Collapse
Affiliation(s)
- Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa, Genoa, Italy; UOC Genetica Medica, IRCCS Giannina Gaslini, Genoa, Italy.
| | - Clarrisa A Bradley
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Jennifer L Howe
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Brett Trost
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Nelson Bautista Salazar
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Carole Shum
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Marla Mendes
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Miriam S Reuter
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Evdokia Anagnostou
- Department of Pediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Program in Neurosciences and Mental Health, The Hospital for Sick Children and Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Jeffrey R MacDonald
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sangyoon Y Ko
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Paul W Frankland
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada; Department of Psychology and Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Jessica Charlebois
- Azrieli Centre for Autism Research, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Mayada Elsabbagh
- Azrieli Centre for Autism Research, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Leslie Granger
- Department of Genetics and Metabolism, Randall Children's Hospital, Portland, OR 97227, USA
| | - George Anadiotis
- Department of Genetics and Metabolism, Randall Children's Hospital, Portland, OR 97227, USA
| | - Verdiana Pullano
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Alfredo Brusco
- Department of Neurosciences Rita Levi-Montalcini, University of Turin, 10126 Turin, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, Italy
| | - Roberto Keller
- Adult Autism Centre DSM ASL Città di Torino, 10138 Turin, Italy
| | - Sarah Parisotto
- Center for Genetic and Genomic Medicine, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Helio F Pedro
- Center for Genetic and Genomic Medicine, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Laina Lusk
- Epilepsy Neurogenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Pamela Pojomovsky McDonnell
- Epilepsy Neurogenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ingo Helbig
- Epilepsy Neurogenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Emilie D Douine
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Rosario Ivetth Corona
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Bianca E Russell
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Stanley F Nelson
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Claudio Graziano
- Dipartimento MeLabeT, AUSL della Romagna, Pievesestina di Cesena, Cesena, Italy
| | - Maria Schwab
- Center for Genetic and Genomic Medicine, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Laurie Simone
- Center for Genetic and Genomic Medicine, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa, Genoa, Italy; UOC Genetica Medica, IRCCS Giannina Gaslini, Genoa, Italy
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; McLaughlin Centre, Toronto, ON M5G 0A4, Canada.
| |
Collapse
|
6
|
Li J, Chen D, Liu H, Xi Y, Luo H, Wei Y, Liu J, Liang H, Zhang Q. Identifying potential genetic epistasis implicated in Alzheimer's disease via detection of SNP-SNP interaction on quantitative trait CSF Aβ 42. Neurobiol Aging 2024; 134:84-93. [PMID: 38039940 DOI: 10.1016/j.neurobiolaging.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 12/03/2023]
Abstract
Although genome-wide association studies have identified multiple Alzheimer's disease (AD)-associated loci by selecting the main effects of individual single-nucleotide polymorphisms (SNPs), the interpretation of genetic variance in AD is limited. Based on the linear regression method, we performed genome-wide SNP-SNP interaction on cerebrospinal fluid Aβ42 to identify potential genetic epistasis implicated in AD, with age, gender, and diagnosis as covariates. A GPU-based method was used to address the computational challenges posed by the analysis of epistasis. We found 368 SNP pairs to be statistically significant, and highly significant SNP-SNP interactions were identified between the marginal main effects of SNP pairs, which explained a relatively high variance at the Aβ42 level. Our results replicated 100 previously reported AD-related genes and 5 gene-gene interaction pairs of the protein-protein interaction network. Our bioinformatics analyses provided preliminary evidence that the 5-overlapping gene-gene interaction pairs play critical roles in inducing synaptic loss and dysfunction, thereby leading to memory decline and cognitive impairment in AD-affected brains.
Collapse
Affiliation(s)
- Jin Li
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
| | - Dandan Chen
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China; School of Automation Engineering, Northeast Electric Power University, Jilin, China
| | - Hongwei Liu
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
| | - Yang Xi
- School of Computer Science, Northeast Electric Power University, Jilin, China
| | - Haoran Luo
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
| | - Yiming Wei
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
| | - Junfeng Liu
- School of Computer Science, Northeast Electric Power University, Jilin, China
| | - Hong Liang
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China.
| | - Qiushi Zhang
- School of Computer Science, Northeast Electric Power University, Jilin, China.
| |
Collapse
|
7
|
Song Y, Seward CH, Chen CY, LeBlanc A, Leddy AM, Stubbs L. Isolated loss of the AUTS2 long isoform, brain-wide or targeted to Calbindin-lineage cells, generates a specific suite of brain, behavioral, and molecular pathologies. Genetics 2024; 226:iyad182. [PMID: 37816306 PMCID: PMC10763537 DOI: 10.1093/genetics/iyad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/25/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Rearrangements within the AUTS2 region are associated with a rare syndromic disorder with intellectual disability, developmental delay, and behavioral abnormalities as core features. In addition, smaller regional variants are linked to wide range of neuropsychiatric disorders, underscoring the gene's essential role in brain development. Like many essential neurodevelopmental genes, AUTS2 is large and complex, generating distinct long (AUTS2-l) and short (AUTS2-s) protein isoforms from alternative promoters. Although evidence suggests unique isoform functions, the contributions of each isoform to specific AUTS2-linked phenotypes have not been clearly resolved. Furthermore, Auts2 is widely expressed across the developing brain, but cell populations most central to disease presentation have not been determined. In this study, we focused on the specific roles of AUTS2-l in brain development, behavior, and postnatal brain gene expression, showing that brain-wide AUTS2-l ablation leads to specific subsets of the recessive pathologies associated with mutations in 3' exons (exons 8-19) that disrupt both major isoforms. We identify downstream genes that could explain expressed phenotypes including hundreds of putative direct AUTS2-l target genes. Furthermore, in contrast to 3' Auts2 mutations which lead to dominant hypoactivity, AUTS2-l loss-of-function is associated with dominant hyperactivity and repetitive behaviors, phenotypes exhibited by many human patients. Finally, we show that AUTS2-l ablation in Calbindin 1-expressing cell lineages is sufficient to yield learning/memory deficits and hyperactivity with abnormal dentate gyrus granule cell maturation, but not other phenotypic effects. These data provide new clues to in vivo AUTS2-l functions and novel information relevant to genotype-phenotype correlations in the human AUTS2 region.
Collapse
Affiliation(s)
- Yunshu Song
- Pacific Northwest Research Institute, Seattle WA 98122, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Chih-Ying Chen
- Pacific Northwest Research Institute, Seattle WA 98122, USA
| | - Amber LeBlanc
- Pacific Northwest Research Institute, Seattle WA 98122, USA
| | | | - Lisa Stubbs
- Pacific Northwest Research Institute, Seattle WA 98122, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Scala M, Bradley CA, Howe JL, Trost B, Salazar NB, Shum C, Reuter MS, MacDonald JR, Ko SY, Frankland PW, Granger L, Anadiotis G, Pullano V, Brusco A, Keller R, Parisotto S, Pedro HF, Lusk L, McDonnell PP, Helbig I, Mullegama SV, Undiagnosed Diseases Network, Douine ED, Russell BE, Nelson SF, Zara F, Scherer SW. Genetic variants in DDX53 contribute to Autism Spectrum Disorder associated with the Xp22.11 locus. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.21.23300383. [PMID: 38234782 PMCID: PMC10793518 DOI: 10.1101/2023.12.21.23300383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Autism Spectrum Disorder (ASD) exhibits an ~4:1 male-to-female sex bias and is characterized by early-onset impairment of social/communication skills, restricted interests, and stereotyped behaviors. Disruption of the Xp22.11 locus has been associated with ASD in males. This locus includes the three-exon PTCHD1 gene, an adjacent multi-isoform long noncoding RNA (lncRNA) named PTCHD1-AS (spanning ~1Mb), and a poorly characterized single-exon RNA helicase named DDX53 that is intronic to PTCHD1-AS. While the relationship between PTCHD1/PTCHD1-AS and ASD is being studied, the role of DDX53 has not been examined, in part because there is no apparent functional murine orthologue. Through clinical testing, here, we identified 6 males and 1 female with ASD from 6 unrelated families carrying rare, predicted-damaging or loss-of-function variants in DDX53. Then, we examined databases, including the Autism Speaks MSSNG and Simons Foundation Autism Research Initiative, as well as population controls. We identified 24 additional individuals with ASD harboring rare, damaging DDX53 variations, including the same variants detected in two families from the original clinical analysis. In this extended cohort of 31 participants with ASD (28 male, 3 female), we identified 25 mostly maternally-inherited variations in DDX53, including 18 missense changes, 2 truncating variants, 2 in-frame variants, 2 deletions in the 3' UTR and 1 copy number deletion. Our findings in humans support a direct link between DDX53 and ASD, which will be important in clinical genetic testing. These same autism-related findings, coupled with the observation that a functional orthologous gene is not found in mouse, may also influence the design and interpretation of murine-modelling of ASD.
Collapse
Affiliation(s)
- Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- UOC Genetica Medica, IRCCS Giannina Gaslini, Genoa, Italy
| | - Clarrisa A. Bradley
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer L. Howe
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Brett Trost
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Nelson Bautista Salazar
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Carole Shum
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Miriam S. Reuter
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jeffrey R. MacDonald
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sangyoon Y. Ko
- Program in Neurosciences and Mental Health, The Hospital for Sick Children and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Paul W. Frankland
- Program in Neurosciences and Mental Health, The Hospital for Sick Children and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Leslie Granger
- Department of Genetics and Metabolism, Randall Children’s Hospital, Portland, OR 97227, USA
| | - George Anadiotis
- Department of Genetics and Metabolism, Randall Children’s Hospital, Portland, OR 97227, USA
| | - Verdiana Pullano
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Alfredo Brusco
- Department of Neurosciences Rita Levi-Montalcini, University of Turin, 10126 Turin, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, Italy
| | - Roberto Keller
- Adult Autism Centre DSM ASL Città di Torino, 10138 Turin, Italy
| | - Sarah Parisotto
- Center for Genetic and Genomic Medicine, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Helio F. Pedro
- Center for Genetic and Genomic Medicine, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Laina Lusk
- Epilepsy Neurogenetics Initiative, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Pamela Pojomovsky McDonnell
- Epilepsy Neurogenetics Initiative, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ingo Helbig
- Epilepsy Neurogenetics Initiative, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | - Emilie D. Douine
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Bianca E. Russell
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Stanley F. Nelson
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- UOC Genetica Medica, IRCCS Giannina Gaslini, Genoa, Italy
| | - Stephen W. Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- McLaughlin Centre, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
9
|
Tamagawa K, Sunobe T, Makino T, Kawata M. Transcriptomic signatures associated with underlying rapid changes in the early phase brain of bi-directional sex change in Trimma okinawae. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231450. [PMID: 38077214 PMCID: PMC10698487 DOI: 10.1098/rsos.231450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/16/2023] [Indexed: 01/11/2024]
Abstract
Teleost fish exhibit remarkable sexual plasticity and divergent developmental systems, including sequential hermaphroditism. One of the more fascinating models of sexual plasticity is socially controlled sex change, which is often observed in coral reef fish. The Okinawa rubble goby, Trimma okinawae, is a bi-directional sex-changing fish. It can rapidly change sex in either direction based on social circumstances. Although behavioural and neuroendocrine sex change occurs immediately and is believed to trigger gonadal changes, the underlying mechanisms remain poorly understood. In this study, we conducted a de novo transcriptome analysis of the T. okinawae brain and identified genes that are differentially expressed between the sexes and genes that were immediately controlled by social stimulation implicating sex change. Several genes showed concordant expression shifts regardless of the sex change direction and were associated with histone modification in nerve cells. These genes are known to function in the neuroendocrine control of reproduction in nerve cells. Overall, we identified genes associated with the initiation of sex change, which provides insight into the regulation of sex change and sexual plasticity.
Collapse
Affiliation(s)
- Katsunori Tamagawa
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Tomoki Sunobe
- Laboratory of Fish Behavioral Ecology, Tateyama Station, Field Science Center, Tokyo University of Marine Science and Technology, 670 Banda, Tateyama, Chiba 294-0308, Japan
| | - Takashi Makino
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Masakado Kawata
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
10
|
Kotchetkov P, Blakeley N, Lacoste B. Involvement of brain metabolism in neurodevelopmental disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 173:67-113. [PMID: 37993180 DOI: 10.1016/bs.irn.2023.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Neurodevelopmental disorders (NDDs) affect a significant portion of the global population and have a substantial social and economic impact worldwide. Most NDDs manifest in early childhood and are characterized by deficits in cognition, communication, social interaction and motor control. Due to a limited understanding of the etiology of NDDs, current treatment options primarily focus on symptom management rather than on curative solutions. Moreover, research on NDDs is problematic due to its reliance on a neurocentric approach. However, recent studies are broadening the scope of research on NDDs, to include dysregulations within a diverse network of brain cell types, including vascular and glial cells. This review aims to summarize studies from the past few decades on potential new contributions to the etiology of NDDs, with a special focus on metabolic signatures of various brain cells. In particular, we aim to convey how the metabolic functions are intimately linked to the onset and/or progression of common NDDs such as autism spectrum disorders, fragile X syndrome, Rett syndrome and Down syndrome.
Collapse
Affiliation(s)
- Pavel Kotchetkov
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nicole Blakeley
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
11
|
Ye X, Zhou Q, Ren P, Xiang W, Xiao L. The Synaptic and Circuit Functions of Vitamin D in Neurodevelopment Disorders. Neuropsychiatr Dis Treat 2023; 19:1515-1530. [PMID: 37424961 PMCID: PMC10327924 DOI: 10.2147/ndt.s407731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Vitamin D deficiency/insufficiency is a public health issue around the world. According to epidemiological studies, low vitamin D levels have been associated with an increased risk of some neurodevelopmental disorders, including autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). Animal models reveal that vitamin D has a variety of impacts on the synapses and circuits in the brain. A lack of vitamin D affects the expression of synaptic proteins, as well as the synthesis and metabolism of various neurotransmitters. Depending on where vitamin D receptors (VDRs) are expressed, vitamin D may also regulate certain neuronal circuits through the endocannabinoid signaling, mTOR pathway and oxytocin signaling. While inconsistently, some data suggest that vitamin D supplementation may be able to reduce the core symptoms of ASD and ADHD. This review emphasizes vitamin D's role in the synaptic and circuit mechanisms of neurodevelopmental disorders including ASD and ADHD. Future application of vitamin D in these disorders will depend on both basic research and clinical studies, in order to make the transition from the bench to the bedside.
Collapse
Affiliation(s)
- Xiaoshan Ye
- Hainan Women and Children’s Medical Center, School of Pediatrics, Hainan Medical University, Haikou, People’s Republic of China
| | - Qionglin Zhou
- International School of Public Health and One Health, Hainan Medical University, Haikou, People’s Republic of China
| | - Pengcheng Ren
- Hainan Women and Children’s Medical Center, School of Pediatrics, Hainan Medical University, Haikou, People’s Republic of China
- National Health Commission (NHC) Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, People’s Republic of China
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, People’s Republic of China
| | - Wei Xiang
- Hainan Women and Children’s Medical Center, School of Pediatrics, Hainan Medical University, Haikou, People’s Republic of China
- National Health Commission (NHC) Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, People’s Republic of China
| | - Le Xiao
- Hainan Women and Children’s Medical Center, School of Pediatrics, Hainan Medical University, Haikou, People’s Republic of China
| |
Collapse
|
12
|
Mai L, Inada H, Osumi N. Whole-brain mapping of neuronal activity evoked by maternal separation in neonatal mice: An association with ultrasound vocalization. Neuropsychopharmacol Rep 2023. [PMID: 37128179 DOI: 10.1002/npr2.12337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/01/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023] Open
Abstract
Neonatal mice emit ultrasonic vocalizations (USVs) when separated from their mothers. Since the USVs attract their mothers' attention and trigger maternal retrieval, they are considered to serve as social signals for communication. We have modeled paternal aging effects on the vocal communication of offspring in mice. However, little is known about the neural basis underlying neonatal USV production. To identify responsible brain regions driving the vocal behavior, we comprehensively mapped the neuronal activity associated with USV production in the entire brain of mice at postnatal day 6 (P6). Using an expression of immediate-early gene c-Fos as a neuronal activity marker, correlations between the numbers of USVs and c-Fos positive neurons were analyzed. We identified 23 candidate brain regions associated with USV production in the mice at P6. Our study would be a first step toward comprehensively understanding the neuronal mechanisms that regulate and develop vocal behaviors in neonatal mice.
Collapse
Affiliation(s)
- Lingling Mai
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hitoshi Inada
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
- Laboratory of Health and Sports Sciences, Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, 980-8575, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| |
Collapse
|
13
|
Medina E, Peterson S, Ford K, Singletary K, Peixoto L. Critical periods and Autism Spectrum Disorders, a role for sleep. Neurobiol Sleep Circadian Rhythms 2023; 14:100088. [PMID: 36632570 PMCID: PMC9826922 DOI: 10.1016/j.nbscr.2022.100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Brain development relies on both experience and genetically defined programs. Time windows where certain brain circuits are particularly receptive to external stimuli, resulting in heightened plasticity, are referred to as "critical periods". Sleep is thought to be essential for normal brain development. Importantly, studies have shown that sleep enhances critical period plasticity and promotes experience-dependent synaptic pruning in the developing mammalian brain. Therefore, normal plasticity during critical periods depends on sleep. Problems falling and staying asleep occur at a higher rate in Autism Spectrum Disorder (ASD) relative to typical development. In this review, we explore the potential link between sleep, critical period plasticity, and ASD. First, we review the importance of critical period plasticity in typical development and the role of sleep in this process. Next, we summarize the evidence linking ASD with deficits in synaptic plasticity in rodent models of high-confidence ASD gene candidates. We then show that the high-confidence rodent models of ASD that show sleep deficits also display plasticity deficits. Given how important sleep is for critical period plasticity, it is essential to understand the connections between synaptic plasticity, sleep, and brain development in ASD. However, studies investigating sleep or plasticity during critical periods in ASD mouse models are lacking. Therefore, we highlight an urgent need to consider developmental trajectory in studies of sleep and plasticity in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elizabeth Medina
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Sarah Peterson
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Kaitlyn Ford
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Kristan Singletary
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Lucia Peixoto
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
14
|
Liu M, Chen Y, Sun M, Du Y, Bai Y, Lei G, Zhang C, Zhang M, Zhang Y, Xi C, Ma Y, Wang G. Auts2 regulated autism-like behavior, glucose metabolism and oxidative stress in mice. Exp Neurol 2023; 361:114298. [PMID: 36525998 DOI: 10.1016/j.expneurol.2022.114298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/29/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by abnormal social behavior and communication. The autism susceptibility candidate 2 (AUTS2) gene has been associated with multiple neurological diseases, including ASD. Glucose metabolism plays an important role in social behaviors associated with ASD, but the potential role of AUTS2 in glucose metabolism has not been studied. Here, we generated Auts2flox/flox; Emx1Cre+ conditional knockout mice with Auts2 deletion specifically in Exm1-positive neurons in the brain (Auts2-cKO mice) to evaluate the effects of Auts2 knockdown on social behaviors and metabolic pathways. Auts2-cKO mice exhibited ASD-like behaviors, including impaired social interactions and repetitive grooming behaviors. At the molecular level, we found that Auts2 knockdown reduced brain glucose uptake and inhibited the pentose phosphate pathway. Auts2 knockdown also resulted in signs of oxidative stress, and we documented increased levels of reactive oxygen species and malondialdehyde as well as decreased levels of antioxidant molecules, including glutathione and superoxide dismutases in Auts2-cKO mouse brains compared to controls. Finally, Auts2 knockdown significantly disrupted mitochondrial homeostasis and inhibited activity of the SIRT1-SIRT3 axis. Taken together, our findings indicate that loss of AUTS2 expression in Emx1-expressing cells induces multiple changes in metabolic pathways that have been linked to the pathology of ASD. Further characterization of the role of AUTS2 in Emx1-expressing cells in regulating the metabolism of brain neurons may identify opportunities to treat ASD and AUTS2-deficiency disorders with metabolism-targeted therapies.
Collapse
Affiliation(s)
- Min Liu
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yimeng Chen
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Miao Sun
- Department of Anesthesiology, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Yingjie Du
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yafan Bai
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Guiyu Lei
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Congya Zhang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Mingru Zhang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yue Zhang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Chunhua Xi
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yulong Ma
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Guyan Wang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| |
Collapse
|
15
|
Thongkorn S, Kanlayaprasit S, Kasitipradit K, Lertpeerapan P, Panjabud P, Hu VW, Jindatip D, Sarachana T. Investigation of autism-related transcription factors underlying sex differences in the effects of bisphenol A on transcriptome profiles and synaptogenesis in the offspring hippocampus. Biol Sex Differ 2023; 14:8. [PMID: 36803626 PMCID: PMC9940328 DOI: 10.1186/s13293-023-00496-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Bisphenol A (BPA) has been linked to susceptibility to autism spectrum disorder (ASD). Our recent studies have shown that prenatal BPA exposure disrupted ASD-related gene expression in the hippocampus, neurological functions, and behaviors associated with ASD in a sex-specific pattern. However, the molecular mechanisms underlying the effects of BPA are still unclear. METHODS Transcriptome data mining and molecular docking analyses were performed to identify ASD-related transcription factors (TFs) and their target genes underlying the sex-specific effects of prenatal BPA exposure. Gene ontology analysis was conducted to predict biological functions associated with these genes. The expression levels of ASD-related TFs and targets in the hippocampus of rat pups prenatally exposed to BPA were measured using qRT-PCR analysis. The role of the androgen receptor (AR) in BPA-mediated regulation of ASD candidate genes was investigated using a human neuronal cell line stably transfected with AR-expression or control plasmid. Synaptogenesis, which is a function associated with genes transcriptionally regulated by ASD-related TFs, was assessed using primary hippocampal neurons isolated from male and female rat pups prenatally exposed to BPA. RESULTS We found that there was a sex difference in ASD-related TFs underlying the effects of prenatal BPA exposure on the transcriptome profiles of the offspring hippocampus. In addition to the known BPA targets AR and ESR1, BPA could directly interact with novel targets (i.e., KDM5B, SMAD4, and TCF7L2). The targets of these TFs were also associated with ASD. Prenatal BPA exposure disrupted the expression of ASD-related TFs and targets in the offspring hippocampus in a sex-dependent manner. Moreover, AR was involved in the BPA-mediated dysregulation of AUTS2, KMT2C, and SMARCC2. Prenatal BPA exposure altered synaptogenesis by increasing synaptic protein levels in males but not in females, but the number of excitatory synapses was increased in female primary neurons only. CONCLUSIONS Our findings suggest that AR and other ASD-related TFs are involved in sex differences in the effects of prenatal BPA exposure on transcriptome profiles and synaptogenesis in the offspring hippocampus. These TFs may play an essential role in an increased ASD susceptibility associated with endocrine-disrupting chemicals, particularly BPA, and the male bias of ASD.
Collapse
Affiliation(s)
- Surangrat Thongkorn
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Songphon Kanlayaprasit
- grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand
| | - Kasidit Kasitipradit
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pattanachat Lertpeerapan
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pawinee Panjabud
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Valerie W. Hu
- grid.253615.60000 0004 1936 9510Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, The George Washington University, Washington, DC USA
| | - Depicha Jindatip
- grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tewarit Sarachana
- SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
16
|
Pang W, Wang M, Bi Q, Li H, Zhou Q, Ye X, Xiang W, Xiao L. Activity-Dependent Differential Regulation of Auts2 Isoforms In Vitro and In Vivo. Mol Neurobiol 2023; 60:2973-2985. [PMID: 36754912 DOI: 10.1007/s12035-023-03241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder of unknown cause, although one hypothesis suggests a potential imbalance between excitation and inhibition that leads to changes in neuronal activity and a disturbance in the brain network. However, the mechanisms through which neuronal activity contributes to the development of ASD remain largely unexplained. In this study, we described that neuronal activity at the transcriptional and translational levels regulated the expression of Auts2 isoforms. The prolonged stimulation of cultured cortical neurons significantly reduced the auts2 transcripts, accompanied by the decrease of FL-Auts2 protein, as well as one of the short isoforms (S-Auts2 var.1). Blocking neuronal activity increased the number of auts2 transcripts but not protein levels. Furthermore, blocking the NMDA receptors during stimulation could partially restore the FL-Auts2 and S-Auts2 var.1 at protein level, but not at mRNA level. Finally, Auts2 expression in the hippocampus was reduced in mice exposed to an enriched environment, a behavior paradigm designed to increase the brain activity through abundant sensory and social stimulations. Thus, our study revealed a novel regulatory effect of neuronal activity on the transcription and translation of ASD-risk gene auts2.
Collapse
Affiliation(s)
- Wenbin Pang
- Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
- School of Pediatrics, Hainan Medical University, Haikou, China
| | - Meijuan Wang
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
| | - Qingshang Bi
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
| | - Hongai Li
- Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
- School of Pediatrics, Hainan Medical University, Haikou, China
| | - Qionglin Zhou
- School of Pediatrics, Hainan Medical University, Haikou, China
| | - Xiaoshan Ye
- School of Pediatrics, Hainan Medical University, Haikou, China
| | - Wei Xiang
- Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China.
- School of Pediatrics, Hainan Medical University, Haikou, China.
- National Health Commission (NHC) Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, China.
| | - Le Xiao
- Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China.
- School of Pediatrics, Hainan Medical University, Haikou, China.
| |
Collapse
|
17
|
Preeclampsia-induced alterations in brain and liver gene expression and DNA methylation patterns in fetal mice. J Dev Orig Health Dis 2023; 14:146-151. [PMID: 35748176 DOI: 10.1017/s2040174422000344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Exposure to pregnancy complications, including preeclampsia (PE), has lifelong influences on offspring's health. We have previously reported that experimental PE, induced in mice by administration of adenoviral sFlt1 at gestational day 8.5 combined with LPS at day 10.5, results in symmetrical growth restriction in female and asymmetrical growth restriction in male offspring. Here, we characterize the molecular phenotype of the fetal brain and liver with respect to gene transcription and DNA methylation at the end of gestation.In fetal brain and liver, expression and DNA methylation of several key regulatory genes is altered by PE exposure, mostly independent of fetal sex. These alterations point toward a decreased gluconeogenesis in the liver and stimulated neurogenesis in the brain, potentially affecting long-term brain and liver function. The observed sex-specific growth restriction pattern is not reflected in the molecular data, showing that PE, rather than tissue growth, drives the molecular phenotype of PE-exposed offspring.
Collapse
|
18
|
Kobayashi-Tanabe M, Furuie H, Yamada M, Yamada M. Characterization of a WD-repeat family protein WDR3 in the brain of WDR3 hetero knockout mice. Brain Res 2023; 1800:148188. [PMID: 36463953 DOI: 10.1016/j.brainres.2022.148188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/14/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
The nuclear protein WDR3 is a member of the WD-repeat family and is a component of the 18S pre-rRNA processing complex. However, the expression and function of WDR3 in the brain remains unknown. To characterize WDR3 in the adult mouse brain, we developed Wdr3 heterozygous knockout (WDR3-HKO) mice. Notably, no homozygous Wdr3 knockout mice were born, suggesting that complete absence of WDR3 causes lethal abnormalities during embryogenesis. Brain Wdr3 mRNA expression was significantly reduced to 60% in the WDR3-HKO mice compared to wild type (WT) mice, while the expression of 18S rRNA did not decline. Using immunohistochemistry and X-gal staining, we demonstrated that WDR3 is widely expressed in the mouse brain, especially in the hippocampus, habenular nucleus, and cerebellum. We observed no differences in body weight during adulthood or developmental weight gain between the WDR3-HKO and WT mice. Interestingly, WDR3-HKO mice exhibited a slight but significant increase in spontaneous locomotor activity compared to WT littermates. In conclusion, the WDR3-HKO mice showed no significant phenotypic changes. Further studies are required to explore the behavioral characteristics of WDR3-HKO mice.
Collapse
Affiliation(s)
- Momoko Kobayashi-Tanabe
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashimachi, Kodaira, Tokyo 187-8553, Japan.
| | - Hiroki Furuie
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashimachi, Kodaira, Tokyo 187-8553, Japan
| | - Misa Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashimachi, Kodaira, Tokyo 187-8553, Japan
| | - Mitsuhiko Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashimachi, Kodaira, Tokyo 187-8553, Japan.
| |
Collapse
|
19
|
RINGs, DUBs and Abnormal Brain Growth-Histone H2A Ubiquitination in Brain Development and Disease. EPIGENOMES 2022; 6:epigenomes6040042. [PMID: 36547251 PMCID: PMC9778336 DOI: 10.3390/epigenomes6040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
During mammalian neurodevelopment, signaling pathways converge upon transcription factors (TFs) to establish appropriate gene expression programmes leading to the production of distinct neural and glial cell types. This process is partially regulated by the dynamic modulation of chromatin states by epigenetic systems, including the polycomb group (PcG) family of co-repressors. PcG proteins form multi-subunit assemblies that sub-divide into distinct, yet functionally related families. Polycomb repressive complexes 1 and 2 (PRC1 and 2) modify the chemical properties of chromatin by covalently modifying histone tails via H2A ubiquitination (H2AK119ub1) and H3 methylation, respectively. In contrast to the PRCs, the Polycomb repressive deubiquitinase (PR-DUB) complex removes H2AK119ub1 from chromatin through the action of the C-terminal hydrolase BAP1. Genetic screening has identified several PcG mutations that are causally associated with a range of congenital neuropathologies associated with both localised and/or systemic growth abnormalities. As PRC1 and PR-DUB hold opposing functions to control H2AK119ub1 levels across the genome, it is plausible that such neurodevelopmental disorders arise through a common mechanism. In this review, we will focus on advancements regarding the composition and opposing molecular functions of mammalian PRC1 and PR-DUB, and explore how their dysfunction contributes to the emergence of neurodevelopmental disorders.
Collapse
|
20
|
Tong C, Avilés L, Rayor LS, Mikheyev AS, Linksvayer TA. Genomic signatures of recent convergent transitions to social life in spiders. Nat Commun 2022; 13:6967. [PMID: 36414623 PMCID: PMC9681848 DOI: 10.1038/s41467-022-34446-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
The transition from solitary to social life is a major phenotypic innovation, but its genetic underpinnings are largely unknown. To identify genomic changes associated with this transition, we compare the genomes of 22 spider species representing eight recent and independent origins of sociality. Hundreds of genes tend to experience shifts in selection during the repeated transition to social life. These genes are associated with several key functions, such as neurogenesis, behavior, and metabolism, and include genes that previously have been implicated in animal social behavior and human behavioral disorders. In addition, social species have elevated genome-wide rates of molecular evolution associated with relaxed selection caused by reduced effective population size. Altogether, our study provides unprecedented insights into the genomic signatures of social evolution and the specific genetic changes that repeatedly underpin the evolution of sociality. Our study also highlights the heretofore unappreciated potential of transcriptomics using ethanol-preserved specimens for comparative genomics and phylotranscriptomics.
Collapse
Affiliation(s)
- Chao Tong
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Leticia Avilés
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Linda S Rayor
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander S Mikheyev
- Evolutionary Genomics Group, Research School of Biology, Australian National University, Canberra, 0200, Australia
| | - Timothy A Linksvayer
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
21
|
Mai L, Inada H, Kimura R, Kanno K, Matsuda T, Tachibana RO, Tucci V, Komaki F, Hiroi N, Osumi N. Advanced paternal age diversifies individual trajectories of vocalization patterns in neonatal mice. iScience 2022; 25:104834. [PMID: 36039363 PMCID: PMC9418688 DOI: 10.1016/j.isci.2022.104834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/27/2022] [Accepted: 07/20/2022] [Indexed: 10/25/2022] Open
Abstract
Infant crying is a communicative behavior impaired in neurodevelopmental disorders (NDDs). Because advanced paternal age is a risk factor for NDDs, we performed computational approaches to evaluate how paternal age affected vocal communication and body weight development in C57BL/6 mouse offspring from young and aged fathers. Analyses of ultrasonic vocalization (USV) consisting of syllables showed that advanced paternal age reduced the number and duration of syllables, altered the syllable composition, and caused lower body weight gain in pups. Pups born to young fathers had convergent vocal characteristics with a rich repertoire, whereas those born to aged fathers exhibited more divergent vocal patterns with limited repertoire. Additional analyses revealed that some pups from aged fathers displayed atypical USV trajectories. Thus, our study indicates that advanced paternal age has a significant effect on offspring's vocal development. Our computational analyses are effective in characterizing altered individual diversity.
Collapse
Affiliation(s)
- Lingling Mai
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hitoshi Inada
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.,Laboratory of Health and Sports Sciences, Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai 980-8575, Japan
| | - Ryuichi Kimura
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.,Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kouta Kanno
- Faculty of Law, Economics and Humanities, Kagoshima University, Kagoshima 890-0065, Japan
| | - Takeru Matsuda
- Statistical Mathematics Unit, RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Ryosuke O Tachibana
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Valter Tucci
- Genetics and Epigenetics of Behavior (GEB) Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Fumiyasu Komaki
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan.,Mathematical Informatics Collaboration Unit, RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Noboru Hiroi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio 78229, USA.,Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio 78229, USA.,Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio 78229, USA
| | - Noriko Osumi
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
22
|
Fair SR, Schwind W, Julian DL, Biel A, Guo G, Rutherford R, Ramadesikan S, Westfall J, Miller KE, Kararoudi MN, Hickey SE, Mosher TM, McBride KL, Neinast R, Fitch J, Lee DA, White P, Wilson RK, Bedrosian TA, Koboldt DC, Hester ME. Cerebral organoids containing an AUTS2 missense variant model microcephaly. Brain 2022; 146:387-404. [PMID: 35802027 PMCID: PMC9825673 DOI: 10.1093/brain/awac244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 05/22/2022] [Accepted: 06/22/2022] [Indexed: 01/12/2023] Open
Abstract
Variants in the AUTS2 gene are associated with a broad spectrum of neurological conditions characterized by intellectual disability, microcephaly, and congenital brain malformations. Here, we use a human cerebral organoid model to investigate the pathophysiology of a heterozygous de novo missense AUTS2 variant identified in a patient with multiple neurological impairments including primary microcephaly and profound intellectual disability. Proband cerebral organoids exhibit reduced growth, deficits in neural progenitor cell (NPC) proliferation and disrupted NPC polarity within ventricular zone-like regions compared to control cerebral organoids. We used CRISPR-Cas9-mediated gene editing to correct this variant and demonstrate rescue of impaired organoid growth and NPC proliferative deficits. Single-cell RNA sequencing revealed a marked reduction of G1/S transition gene expression and alterations in WNT-β-catenin signalling within proband NPCs, uncovering a novel role for AUTS2 in NPCs during human cortical development. Collectively, these results underscore the value of cerebral organoids to investigate molecular mechanisms underlying AUTS2 syndrome.
Collapse
Affiliation(s)
- Summer R Fair
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Wesley Schwind
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Dominic L Julian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Alecia Biel
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Gongbo Guo
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Ryan Rutherford
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Swetha Ramadesikan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Jesse Westfall
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Katherine E Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Meisam Naeimi Kararoudi
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Scott E Hickey
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA,Division of Genetic and Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Theresa Mihalic Mosher
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Kim L McBride
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA,Division of Genetic and Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Reid Neinast
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - James Fitch
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Dean A Lee
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Tracy A Bedrosian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Daniel C Koboldt
- Correspondence may also be addressed to: Daniel C. Koboldt, MS E-mail:
| | - Mark E Hester
- Correspondence to: Mark E. Hester, PhD 575 Children’s Crossroad Columbus OH 43205-2716, USA E-mail:
| |
Collapse
|
23
|
Brain Dp140 alters glutamatergic transmission and social behaviour in the mdx52 mouse model of Duchenne muscular dystrophy. Prog Neurobiol 2022; 216:102288. [PMID: 35654209 DOI: 10.1016/j.pneurobio.2022.102288] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/06/2022] [Accepted: 05/25/2022] [Indexed: 12/23/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a muscle disorder caused by DMD mutations and is characterized by neurobehavioural comorbidities due to dystrophin deficiency in the brain. The lack of Dp140, a dystrophin short isoform, is clinically associated with intellectual disability and autism spectrum disorders (ASDs), but its postnatal functional role is not well understood. To investigate synaptic function in the presence or absence of brain Dp140, we utilized two DMD mouse models, mdx23 and mdx52 mice, in which Dp140 is preserved or lacking, respectively. ASD-like behaviours were observed in pups and 8-week-old mdx52 mice lacking Dp140. Paired-pulse ratio of excitatory postsynaptic currents, glutamatergic vesicle number in basolateral amygdala neurons, and glutamatergic transmission in medial prefrontal cortex-basolateral amygdala projections were significantly reduced in mdx52 mice compared to those in wild-type and mdx23 mice. ASD-like behaviour and electrophysiological findings in mdx52 mice were ameliorated by restoration of Dp140 following intra-cerebroventricular injection of antisense oligonucleotide drug-induced exon 53 skipping or intra-basolateral amygdala administration of Dp140 mRNA-based drug. Our results implicate Dp140 in ASD-like behaviour via altered glutamatergic transmission in the basolateral amygdala of mdx52 mice.
Collapse
|
24
|
Biel A, Castanza AS, Rutherford R, Fair SR, Chifamba L, Wester JC, Hester ME, Hevner RF. AUTS2 Syndrome: Molecular Mechanisms and Model Systems. Front Mol Neurosci 2022; 15:858582. [PMID: 35431798 PMCID: PMC9008325 DOI: 10.3389/fnmol.2022.858582] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/01/2022] [Indexed: 01/16/2023] Open
Abstract
AUTS2 syndrome is a genetic disorder that causes intellectual disability, microcephaly, and other phenotypes. Syndrome severity is worse when mutations involve 3' regions (exons 9-19) of the AUTS2 gene. Human AUTS2 protein has two major isoforms, full-length (1259 aa) and C-terminal (711 aa), the latter produced from an alternative transcription start site in exon 9. Structurally, AUTS2 contains the putative "AUTS2 domain" (∼200 aa) conserved among AUTS2 and its ohnologs, fibrosin, and fibrosin-like-1. Also, AUTS2 contains extensive low-complexity sequences and intrinsically disordered regions, features typical of RNA-binding proteins. During development, AUTS2 is expressed by specific progenitor cell and neuron types, including pyramidal neurons and Purkinje cells. AUTS2 localizes mainly in cell nuclei, where it regulates transcription and RNA metabolism. Some studies have detected AUTS2 in neurites, where it may regulate cytoskeletal dynamics. Neurodevelopmental functions of AUTS2 have been studied in diverse model systems. In zebrafish, auts2a morphants displayed microcephaly. In mice, excision of different Auts2 exons (7, 8, or 15) caused distinct phenotypes, variously including neonatal breathing abnormalities, cerebellar hypoplasia, dentate gyrus hypoplasia, EEG abnormalities, and behavioral changes. In mouse embryonic stem cells, AUTS2 could promote or delay neuronal differentiation. Cerebral organoids, derived from an AUTS2 syndrome patient containing a pathogenic missense variant in exon 9, exhibited neocortical growth defects. Emerging technologies for analysis of human cerebral organoids will be increasingly useful for understanding mechanisms underlying AUTS2 syndrome. Questions for future research include whether AUTS2 binds RNA directly, how AUTS2 regulates neurogenesis, and how AUTS2 modulates neural circuit formation.
Collapse
Affiliation(s)
- Alecia Biel
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Anthony S. Castanza
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Ryan Rutherford
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Summer R. Fair
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Lincoln Chifamba
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Jason C. Wester
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Mark E. Hester
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Robert F. Hevner
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
25
|
Li J, Sun X, You Y, Li Q, Wei C, Zhao L, Sun M, Meng H, Zhang T, Yue W, Wang L, Zhang D. Auts2 deletion involves in DG hypoplasia and social recognition deficit: The developmental and neural circuit mechanisms. SCIENCE ADVANCES 2022; 8:eabk1238. [PMID: 35235353 PMCID: PMC8890717 DOI: 10.1126/sciadv.abk1238] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/06/2022] [Indexed: 05/30/2023]
Abstract
The involvement of genetic risk and the underlying developmental and neural circuit mechanisms in autism-related social deficit are largely unclear. Here, we report that deletion of AUTS2, a high-susceptibility gene of ASDs, caused postnatal dentate gyrus (DG) hypoplasia, which was closely relevant to social recognition deficit. Furthermore, a previously unknown mechanism for neural cell migration in postnatal DG development was identified, in which Auts2-related signaling played a vital role as the transcription repressor. Moreover, the supramammillary nucleus (SuM)-DG-CA3 neural circuit was found to be involved in social recognition and affected in Auts2-deleted mice due to DG hypoplasia. Correction of DG-CA3 synaptic transmission by using a pharmacological approach or chemo/optogenetic activation of the SuM-DG circuit restored the social recognition deficit in Auts2-deleted mice. Our findings demonstrated the vital role of Auts2 in postnatal DG development, and this role was critical for SuM-DG-CA3 neural circuit-mediated social recognition behavior.
Collapse
Affiliation(s)
- Jun Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xiaoxuan Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yang You
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Qiongwei Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Chengwen Wei
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Linnan Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Mengwen Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Hu Meng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Tian Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Lifang Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Dai Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Institute for Brain Research and Rehabilitation (IBRR), Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| |
Collapse
|
26
|
ErbB4 Is a Potential Key Regulator of the Pathways Activated by NTRK-Fusions in Thyroid Cancer. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
NTRK gene fusions are drivers of tumorigenesis events that specific Trk-inhibitors can target. Current knowledge of the downstream pathways activated has been previously limited to the pathways of regulator proteins phosphorylated directly by Trk receptors. Here, we aimed to detect genes whose expression is increased in response to the activation of these pathways. We identified and analyzed differentially expressed genes in thyroid cancer samples with NTRK1 or NTRK3 gene fusions, and without any NTRK fusions, versus normal thyroid gland tissues, using data from the Cancer Genome Atlas, the DESeq2 tool, and the Genome Enhancer and geneXplain platforms. Searching for the genes activated only in samples with an NTRK fusion as opposed to those without NTRK fusions, we identified 29 genes involved in nervous system development, including AUTS2, DTNA, ERBB4, FLRT2, FLRT3, RPH3A, and SCN4A. We found that genes regulating the expression of the upregulated genes (i.e., upstream regulators) were enriched in the “signaling by ERBB4” pathway. ERBB4 was also one of three genes encoding master regulators whose expression was increased only in samples with an NTRK fusion. Moreover, the algorithm searching for positive feedback loops for gene promoters and transcription factors (a so-called “walking pathways” algorithm) identified the ErbB4 protein as the key master regulator. ERBB4 upregulation (p-value = 0.004) was confirmed in an independent sample of ETV6-NTRK3-positive FFPE specimens. Thus, ErbB4 is the potential key regulator of the pathways activated by NTRK gene fusions in thyroid cancer. These results are preliminary and require additional biochemical validation.
Collapse
|
27
|
Transcriptome and chromatin alterations in social fear indicate association of MEG3 with successful extinction of fear. Mol Psychiatry 2022; 27:4064-4076. [PMID: 35338311 PMCID: PMC9718683 DOI: 10.1038/s41380-022-01481-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023]
Abstract
Social anxiety disorder is characterized by a persistent fear and avoidance of social situations, but available treatment options are rather unspecific. Using an established mouse social fear conditioning (SFC) paradigm, we profiled gene expression and chromatin alterations after the acquisition and extinction of social fear within the septum, a brain region important for social fear and social behaviors. Here, we particularly focused on the successful versus unsuccessful outcome of social fear extinction training, which corresponds to treatment responsive versus resistant patients in the clinics. Validation of coding and non-coding RNAs revealed specific isoforms of the long non-coding RNA (lncRNA) Meg3 regulated, depending on the success of social fear extinction. Moreover, PI3K/AKT was differentially activated with extinction success in SFC-mice. In vivo knockdown of specific Meg3 isoforms increased baseline activity of PI3K/AKT signaling, and mildly delayed social fear extinction. Using ATAC-Seq and CUT&RUN, we found alterations in the chromatin structure of specific genes, which might be direct targets of lncRNA Meg3.
Collapse
|
28
|
AUTS2 Gene: Keys to Understanding the Pathogenesis of Neurodevelopmental Disorders. Cells 2021; 11:cells11010011. [PMID: 35011572 PMCID: PMC8750789 DOI: 10.3390/cells11010011] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/08/2021] [Accepted: 12/18/2021] [Indexed: 01/01/2023] Open
Abstract
Neurodevelopmental disorders (NDDs), including autism spectrum disorders (ASD) and intellectual disability (ID), are a large group of neuropsychiatric illnesses that occur during early brain development, resulting in a broad spectrum of syndromes affecting cognition, sociability, and sensory and motor functions. Despite progress in the discovery of various genetic risk factors thanks to the development of novel genomics technologies, the precise pathological mechanisms underlying the onset of NDDs remain elusive owing to the profound genetic and phenotypic heterogeneity of these conditions. Autism susceptibility candidate 2 (AUTS2) has emerged as a crucial gene associated with a wide range of neuropsychological disorders, such as ASD, ID, schizophrenia, and epilepsy. AUTS2 has been shown to be involved in multiple neurodevelopmental processes; in cell nuclei, it acts as a key transcriptional regulator in neurodevelopment, whereas in the cytoplasm, it participates in cerebral corticogenesis, including neuronal migration and neuritogenesis, through the control of cytoskeletal rearrangements. Postnatally, AUTS2 regulates the number of excitatory synapses to maintain the balance between excitation and inhibition in neural circuits. In this review, we summarize the knowledge regarding AUTS2, including its molecular and cellular functions in neurodevelopment, its genetics, and its role in behaviors.
Collapse
|
29
|
Kanlayaprasit S, Thongkorn S, Panjabud P, Jindatip D, Hu VW, Kikkawa T, Osumi N, Sarachana T. Autism-Related Transcription Factors Underlying the Sex-Specific Effects of Prenatal Bisphenol A Exposure on Transcriptome-Interactome Profiles in the Offspring Prefrontal Cortex. Int J Mol Sci 2021; 22:13201. [PMID: 34947998 PMCID: PMC8708761 DOI: 10.3390/ijms222413201] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/16/2022] Open
Abstract
Bisphenol A (BPA) is an environmental risk factor for autism spectrum disorder (ASD). BPA exposure dysregulates ASD-related genes in the hippocampus and neurological functions of offspring. However, whether prenatal BPA exposure has an impact on genes in the prefrontal cortex, another brain region highly implicated in ASD, and through what mechanisms have not been investigated. Here, we demonstrated that prenatal BPA exposure disrupts the transcriptome-interactome profiles of the prefrontal cortex of neonatal rats. Interestingly, the list of BPA-responsive genes was significantly enriched with known ASD candidate genes, as well as genes that were dysregulated in the postmortem brain tissues of ASD cases from multiple independent studies. Moreover, several differentially expressed genes in the offspring's prefrontal cortex were the targets of ASD-related transcription factors, including AR, ESR1, and RORA. The hypergeometric distribution analysis revealed that BPA may regulate the expression of such genes through these transcription factors in a sex-dependent manner. The molecular docking analysis of BPA and ASD-related transcription factors revealed novel potential targets of BPA, including RORA, SOX5, TCF4, and YY1. Our findings indicated that prenatal BPA exposure disrupts ASD-related genes in the offspring's prefrontal cortex and may increase the risk of ASD through sex-dependent molecular mechanisms, which should be investigated further.
Collapse
Grants
- FRB65_hea(80)_175_37_05 Fundamental Fund, Chulalongkorn University
- AHS-CU 61004 Faculty of Allied Health Sciences Research Fund, Chulalongkorn University
- GRU 6300437001-1 Ratchadapisek Somphot Fund for Supporting Research Unit, Chulalongkorn University
- GRU_64_033_37_004 Ratchadapisek Somphot Fund for Supporting Research Unit, Chulalongkorn University
- The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship, Graduate School, Chulalongkorn University
- The Overseas Research Experience Scholarship for Graduate Students from Graduate School, Chulalongkorn University
- PHD/0029/2561 The Royal Golden Jubilee Ph.D. Programme Scholarship, Thailand Research Fund and National Research Council of Thailand
- National Research Council of Thailand (NRCT)
- GCUGR1125623067D-67 The 90th Anniversary Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), Graduate School, Chulalongkorn University
- GCUGR1125632108D-108 The 90th Anniversary Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), Graduate School, Chulalongkorn University
- 2073011 Chulalongkorn University Laboratory Animal Center (CULAC) Grant
Collapse
Affiliation(s)
- Songphon Kanlayaprasit
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (S.T.); (P.P.)
| | - Surangrat Thongkorn
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (S.T.); (P.P.)
| | - Pawinee Panjabud
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (S.T.); (P.P.)
| | - Depicha Jindatip
- Systems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Valerie W. Hu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA;
| | - Takako Kikkawa
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai 980-8577, Miyagi, Japan; (T.K.); (N.O.)
| | - Noriko Osumi
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai 980-8577, Miyagi, Japan; (T.K.); (N.O.)
| | - Tewarit Sarachana
- Systems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
30
|
High Behavioral Variability Mediated by Altered Neuronal Excitability in auts2 Mutant Zebrafish. eNeuro 2021; 8:ENEURO.0493-20.2021. [PMID: 34544758 PMCID: PMC8503961 DOI: 10.1523/eneuro.0493-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 01/28/2023] Open
Abstract
Autism spectrum disorders (ASDs) are characterized by abnormal behavioral traits arising from neural circuit dysfunction. While a number of genes have been implicated in ASDs, in most cases, a clear understanding of how mutations in these genes lead to circuit dysfunction and behavioral abnormality is absent. The autism susceptibility candidate 2 (AUTS2) gene is one such gene, associated with ASDs, intellectual disability and a range of other neurodevelopmental conditions. However, the role of AUTS2 in neural development and circuit function is not at all known. Here, we undertook functional analysis of Auts2a, the main homolog of AUTS2 in zebrafish, in the context of the escape behavior. Escape behavior in wild-type zebrafish is critical for survival and is therefore, reliable, rapid, and has well-defined kinematic properties. auts2a mutant zebrafish are viable, have normal gross morphology and can generate escape behavior with normal kinematics. However, the behavior is unreliable and delayed, with high trial-to-trial variability in the latency. Using calcium imaging we probed the activity of Mauthner neurons during otic vesicle (OV) stimulation and observed lower probability of activation and reduced calcium transients in the mutants. With direct activation of Mauthner by antidromic stimulation, the threshold for activation in mutants was higher than that in wild-type, even when inhibition was blocked. Taken together, these results point to reduced excitability of Mauthner neurons in auts2a mutant larvae leading to unreliable escape responses. Our results show a novel role for Auts2a in regulating neural excitability and reliability of behavior.
Collapse
|
31
|
Pang W, Yi X, Li L, Liu L, Xiang W, Xiao L. Untangle the Multi-Facet Functions of Auts2 as an Entry Point to Understand Neurodevelopmental Disorders. Front Psychiatry 2021; 12:580433. [PMID: 33967843 PMCID: PMC8102784 DOI: 10.3389/fpsyt.2021.580433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 03/22/2021] [Indexed: 12/27/2022] Open
Abstract
Neurodevelopmental disorders are psychiatric diseases that are usually first diagnosed in infancy, childhood and adolescence. Autism spectrum disorder (ASD) is a neurodevelopmental disorder, characterized by core symptoms including impaired social communication, cognitive rigidity and repetitive behavior, accompanied by a wide range of comorbidities such as intellectual disability (ID) and dysmorphisms. While the cause remains largely unknown, genetic, epigenetic, and environmental factors are believed to contribute toward the onset of the disease. Autism Susceptibility Candidate 2 (Auts2) is a gene highly associated with ID and ASD. Therefore, understanding the function of Auts2 gene can provide a unique entry point to untangle the complex neuronal phenotypes of neurodevelpmental disorders. In this review, we discuss the recent discoveries regarding the molecular and cellular functions of Auts2. Auts2 was shown to be a key-regulator of transcriptional network and a mediator of epigenetic regulation in neurodevelopment, the latter potentially providing a link for the neuronal changes of ASD upon environmental risk-factor exposure. In addition, Auts2 could synchronize the balance between excitation and inhibition through regulating the number of excitatory synapses. Cytoplasmic Auts2 could join the fine-tuning of actin dynamics during neuronal migration and neuritogenesis. Furthermore, Auts2 was expressed in developing mouse and human brain regions such as the frontal cortex, dorsal thalamus, and hippocampus, which have been implicated in the impaired cognitive and social function of ASD. Taken together, a comprehensive understanding of Auts2 functions can give deep insights into the cause of the heterogenous manifestation of neurodevelopmental disorders such as ASD.
Collapse
Affiliation(s)
- Wenbin Pang
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- National Health Commission (NHC) Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, China
| | - Xinan Yi
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Ling Li
- Department of Pediatric Rehabilitation, Hainan Women and Children's Medical Center, Haikou, China
| | - Liyan Liu
- Department of Pediatric Rehabilitation, Hainan Women and Children's Medical Center, Haikou, China
| | - Wei Xiang
- National Health Commission (NHC) Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, China
| | - Le Xiao
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- Department of Pediatric Rehabilitation, Hainan Women and Children's Medical Center, Haikou, China
| |
Collapse
|
32
|
Ogata S, Hashizume K, Hayase Y, Kanno Y, Hori K, Balan S, Yoshikawa T, Takahashi H, Taya S, Hoshino M. Potential involvement of DSCAML1 mutations in neurodevelopmental disorders. Genes Cells 2021; 26:136-151. [PMID: 33501714 DOI: 10.1111/gtc.12831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/24/2022]
Abstract
The molecular mechanisms underlying neurodevelopmental disorders (NDDs) remain unclear. We previously identified Down syndrome cell adhesion molecule like 1 (Dscaml1) as a responsible gene for Ihara epileptic rat (IER), a rat model for human NDDs with epilepsy. However, the relationship between NDDs and DSCAML1 in humans is still elusive. In this study, we screened databases of autism spectrum disorders (ASD), intellectual disability (ID)/developmental disorders (DD) and schizophrenia for genomic mutations in human DSCAML1. We then performed in silico analyses to estimate the potential damage to the mutated DSCAML1 proteins and chose three representative mutations (DSCAML1C729R , DSCAML1R1685* and DSCAML1K2108Nfs*37 ), which lacked a cysteine residue in the seventh Ig domain, the intracellular region and the C-terminal PDZ-binding motif, respectively. In overexpression experiments in a cell line, DSCAML1C729R lost its mature N-glycosylation, whereas DSCAML1K2108Nfs*37 was abnormally degraded via proteasome-dependent protein degradation. Furthermore, in primary hippocampal neurons, the ability of the wild-type DSCAML1 to regulate the number of synapses was lost with all mutant proteins. These results provide insight into understanding the roles of the domains in the DSCAML1 protein and further suggest that these mutations cause functional changes, albeit through different mechanisms, that likely affect the pathophysiology of NDDs.
Collapse
Affiliation(s)
- Shigehiro Ogata
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Koichi Hashizume
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Yoneko Hayase
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Yukie Kanno
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Kei Hori
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Shabeesh Balan
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Shinichiro Taya
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| |
Collapse
|
33
|
Sexual excitation induces courtship ultrasonic vocalizations and cataplexy-like behavior in orexin neuron-ablated male mice. Commun Biol 2021; 4:165. [PMID: 33547399 PMCID: PMC7864915 DOI: 10.1038/s42003-021-01696-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/12/2021] [Indexed: 11/22/2022] Open
Abstract
Cataplexy is triggered by laughter in humans and palatable food in mice. To further evaluate mice’s cataplexy, we examined courtship behavior in orexin neuron-ablated mice (ORX-AB), one of the animal models of narcolepsy/cataplexy. Wild-type female mice were placed into the home cage of male ORX-AB and cataplexy-like behavior was observed along with ultrasonic vocalizations (USVs), also known as the “love song”. ORX-AB with a female encounter showed cataplexy-like behavior both during the dark and light periods, whereas ORX-AB with chocolate predominantly showed it during the dark period. During the light period observation, more than 85% of cataplexy-like bouts were preceded by USVs. A strong positive correlation was observed between the number of USVs and cataplexy-like bouts. Cataplexy-like behavior in narcoleptic mice is a good behavioral measure to study the brain mechanisms behind positive emotion because they can be induced by different kinds of positive stimuli, including chocolate and female courtship. Kuwaki and Kanno examine courtship behavior in orexin neuron-ablated mice (ORX-AB), which are a model of narcolepsy/cataplexy. They find that ORX-AB mice showed cataplexy-like behavior during both dark and light periods in response to a female encounter, however this behavior was predominantly present during dark periods when exposed to chocolate. Studying cataplexy-like behavior in narcoleptic mice is useful for understanding mechanisms behind positive emotions, such as those associated with chocolate and courtship.
Collapse
|
34
|
Sasaki E, Tomita Y, Kanno K. Sex differences in vocalizations to familiar or unfamiliar females in mice. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201529. [PMID: 33489288 PMCID: PMC7813254 DOI: 10.1098/rsos.201529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Mice, both wild and laboratory strains, emit ultrasound to communicate. The sex differences between male to female (male-female) and female to female (female-female) ultrasonic vocalizations (USVs) have been discussed for decades. In the present study, we compared the number of USVs emitted to familiar and unfamiliar females by both males (male-female USVs) and females (female-female USVs). We found that females vocalized more to unfamiliar than to familiar females. By contrast, males exhibited more USVs to familiar partners. This sexually dimorphic behaviour suggests that mice change their vocal behaviour in response to the social context, and their perception of the context is based on social cognition and memory. In addition, because males vocalized more to familiar females, USVs appear to be not only a response to novel objects or individuals, but also a social response.
Collapse
Affiliation(s)
| | | | - Kouta Kanno
- Author for correspondence: Kouta Kanno e-mail:
| |
Collapse
|
35
|
Yamashiro K, Hori K, Lai ESK, Aoki R, Shimaoka K, Arimura N, Egusa SF, Sakamoto A, Abe M, Sakimura K, Watanabe T, Uesaka N, Kano M, Hoshino M. AUTS2 Governs Cerebellar Development, Purkinje Cell Maturation, Motor Function and Social Communication. iScience 2020; 23:101820. [PMID: 33305180 PMCID: PMC7708818 DOI: 10.1016/j.isci.2020.101820] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 10/19/2020] [Accepted: 11/13/2020] [Indexed: 12/27/2022] Open
Abstract
Autism susceptibility candidate 2 (AUTS2), a risk gene for autism spectrum disorders (ASDs), is implicated in telencephalon development. Because AUTS2 is also expressed in the cerebellum where defects have been linked to ASDs, we investigated AUTS2 functions in the cerebellum. AUTS2 is specifically localized in Purkinje cells (PCs) and Golgi cells during postnatal development. Auts2 conditional knockout (cKO) mice exhibited smaller and deformed cerebella containing immature-shaped PCs with reduced expression of Cacna1a. Auts2 cKO and knock-down experiments implicated AUTS2 participation in elimination and translocation of climbing fiber synapses and restriction of parallel fiber synapse numbers. Auts2 cKO mice exhibited behavioral impairments in motor learning and vocal communications. Because Cacna1a is known to regulate synapse development in PCs, it suggests that AUTS2 is required for PC maturation to elicit normal development of PC synapses and thus the impairment of AUTS2 may cause cerebellar dysfunction related to psychiatric illnesses such as ASDs. Loss of Auts2 leads to the reduction of cerebellar size AUTS2 promotes the dendritic maturation of Purkinje cells AUTS2 participates in PF and CF synapse development of Purkinje cells Auts2 cKO mice exhibit the impaired motor learning and vocal communications
Collapse
Affiliation(s)
- Kunihiko Yamashiro
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan.,Department of NCNP Brain Physiology and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kei Hori
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Esther S K Lai
- Brain Mechanism for Behavior Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan.,Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryo Aoki
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan.,Department of NCNP Brain Physiology and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kazumi Shimaoka
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Nariko Arimura
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Saki F Egusa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Asami Sakamoto
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.,Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan.,Department of NCNP Brain Physiology and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| |
Collapse
|